
Learning Partial Lexicographic Preference Trees
over Combinatorial Domains

Xudong Liu and Miroslaw Truszczynski
Department of Computer Science

University of Kentucky
Lexington, KY USA

{liu,mirek}@cs.uky.edu

Abstract

We introduce partial lexicographic preference trees (PLP-
trees) as a formalism for compact representations of prefer-
ences over combinatorial domains. Our main results concern
the problem of passive learning of PLP-trees. Specifically, for
several classes of PLP-trees, we study how to learn (i) a PLP-
tree consistent with a dataset of examples, possibly subject to
requirements on the size of the tree, and (ii) a PLP-tree cor-
rectly ordering as many of the examples as possible in case
the dataset of examples is inconsistent. We establish com-
plexity of these problems and, in all cases where the problem
is in the class P, propose polynomial time algorithms.

Introduction
Representing and reasoning about preferences are funda-
mental to decision making and so, of significant interest
to artificial intelligence. When the choice is among a few
outcomes (alternatives), representations in terms of explicit
enumerations of the preference order are feasible and lend
themselves well to formal analysis. However, in many appli-
cations outcomes come from combinatorial domains. That
is, outcomes are described as tuples of values of issues (also
referred to as variables or attributes), say X1, . . . , Xp, with
each issue Xi assuming values from some set Di – its do-
main. Because of the combinatorial size of the space of such
outcomes, explicit enumerations of their elements are im-
practical. Instead, we resort to formalisms supporting intu-
itive and, ideally, concise implicit descriptions of the order.
The language of CP-nets (Boutilier et al. 2004) is a prime
example of such a formalism.

Recently, however, there has been a rising interest in rep-
resenting preferences over combinatorial domains by ex-
ploiting the notion of the lexicographic ordering. For in-
stance, assuming issues are over the binary domain {0, 1},
with the preferred value for each issue being 1, a sequence
of issues naturally determines an order on outcomes. This
idea gave rise to the language of lexicographic preference
models or lexicographic strategies, which has been exten-
sively studied in the literature (Schmitt and Martignon 2006;
Dombi, Imreh, and Vincze 2007; Yaman et al. 2008). The
formalism of complete lexicographic preference trees (LP-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

trees) (Booth et al. 2010) generalizes the language of lexi-
cographic strategies by arranging issues into decision trees
that assign preference ranks to outcomes. An important as-
pect of LP-trees is that they allow us to model conditional
preferences on issues and conditional ordering of issues. An-
other formalism, the language of conditional lexicographic
preference trees (or CLP-trees) (Bräuning and Eyke 2012),
extends LP-trees by allowing subsets of issues as labels of
nodes.

A central problem in preference representation concerns
learning implicit models of preferences (such as lexico-
graphic strategies, LP-trees or CLP-trees), of possibly small
sizes, that are consistent with all (or at least possibly many)
given examples, each correctly ordering a pair of outcomes.
The problem was extensively studied. Booth et al. (2010)
considered learning of LP-trees, and Bräuning and Eyke
(2012) of CLP-trees.

In this paper, we introduce partial lexicographic prefer-
ence trees (or PLP-trees) as means to represent total pre-
orders over combinatorial domains. PLP-trees are closely
related to LP-trees requiring that every path in the tree con-
tains all issues used to describe outcomes. Consequently,
LP-trees describe total orders over the outcomes. PLP-trees
relax this requirement and allow paths on which some issues
may be missing. Hence, PLP-trees describe total preorders.
This seemingly small difference has a significant impact on
some of the learning problems. It allows us to seek PLP-
trees that minimize the set of issues on their paths, which
may lead to more robust models by disregarding issues that
have no or little influence on the true preference (pre)order.

The rest of the paper is organized as follows. In the next
section, we introduce the language of PLP-trees and describe
a classification of PLP-trees according to their complex-
ity. We also define three types of passive learning problems
for the setting of PLP-trees. In the following sections, we
present algorithms learning PLP-trees of particular types and
computational complexity results on the existence of PLP-
trees of different types, given size or accuracy. We close with
conclusions and a brief account of future work.

Partial Lexicographic Preference Trees
Let I = {X1, . . . , Xp} be a set of binary issues, with each
Xi having its domain Di = {0i, 1i}. The corresponding

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1539

combinatorial domain is the set X = D1 × . . . × Dp. Ele-
ments of X are called outcomes.

