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Abstract

Analogies are a fundamental human reasoning pattern
that relies on relational similarity. Understanding how
analogies are formed facilitates the transfer of knowl-
edge between contexts. The approach presented in this
work focuses on obtaining precise interpretations of
analogies. We leverage noisy semantic networks to an-
swer and explain a wide spectrum of analogy questions.
The core of our contribution, the Semantic Similarity
Engine, consists of methods for extracting and com-
paring graph-contexts that reveal the relational paral-
lelism that analogies are based on, while mitigating un-
certainty in the semantic network. We demonstrate these
methods in two tasks: answering multiple choice anal-
ogy questions and generating human readable analogy
explanations. We evaluate our approach on two data-
sets totaling 600 analogy questions. Our results show
reliable performance and low false-positive rate in ques-
tion answering; human evaluators agreed with 96% of
our analogy explanations.

Introduction

Analogy is a powerful cognitive mechanism that enables
people to transfer knowledge from one situation or context
to another. By identifying similarities between situations,
reasoning by analogy facilitates understanding, inference
making, learning new abstractions and creating conceptual
change (Schiff, Bauminger, and Toledo 2009). At the core
of analogical reasoning lies the concept of similarity, which
can be modeled as featural or alignment-based (Goldstone
and Son 2005). The former relies on comparing observable
attributes, while the latter emphasizes structural correspon-
dences. Analogical reasoning is founded on the alignment-
based model of similarity — the process of understanding an
analogy requires reasoning from a relational perspective.
For Al analogy solving presents an interesting and im-
portant problem because it offers the potential for deep prob-
lem understanding and automated generalization of learned
tasks. In human learning, analogies have long been applied
as a measure of verbal intelligence. Of particular interest to
this work are verbal analogy questions commonly used on
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Figure 1: Overview of the Semantic Similarity Engine and
its application to answering analogy questions and explain-
ing the analogy relationship.

human standardized tests designed to evaluate understand-
ing of relationships between a broad vocabulary of words.

A verbal analogy has the form A:B::C:D, meaning “A is
to B, as C is to D”. A question is formed by the first pair
of words (A:B), followed by a number of possible answer
pairs (C:D, E:F, etc.); the task is to select the answer pair for
which the relation between the pair of words is the same as
for the question pair. For example, given the initial pair os-
trich:bird, and the options (a) cat:feline, (b) primate:monkey
and (c) chair:lounge, the correct answer is (a), because the
same is a relation connects the first word to the second word
on both sides of the analogy.

Prior work in this area of Al includes several techniques
for solving analogy questions designed for humans. Au-
tomated methods rely on latent analysis (Turney 2006).
Crowdsourcing answers has been attempted, with no perfor-
mance gains over statistical methods (Lofi 2013). None of
these approaches produce interpretable justifications, focus-
ing only on providing correct answer choices.

In this paper, we argue that complete analogical reason-



ing requires more than just the ability to select the correct
answer choice. Equally importantly, we believe an analogi-
cal reasoning system must be able to effectively model and
explain the mutual relationship that connects the pairs of
words. Toward this end, we contribute the Semantic Similar-
ity Engine (SSE), a framework that leverages noisy semantic
networks to answer and interpret analogy questions.

Semantic networks are graphs in which words (or con-
cepts) are represented in the nodes and the edges signify re-
lations between them. Some networks are hand-crafted, for
example WordNet (Pedersen, Patwardhan, and Michelizzi
2004), while others are generated automatically from mining
documents. The key difference is that hand-crafted graphs
are more accurate, but represent a smaller number of con-
cepts and types of relations. Conversely, mining produces
noisy graphs which express a broader set of concepts and re-
lations. For evaluating analogies as diverse as those designed
for humans, we use ConceptNet (Speer and Havasi 2012),
a project which aggregates data from DBPedia, WordNet,
VerbNet and other sources. ConceptNet represents relations
of multiple types: lexical, functional, taxonomical, etc. In
this work we use all fixed form relations from ConceptNet,
46 in total. Relations are expressed as weighted directed
edges. Since it includes automatically generated data, Con-
ceptNet has noise both in the nodes and in the edges.