A PLP-tree over X is binary tree whose every non-leaf
node is labeled by an issue from I and by a preference entry
1 > 0 or 0 > 1, and whose every leaf node is denoted by
a box 2. Moreover, we require that on every path from the
root to a leaf each issue appears at most once.

To specify the total preorder on outcomes defined by a
PLP-tree T , let us enumerate leaves of T from left to right,
assigning them integers 1, 2, etc. For every outcome α we
find its leaf in T by starting at the root of T and proceed-
ing downward. When at a node labeled with an issue X , we
descend to the left or to the right child of that node based
on the value α(X) of the issue X in α and on the prefer-
ence assigned to that node. If α(X) is the preferred value,
we descend to the left child. We descend to the right child,
otherwise. The integer assigned to the leaf that we eventu-
ally get to is the rank of α in T , written rT (α). The preorder
�T on distinct outcomes determined by T is defined as fol-
lows: α �T β if rT (α) ≤ rT (β) (smaller ranks are “bet-
ter”). We also define derived relations �T (strict order) and
≈T (equivalence or indifference): α �T β if α �T β and
β 6�T α, and αT ≈T β if α �T β and β �T α. Clearly,
�T is a total preorder on outcomes partitioning them into
strictly ordered clusters of equivalent outcomes.

To illustrate the notions just introduced, we consider pref-
erence orderings of dinner options over four binary issues.
The appetizer (X1) can be either salad (01) or soup (11).
The main course (X2) is either beef (02) or fish (12). The
drink (X3) can be beer (03) or (white) wine (13). Finally,
dessert (X4) can be ice-cream (04) or pie (14). An agent
could specify her preferences over dinners as a PLP-tree in
Figure 1a. The main course is the most important issue to
the agent and she prefers fish to beef. Her next most impor-
tant issue is what to drink (independently of her selection for
the main course). She prefers wine over beer with fish, and
beer over wine with beef. If the agent has beef for her main
dish, no matter what drink she gets, her next consideration is
the appetizer, and she prefers salad to soup. In this example,
the dessert does not figure into preferences at all. The most
preferred dinners have fish for the main course and wine for
the drink, with all possible combinations of choices for the
appetizer and dessert (and so, the cluster of most preferred
dinners has four elements).

Classification of PLP-Trees
In the worst case, the size of a PLP-tree is exponential in
the number of issues in I. However, some PLP-trees have a
special structure that allows us to “collapse” them and obtain
more compact representations. This yields a natural classifi-
cation of PLP-trees, which we describe below.

Let R ⊆ I be the set of issues that appear in a PLP-tree
T . We say that T is collapsible if there is a permutation R̂
of elements in R such that for every path in T from the root
to a leaf, issues that label nodes on that path appear in the
same order in which they appear in R̂.

If a PLP-tree T is collapsible, we can represent T by a
single path of nodes labeled with issues according to the or-
der in which they occur in R̂, where a node labeled with an

X2 12>02

X313>03 X3 03>13

X101>11 X1 01>11

(a) Collapsible PLP-tree

X2

X3

X1

12>02

12 :13>03

02 :03>13

0203 :01>11

0213 :01>11

(b) UI-CP PLP-tree

X2 12>02

X303>13 X3 03>13

(c) Collapsible PLP-tree

X2

X3

12>02

03>13

(d) UI-UP PLP-tree

X1

X2

X3

11>01

01 :02>12

1112 :13>03
(e) Invalid UI-CP PLP-tree

X3

X2

X4

X4

X2

(f) CI-FP PLP-tree

Figure 1: PLP-trees over the dinner domain

issueXi is also assigned a partial conditional preference ta-
ble (PCPT) that specifies preferences on Xi, conditioned on
values of ancestor issues in the path. These tables make up
for the lost structure of T as different ways in which ances-
tor issues evaluate correspond to different locations in the
original tree T . Moreover, missing entries in PCPT of Xi

imply equivalence (or indifference) between values of Xi

under conditions that do not appear in the PCPT. Clearly,
the PLP-tree in Figure 1a is collapsible, and can be repre-
sented compactly as a single-path tree with nodes labeled by
issues in the permutation and PCPTs (cf. Figure 1b). Such a
collapsed path labeled by issues is sometimes denoted as a
sequence of issues in R̂ connected by ., e.g., X2 . X3 . X1

for the path in Figure 1b.
Collapsible PLP-trees represented by a single path of

nodes will be referred to as unconditional importance trees
or UI trees, for short. The name reflects the fact that the or-
der in which we consider issues when seeking the rank of an
outcome is always the same (not conditioned on the values
of ancestor issues of higher importance).

Let L be a collapsible PLP-tree. If for every path in L

the order of issues labeling the path is exactly R̂, and L has
the same preference 1 > 0 on every node, then every PCPT
in the collapsed tree contains the same preference 1 > 0,
no matter the evaluation of the ancestor issues. Thus, every
PCPT in the collapsed form can be simplified to a single
fixed preference 1 > 0, a shorthand for its full-sized coun-
terpart. We call the resulting collapsed tree a UI tree with
fixed preferences, or a UI-FP PLP-tree.

1540

A similar simplification is possible if every path in L has
the same ordering of issues which again is exactly R̂, and
for every issue Xi all nodes in L labeled with Xi have the
same preference on values of Xi (either 1i > 0i or 0i > 1i).
Such collapsed trees are called UI-UP PLP-trees, with UP
standing for unconditional preference. As an example, the
UI-UP tree in Figure 1d is the collapsed representation of
the collapsible tree in Figure 1c.

In all other cases, we refer to collapsed PLP-trees as UI-
CP PLP-trees, with CP standing for conditional preference.
If preferences on an issue in such a tree depend in an es-
sential way on all preceding issues, there is no real saving
in the size of representation (instead of an exponential PLP-
tree we have a small tree but with preference tables that are
of exponential size). However, if the preference on an issue
depends only on a few higher importance issues say, never
more than one or two (or, more generally, never more than
some fixed bound b), the collapsed representation is signifi-
cantly smaller.

As an aside, we note that not every path of nodes labeled
with issues and PCPTs is a UI tree. An example is given in
Figure 1e. Indeed, one can see that there is no PLP-tree that
would collapse to it. There is a simple condition characteriz-
ing paths with nodes labeled with issues and PCPTs that are
valid UI trees. This matter is not essential to our discussion
later on and we will not discuss it further here due to the
space limit.

When a PLP-tree is not collapsible, the importance of an
issue depends on where it is located in the tree. We will re-
fer to such PLP-trees as conditional importance trees or CI
trees.

Let T be a CI PLP-tree. We call T a CI-FP tree if ev-
ery non-leaf node in T is labeled by an issue with prefer-
ence 1 > 0. An example of a CI-FP PLP-tree is shown
in Figure 1f, where preferences on each non-leaf node are
1 > 0 and hence omitted. If, for every issue Xi, all nodes
in T labeled with Xi have the same preference (1i > 0i or
0i > 1i) on Xi, we say T is a CI-UP PLP-tree. All other
non-collapsible PLP-trees are called CI-CP PLP-trees.

Passive Learning
An example is a tuple (α, β, v), where α and β are two dis-
tinct outcomes from combinatorial domain X over a set I =
{X1, . . . , Xp} of binary issues, and v ∈ {0, 1}. An example
(α, β, 1) states that α is strictly preferred to β (α � β). Sim-
ilarly, an example (α, β, 0) states that α and β are equivalent
(α ≈ β). Let E = {e1, . . . , em} be a set of examples over I,
with ei = (αi, βi, vi). We set E≈ = {ei ∈ E : vi = 0}, and
E� = {ei ∈ E : vi = 1}. In the following, we denote by
p and m the number of issues and the number of examples,
respectively.

For a PLP-tree T in full representation we denote by |T |
the size of T , that is, the number of nodes in T . If T stands
for a UI tree, we write |T | for the size of T measured by the
total size of preference tables associated with issues in T .
The size of a preference table is the total size of preferences
in it, each preference measured as the number of values in
the condition plus 1 for the preferred value in the domain of

the issue. In particular, the sizes of UI-FP and UI-UP trees
are given by the number of nodes on the path.