Leveraging ConceptNet, we introduce techniques for
reducing the concept-relation search space by extracting
the graph context, evaluating relational sequence similar-
ity within word pairs, answering questions using similarity
ranking across word pairs and generating human-readable
explanations for analogies. Figure 1 shows an overview of
our system. The input and output of our system are closer to
human-readable text than to structured representations, and
96% of human evaluators agreed with our analogy explana-
tions.

Related Work

Prior work in this area has focused on answering multi-
ple choice analogy questions via unsupervised latent anal-
ysis (Turney and Littman 2005; Turney 2006). Similar to
LSA (Hofmann 1999), the authors introduce Latent Rela-
tional Analysis (LRA), in which the relation formed by each
side of the analogy is modeled as a latent variable. Answers
are selected based on likelihood ranking. The peak perfor-
mance of LRA on the SAT dataset (which we also use in our
work) is 56%. More recent approaches incorporate super-
vised learning, building on previous statistical methods (Tur-
ney 2013). We consider our work complementary to LRA, in
that we focus on providing explanations to analogies while
LRA is designed to answer multiple-choice questions and
does not offer interpretable answers.

The core of our work relates to evaluating similarity at
a relational level. The most closely related prior work is
that on the Structure Mapping Engine (SME), which enables
matching of relational characteristics between two seman-
tic frames (Gentner 1983; Gentner et al. 1997). SME has
been applied in multiple contexts, including sketch classifi-
cation (Chang and Forbus 2012) and games (Hinrichs and
Forbus 2007). Our approach has commonalities with SME
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in that it relies on one-to-one concept associations to form
analogies. However, SME relies on a hand-crafted ontology
(Cyc), while our methods are designed to be noise resilient,
allowing us to benefit from a broader, automatically gener-
ated data source (ConceptNet). Another key difference is
that both the input and output of our system are close to a
human readable form (Figure 1), making it easy to integrate
with natural language systems.

Additionally, previous approaches exist for uncovering
unknown relations in semantic graphs. SPARQL is a com-
mon query language for accessing RDF triplet stores ex-
pressing semantic information (Quilitz and Leser 2008).
SPARQL has been extended with queries that return the
most direct connection between two nodes (Kochut and
Janik 2007). Our context extraction method differs from this
in that it returns a set of concept-relation sequences of differ-
ent length connecting the pair of words instead of the short-
est path.

Semantic Similarity Engine

Figure 1 shows the block diagram for SSE and how it
processes analogy questions. The system has two common
steps: extracting semantic contexts represented as graphs for
each pair of words, and computing sequence similarity. This
common core is then used for the tasks of explaining analo-
gies and answering multiple choice questions.

Semantic Context Subgraph Extraction

The first stage of our pipeline is to extract the context defined
by a pair of words, which we refer to as the start words. The
goal of this stage is to model the relationship between the
start words by identifying multiple semantic paths between
them. We refer to chains of nodes and the relations connect-
ing them as sequences, and define the context of a pair of
start words as a graph containing the start words and se-
quences of nodes and relations by which they are connected.

It may not be immediately clear why we are seeking to
identify multiple paths within the semantic network. In fact,
many word pairs in our analogy dataset are directly linked
by one (or more) of the 46 relationships within ConceptNet.
However, indirect paths through other nodes may provide
greater insight into the relationship of the start words them-
selves. Figure 2 presents an example of such a case, visual-
izing the graph extracted from ConceptNet for the word pair
goose:flock. The correct relation implied by the analogy is
part of, which is represented in the graph, but only for the
superclass of goose, i.e. bird. The start words goose and flock
are directly connected, but only through a less informative
related to edge, while both have stronger connections with
bird through is a and part of edges, respectively. It is there-
fore necessary to explore multiple paths of different lengths
in order to reason effectively about the relationship between
these words and find a good analogy explanation.