A PLP-tree T satisfies an example e if T orders the two
outcomes of e in the same way as they are ordered in e.
Otherwise, T falsifies e. Formally, T satisfies e = (α, β, 1)
if α �T β, and T satisfies e = (α, β, 0) if α ≈T β. We say
T is consistent with a set E of examples if T satisfies every
example in E .

In this work, we study the following passive learning
problems for PLP-trees of all types we introduced.

Definition 1. Consistent-learning (CONSLEARN): given an
example set E , decide whether there exists a PLP-tree T (of
a particular type) such that T is consistent with E .

Definition 2. Small-learning (SMALLLEARN): given an ex-
ample set E and a positive integer l (l ≤ |E|), decide whether
there exists a PLP-tree T (of a particular type) such that T is
consistent with E and |T | ≤ l.
Definition 3. Maximal-learning (MAXLEARN): given an
example set E and a positive integer k (k ≤ m), decide
whether there exists a PLP-tree T (of a particular type) such
that T satisfies at least k examples in E .

Learning UI PLP-trees
In this section, we study the passive learning problems for
collapsible PLP-trees in their collapsed representations as
UI-FP, UI-UP and UI-CP trees.

The CONSLEARN Problem
The CONSLEARN problem is in the class P for UI-FP and
UI-UP trees. To show it, we present a general template of
an algorithm that learns a UI tree. Next, for each of the
classes UI-FP and UI-UP, we specialize the template to a
polynomial-time algorithm.

The template algorithm is shown as Algorithm 1. The in-
put consists of a set E of examples and a set I of issues from
which node labels can be selected. Throughout the execu-
tion, the algorithm maintains a set S of unused issues, ini-
tialized to I, and a set of examples that are not yet ordered
by the tree constructed so far.

If the set of strict examples is empty, the algorithm re-
turns an empty tree. Otherwise, the algorithm identifies the
set AI (E , S) of issues in S that are available for selection as
the label for the next node. If that set is empty, the algorithm
terminates with failure. If not, an issue, say Xl, is selected
from AI (E , S), and a PCPT for that issue is constructed.
Then the sets of examples not ordered yet and of issues not
used yet are updated, and the steps repeat.

To obtain a learning algorithm for a particular class of UI
trees (UI-FP or UI-UP) we need to specify the notion of
an available issue (needed for line 3) and describe how to
construct a partial conditional preference table (needed for
line 8).

To this end, let us define NEQ(E , S) to be the set of all
issues in S (where S ⊆ I) that incorrectly handle at least
one equivalent example in E≈. That is, for an issue X ∈ S
we have X ∈ NEQ(E , S) precisely when for some exam-
ple (α, β, 0) in E , α(X) 6= β(X). Similarly, let us define
EQ(E , S) to be the set of issues in S that do not order any

1541

Algorithm 1: Procedure learnUI that learns a UI tree
Input: E and S = I
Output: A sequence T of issues from I and PCPTs that

define a UI tree consistent with E , or
FAILURE if such a tree does not exist

1 T ← empty sequence;
2 while E� 6= ∅ do
3 Construct AI (E , S);
4 if AI (E , S) = ∅ then
5 return FAILURE;
6 end
7 Xl ← an element from AI (E , S);
8 Construct PCPT(Xl);
9 T ← T, (Xl,PCPT(Xl));

10 E ← E\{e ∈ E� : e is decided on Xl};
11 S ← S\{Xl};
12 end
13 return T ;

of the strict examples in E . That is, for an issue X ∈ S
we have X ∈ EQ(E , S) precisely when for every example
(α, β, 1) in E , α(X) = β(X).
Fixed Preferences. For the problem of learning UI-FP trees,
we define AI (E , S) to contain every issue X /∈ NEQ(E , S)
such that
(1) for every (α, β, 1) ∈ E�, α(X) ≥ β(X).
Proposition 1. If there is a UI-FP tree consistent with all
examples in E and using only issues from S as labels, then
an issue X ∈ S is a top node of some such tree if and only
if X ∈ AI (E , S).
Proof. Let T be a UI tree consistent with E and having
only issues from S as labels. Let X be the issue labeling
the top node of T . Clearly, X /∈ NEQ(E , S), as other-
wise, T would strictly order two outcomes α and β such
that (α, β, 0) ∈ E≈. To prove condition (1), let us consider
any example (α, β, 1) ∈ E�. Since T is consistent with
(α, β, 1), α(X) ≥ β(X). Consequently, X ∈ AI (E , S).

Conversely, let X ∈ AI (E , S) and let T be a UI-FP tree
consistent with all examples in E and using only issues from
S as labels (such a tree exists by assumption). If X labels
the top node in T , we are done. Otherwise, let T ′ be a tree
obtained from T by adding at the top of T another node,
labeling it with X and removing from T the node labeled
by X , if such a node exists. By the definition of AI (E , S)
we have that X /∈ NEQ(E , S) and that condition (1) holds
for X . Using these properties, one can show that T ′ is also a
UI-FP tree consistent with all examples in E . Since the top
node of T ′ is labeled by X , the assertion follows.

We now specialize Algorithm 1 by using in line 3 the
definition of AI (E , S) given above and by setting each
PCPT(Xl) to the fixed unconditional preference 1l > 0l.
Proposition 1 directly implies the correctness of this version
of Algorithm 1.
Theorem 2. Let E be a set of examples over a set I of binary
issues. Algorithm 1 adjusted as described above terminates
and outputs a sequence T representing a UI-FP tree consis-

tent with E if and only if such a tree exists.
We note that issues in NEQ(E , S) are never used when

constructing AI (E , S). Thus, in the case of UI-FP trees, S
could be initialized to I\NEQ(E , I). In addition, if an issue
selected for the label of the top node belongs to EQ(E�, S),
it does not in fact decide any of the strict examples in E and
can be dropped. The resulting tree is also consistent with all
the examples. Thus, the definition of AI (E , S) can be re-
fined by requiring one more condition: X 6∈ EQ(E�, S).
That change does not affect the correctness of the algorithm
but eliminates a possibility of generating trees with “redun-
dant” levels.
Unconditional Preferences. The case of learning UI-UP
trees is very similar to the previous one. Specifically, we de-
fine AI (E , S) to contain an issue X ∈ S precisely when
X /∈ NEQ(E , S) and
(2) for every (α, β, 1) ∈ E�, α(X) ≥ β(X), or for every
(α, β, 1) ∈ E�, α(X) ≤ β(X).

We obtain an algorithm learning UI-UP trees by using in
line 3 the present definition of AI (E , S). In line 8, we take
for PCPT(Xl) either 1l > 0l or 0l > 1l (depending on
which of the two cases in (2) holds for Xl).

The correctness of this algorithm follows from a property
similar to that in Proposition 1.

As in the previous case, here too S could be initialized
to I \ NEQ , and the condition X 6∈ EQ(E�, S) could be
added to the definition of AI (E , S).
Conditional Preferences. The problem is in NP because
one can show that if a UI-CP tree consistent with E exists
(a priori, it does not have to have size polynomial in the size
of E), then another such tree of size polynomial in the size
of E exists, as well. We conjecture that the general problem
of learning UI-CP trees is, in fact, NP-complete. As we have
only partial results for this case, the study of the UI-CP tree
learning will be the subject of future work.

The SMALLLEARN Problem
Algorithm 1 produces a UI PLP-tree consistent with E , if
one exists. In many cases, it is desirable to compute a small,
sometimes even the smallest, representation consistent with
E . We show that these problems for UI trees are NP-hard.
Theorem 3. The SMALLLEARN problem is NP-complete
for each class of {UI} × {FP,UP,CP}.
Proof. We present the proof only in the case of UI-FP. The
argument in other cases (UI-UP and UI-CP) is similar.

(Membership) One can guess a UI-FP PLP-tree T in lin-
ear time, and verify in polynomial time that T has at most l
issues and satisfies every example in E .

(Hardness) We present a polynomial-time reduction from
the hitting set problem (HSP), which is NP-complete (Garey
and Johnson 1979). To recall, in HSP we are given a finite
set U = {a1, . . . , an}, a collection C = {S1, . . . , Sd} of
subsets of U with

⋃
Si∈C Si = U , and a positive integer

k ≤ n, and the problem is to decide whether U has a hitting
set U ′ such that |U ′| ≤ k (U ′ ⊆ U is a hitting set for C if
U ′ ∩ Si 6= ∅ for all Si ∈ C). Given an instance of HSP, we
construct an instance of our problem as follows.
1. I = {Xi : ai ∈ U} (thus, p = n).