We generate the context graph for a given pair of start
words in two steps. First, we extract the unpruned seman-
tic context. This is performed by recursively expanding con-
cepts in breadth-first order starting from the start words,
caching a subgraph from the full semantic graph (i.e. Con-



MadeOf
RelatedTo

Figure 2: Example context surrounding goose and flock. The
most meaningful sequece of relations is through an interme-
diate node, bird.

(b)

Figure 3: Unpruned (a) and pruned (b) context graphs.

ceptNet). The entire graph is too large (tens of GB) to be ac-
cessed efficiently without caching. The stopping condition
is a limit on the number of explored concepts. At each node
addition in the breadth-first exploration, we test if there are
edges to or from the rest of the nodes in the context-graph,
and add them if so. This ensures that all existing relations
between the context’s words are captured. Figure 3(a) shows
an unpruned graph example.

If the search fails to find a sequence between the start
words, then analogical comparisons with another graph are
not possible. This occurs for 14% of the word pairs within
our dataset when using a 500 word limit for expansion.
Using a larger limit did not impact results. Additionally,
attempting to identify long sequences connecting the start
words does little to aid the analogy solving or explanation
process, since long sequences become difficult to interpret.

The context graph contains many leaf nodes that are irrel-
evant to the analogy. In the second step, we prune the graph
by removing any nodes that are not part of a sequence be-
tween the start nodes. Edge direction and weight are ignored
at this step. The result is a much smaller graph, typically
consisting of tens of nodes, as illustrated in Figure 3(b).

Sequence Similarity

Now that we have a method for extracting the pruned context
subgraph for any single pair of start words, we describe how
two such contexts can be compared to determine the simi-
larity in the relation between them. Specifically, we present
an algorithm for identifying the highest similarity sequence
pair (HSSP), the sequence of nodes and edges that has the
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Algorithm 1 Sequence similarity. s; and sy have the same
length, each connecting a pair of concepts in different con-
texts.

1: sim <+ 1.0

2: for k in range(1,length(s1) — 1) do

3 s1k sk k+1]
So | Sz[k k+ ].D
edgesy < contexty.get_rel_types(s1 k0], s1,k[1])
edgess < contexty.get_rel_types(sa k0], s2,x[1])
simy, < CommonRelProp(edgesi, edgess)

8. stm <+ sim *x simy

9: end for
10: return sim

AN A

greatest number of common edges between two contexts.

For a pair of context-graphs, we identify the HSSP by it-
erating through all possible pairs of sequences of the same
length, one from each graph, and selecting the one with the
highest similarity score. Algorithm 1 presents the algorithm
for calculating the similarity score, which has a value be-
tween 0 and 1. For each sequence pair, s; and ss, the algo-
rithm iterates over the length of the sequence (line 2). For
each segment, we compute the size of the set of common
relations relative to the total set of relations present on that
segment (lines 5-8). For example, comparing segments A—B
and C-D, linked by relations {p,q,r} and {r,p} respectively,
the similarity score becomes 2/3, because there are two rela-
tions in common out of three total relations for this segment.
At this stage, we do not yet take into account the weight or
direction of edges, as this makes the algorithm more resilient
to noisy edge additions or omissions within ConceptNet.

To generalize this algorithm for sequence pairs of arbi-
trary (but equal) length, we apply this metric to all segments
of the sequence and multiply the similarity scores (lines 8).
This ensures that if at any point the sequences are entirely
dissimilar, the overall similarity is zero.

Modeling Analogies through SSE

The methods presented in the previous section allow us to
find the best common relational link between two different
pairs of words by searching a large semantic network. In this
section, we describe two applications for understanding the
relationship between word pairs: solving analogy questions
and explaining analogies.

Answering Analogy Questions

Our approach to solving analogy questions stems directly
from the similarity score obtained from the SSE. Our ques-
tions take the form presented in Figure 1. To select an an-
swer, we first compute the HSSP between the question word
pair and each possible answer. Then, we rank all answer op-
tions by their respective HSSP score and select the one with
the highest score.