1542

2. E = {(si, 0, 1) : Si ∈ C}, where si is a p-bit vector
such that si[j] = 1 ⇔ aj ∈ Si and si[j] = 0 ⇔ aj 6∈ Si

(1 ≤ j ≤ p), and 0 is a p-bit vector of all 0’s (thus, m = d).
3. We set l = k.

We need to show that U has a hitting set of size at most k
if and only if there exists a UI-FP PLP-tree of size at most l
consistent with E .

(⇒) Assume U has a hitting set U ′ of size k. Let U ′
be {aj1 , . . . , ajk}. Define a UI-FP PLP-tree L = Xj1 .
. . . . Xjk . We show that L is consistent with E . Let e =
(αe, βe, 1) be an arbitrary example in E , where αe = si and
βe = 0. Since U ′ is a hitting set, there exists r, 1 ≤ r ≤ k,
such that ajr ∈ Si. Thus, there exists r, 1 ≤ r ≤ k, such
that αe(Xjr) = 1. Let r be the smallest with this property.
It is clear that e is decided at Xjr ; thus, we have αe �L βe.

(⇐) Assume there is a UI-FP PLP-tree L of l issues in I
such that L is consistent with E . Moreover, we assume L =
Xj1Xjl . Let U ′ = {aj1 , . . . , ajl}. We show by means
of contradiction. Assume that U ′ is not a hitting set. That
is, there exists a set Si ∈ C such that U ′ ∩ Si = ∅. Then,
there exists an example e = (αe, βe, 1), where αe = si and
βe = 0, such that αe ≈L βe because none of the issues
{Xi : αe(Xi) = 1} show up in L. This is a contradiction!
Thus, U ′ is a hitting set.
Corollary 4. Given a set E of examples {e1, . . . , em} over
I = {X1, . . . , Xp}, finding the smallest PLP-tree in each
class of {UI}×{FP,UP,CP} consistent with E is NP-hard.

Consequently, it is important to study fast heuristics that
aim at approximating trees of optimal size. Here, we pro-
pose a greedy heuristic for Algorithm 1. In every iteration
the heuristic selects the issue Xl ∈ AI (E , S) that decides
the most examples in E�. However, for some dataset the re-
sulting greedy algorithm does not perform well: the ratio of
the size of the tree computed by our algorithm to the size of
the optimal sequence may be as large as Ω(p). To see this,
we consider the following input.

(11020304, 01020304, 1)
(11120304, 01020304, 1)
(11021304, 01020304, 1)
(01020314, 11020304, 1)

For each class of {UI} × {FP,UP}, Algorithm 1 in the
worst case computes X2 . X3 . X4 . X1, whereas the opti-
mal tree is X4 .X1 (with the PCPTs omitted as they contain
only one preference and so, they do not change the asymp-
totic size of the tree). This example generalizes to the ar-
bitrary number p of issues. Thus, the greedy algorithm to
learn small UI trees is no better than any other algorithm in
the worst case.

Approximating HSP has been extensively studied over
the last decades. It has been shown (Lund and Yannakakis
1994) that, unless NP ⊂ DTIME (npoly logn), HSP cannot
be approximated in polynomial time within factor of c log n,
where 0 < c < 1

4 and n is the number of elements in the
input. The reduction we used above shows that this result
carries over to our problem.

Theorem 5. Unless NP ⊂ DTIME (npoly logn), the prob-
lem of finding the smallest PLP-tree in each class of {UI}×
{FP,UP,CP} consistent with E cannot be approximated in
polynomial time within factor of c log p, where 0 < c < 1

4 .
It is an open problem whether this result can be strength-

ened to a factor linear in p (cf. the example for the worst-case
behavior of our simple greedy heuristic).

The MAXLEARN Problem
When there is no UI PLP-tree consistent with the set of all
examples, it may be useful to learn a UI PLP-tree satisfying
as many examples as possible. We show this problem is in
fact NP-hard for all three classes of UI trees.
Theorem 6. The MAXLEARN problem is NP-complete for
each class of {UI} × {FP,UP,CP}.
Sketch. The problem is in NP. This is evident for the case of
UI-FP and UI-UP trees. If E is a given set of examples, and k
a required lower bound on the number of examples that are
to be correctly ordered, then witness trees in these classes
(trees that correctly order at least k examples in E) have
size polynomial in the size of E . Thus, verification can be
performed in polynomial time. For the case of UI-CP trees,
one can show that if there is a UI-CP tree correctly ordering
at least k examples in E , then there exists such tree of size
polynomial in |E|.

The hardness part follows from the proof in the setting
of learning lexicographic strategies (Schmitt and Martignon
2006), adapted to the case of UI PLP-trees.
Corollary 7. Given a set E of examples {e1, . . . , em} over
I = {X1, . . . , Xp}, finding a PLP-tree in each class of
{UI} × {FP,UP,CP} satisfying the maximum number of
examples in E is NP-hard.

Learning CI PLP-trees
Finally, we present results on the passive learning problems
for PLP-trees in classes {CI}×{FP,UP,CP}. We recall that
these trees assume full (non-collapsed) representation.

The CONSLEARN Problem
We first show that the CONSLEARN problem for class CI-
UP is NP-complete. We then propose polynomial-time al-
gorithms to solve the CONSLEARN problem for the classes
CI-FP and CI-CP.
Theorem 8. The CONSLEARN problem is NP-complete for
class CI-UP.
Sketch. The problem is in NP because the size of a wit-
ness, a CI-UP PLP-tree consistent with E , is bounded by
|E| (one can show that if a CI-UP tree consistent with E ex-
ists, then it can be modified to a tree of size no larger than
O(|E|)). Hardness follows from the proof by Booth et al.
(2010) showing CONSLEARN is NP-hard in the setting of
LP-trees.

For the two other classes of trees, the problem is in P. This
is demonstrated by polynomial-time Algorithm 2 adjusted
for both classes.
Fixed Preference. For class CI-FP, we define AI (E , S) to
contain issue X /∈ NEQ(E , S) if
(3) for every (α, β, 1) ∈ E�, α(X) ≥ β(X).

1543

Algorithm 2: The recursive procedure learnCI that
learns a CI PLP-tree

Input: E , S = I, and t: an unlabeled node
Output: A CI PLP-tree over S consistent with E , or

FAILURE
1 if E� = ∅ then
2 Label t as a leaf and return;
3 end
4 Construct AI (E , S);
5 if AI (E , S) = ∅ then
6 return FAILURE and terminate;
7 end
8 Label t with tuple (Xl, xl) where Xl is from AI (E , S),

and xl is the preferred value on Xl;
9 E ← E\{e ∈ E� : e is decided on Xl};

10 S ← S\{Xl};
11 Create two edges ul, ur and two unlabeled nodes tl, tr

such that ul = 〈t, tl〉 and ur = 〈t, tr〉;
12 El ← {e ∈ E : αe(Xj) = βe(Xj) = xl};
13 Er ← {e ∈ E : αe(Xj) = βe(Xj) = xl};
14 learnCI (El, S, tl);
15 learnCI (Er, S, tr);

Proposition 9. If there is a CI-FP tree consistent with all
examples in E and using only issues from S as labels, then
an issue X ∈ S is a top node of some such tree if and only
if X ∈ AI (E , S).
Proof. It is clear that if there exists a CI-FP PLP-tree con-
sistent with E and only using issues from S as labels, then
the fact that X ∈ S labels the root of some such tree implies
X ∈ AI (E , S).

Now we show the other direction. Let T be the CI-FP tree
over a subset of S consistent with E , X be an issue such that
X ∈ AI (E , S). If X is the root issue in T , we are done.
Otherwise, we construct a CI-FP tree T ′ by creating a root,
labeling it with X , and make one copy of T the left subtree
of T ′ (T ′l) and another, the right subtree of T ′ (T ′r). For a
node t and a subtreeB in T , we write t′l andB′l , respectively,
for the corresponding node and subtree in T ′l . We define t′r
and B′r similarly. If X does not appear in T , we are done
constructing T ′; otherwise, we update T ′ as follows.
1). For every node t ∈ T labeled by X such that t has two
leaf children, we replace the subtrees rooted at t′l and t′r in
T ′l and T ′r with leaves.
2). For every node t ∈ T labeled by X such that t has one
leaf child and a non-leaf subtree B, we replace the subtree
rooted at t′l in T ′l with B′l , and the subtree rooted at t′r in
T ′r with a leaf, if t ∈ T has a right leaf child; otherwise,
we replace the subtree rooted at t′l in T ′l with a leaf, and the
subtree rooted at t′r in T ′r with B′r.
3). Every other node t ∈ T labeled by X has two non-leaf
subtrees: left non-leaf subtree BL and right BR. For every
such node t ∈ T , we replace the subtree rooted at t′l in T ′l
with BL′l, and the subtree rooted at t′r in T ′r with BR′r.

One can show that this construction results in a CI-CP tree
consistent with E and, clearly, it has its root labeled with X .
Thus, the assertion follows.

Proposition 9 clearly implies the correctness of Algo-
rithm 2 with AI (E , S) defined as above for class CI-FP and
each xl ∈ (Xl, xl) set to 1.
Theorem 10. Let E be a set of examples over a set I of bi-
nary issues. Algorithm 2 adjusted as described above termi-
nates and outputs a CI-FP tree T consistent with E if and
only if such a tree exists.
Conditional Preference. For class CI-CP, we define that
AI (E , S) contains issue X 6∈ NEQ(E) if
(4) for every (α, β, 1) ∈ E�, α(X) ≥ β(X), or for every
(α, β, 1) ∈ E�, α(X) ≤ β(X).

We obtain an algorithm learning CI-CP trees by using in
line 4 the present definition of AI (E , S). In line 8, we take
for xl either 1 or 0 (depending on which of the two cases in
(4) holds for Xl). The correctness of this algorithm follows
from a property similar to that in Proposition 9.

The SMALLLEARN and MAXLEARN Problems
Due to space limits, we only outline the results we have for
this case. Both problems for the three CI classes are NP-
complete. They are in NP since if a witness PLP-tree exists,
one can modify it so that its size does not exceed the size
of the input. Hardness of the SMALLLEARN problem for CI
classes follows from the proof of Theorem 3, whereas the
hardness of the MAXLEARN problem for CI cases follows
from the proof by Schmitt and Martignon (2006).

Conclusions and Future Work
We proposed a preference language, partial lexicographic
preference trees, PLP-trees, as a way to represent pref-
erences over combinatorial domains. For several natural
classes of PLP-trees, we studied passive learning problems:
CONSLEARN, SMALLLEARN and MAXLEARN. All com-
plexity results we obtained are summarized in tables in Fig-
ure 2. The CONSLEARN problem for UI-CP trees is as of
now unsettled. While we are aware of subclasses of UI-CP
trees for which polynomial-time algorithms are possible, we
conjecture that in general, the problem is NP-complete.

FP UP CP
UI P P NP
CI P NPC P

(a) CONSLEARN

FP UP CP
UI NPC NPC NPC
CI NPC NPC NPC

(b) SMALLLEARN & MAXLEARN

Figure 2: Complexity results for passive learning problems

For the future research, we will develop good heuristics
for our learning algorithms. We will implement these al-
gorithms handling issues of, in general, finite domains of
values, and evaluate them on both synthetic and real-world
preferential datasets. With PLP-trees of various classes
learned, we will compare our models with the ones learned
through other learning approaches on predicting new prefer-
ences.

1544

References
Booth, R.; Chevaleyre, Y.; Lang, J.; Mengin, J.; and Som-
battheera, C. 2010. Learning conditionally lexicographic
preference relations. In ECAI, 269–274.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and reason-
ing with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research 21:135–191.
Bräuning, M., and Eyke, H. 2012. Learning conditional lex-
icographic preference trees. Preference learning: problems
and applications in AI.
Dombi, J.; Imreh, C.; and Vincze, N. 2007. Learning lexico-
graphic orders. European Journal of Operational Research
183:748–756.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Lund, C., and Yannakakis, M. 1994. On the hardness of
approximating minimization problems. Journal of the ACM
(JACM) 41(5):960–981.
Schmitt, M., and Martignon, L. 2006. On the complexity of
learning lexicographic strategies. The Journal of Machine
Learning Research 7:55–83.
Yaman, F.; Walsh, T. J.; Littman, M. L.; and Desjardins, M.
2008. Democratic approximation of lexicographic prefer-
ence models. In Proceedings of the 25th international con-
ference on Machine learning, 1200–1207. ACM.

1545