Options that have a similarity score of 0, or for which a
context-graph connecting the pair of words can not be found,
are discarded. We can then use the sequence pair that gener-
ated the similarity value (i.e. HSSP) to explain the analogy,



as discussed in the following section.

In the results presented in this paper, we do not attempt to
answer the question if there are no answers with a similar-
ity score greater than 0. It is trivial to extend our technique
to allow the algorithm to simply guess one of the multiple
choice options. We do not utilize random guessing in this
paper both to more accurately reflect the performance of the
algorithm, and to facilitate our main goal of studying how
the relationship behind the analogy can be explained. An an-
swer obtained through guessing would make our algorithm,
just as a human student, unable to explain the similarity be-
tween the two word pairs.

Explaining Analogies

Established practices for teaching human students to solve
analogies instruct them to do so by forming a full sentence
that clearly shows the relationship between the two question
words, and then forming a second sentence that shows a sim-
ilar relationship for their chosen answer word pair. The aim
of our work is to generate the sentences that describe these
relationships automatically.

If two pairs of words are stated to be an analogy, we can
produce an interpretation from the corresponding HSSP. In
order to obtain output that is easily readable, we need to re-
duce the HSSP from having multiple relations per segment
to a single chain of relations (Algorithm 2). Therefore, we it-
erate through each segment along the sequences (line 4), and
choose the salient common edge between the two sides of
the analogy (lines 6-10), appending it to the explanation pair
along with the corresponding concepts (lines 5, 10). Note
that edge direction is taken into account in these steps.

We select the common relation with the highest
minimum-weight, preventing imbalances in which only one
side of the analogy is strongly related while the other is rel-
atively weak. Figure 4 shows and example, in which the
bolded relations are selected according to Algorithm 2.

0

eq=[A, “Has Property”,
ea =[X, “Has Property”, Y,

Derived From, 0.7

.0
154,08 @

“Is A, cl
“Is A, 7]

Has Property, 0.6

Part Of, 0.2

Part Of, 0.9
Has Property, 0.4
Made Of, 0.8

Figure 4: Starting from HSSP, we select the common salient
edge on each segment to produce human-readable explana-
tions. eq and ea are then converted to English.

Once a relation is selected for each segment, we convert
the resulting list of nodes and relations into English using a
dictionary which maps coded relations names to more read-
able versions (line 13). For example, a PartOf edge trans-
lates to “is a part of.” While more sophisticated methods
can be used to generate explanation phrases, grammatical
correctness it is not the focus of our work; human evaluators
were asked not to assess grammatical correctness.
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Algorithm 2 Generating a human-readable explanation
from the best similarity sequence pair, which have the same
length.

1: sq < question_seq; sa < answer_seq

2:eq <+ []; ea+ ]

3: n < length(questionseq)

4: for k in 0...(n — 1) do

5:  eq.append(sqlk]); ea.append(salk])

6:  forrel in N(sqlk : k+1].edges, salk : k+1].edges)

do
7: support[rel] = min(sqlk,k + 1].rel.weight,
salk, k + 1].rel.weight))
8: end for

9:  rel-max < rel for which max(support[:])
10:  eq.append(rel_max); ea.append(rel_maz)
11: end for

12: eq.append(sq[n]); ea.append(sa[n])

13: return convert_to_english(eq, ea)

Results

We evaluate the SSE’s ability to correctly answer and ex-
plain analogies using two datasets:

e 373 questions used in SAT US college admittance tests.
This dataset was also used in previous work on answer-
ing analogies (Turney and Littman 2005); Table 1 shows
question examples;

e 227 questions from a public domain website! targeted
for grades 1-12. We combine these into four groups: el-
ementary school (grades 1-4), middle school (grades 5-8)
and high school (grades 9-12), containing 120, 60, and 47
questions, respectively.

In both datasets, each multiple choice question contains five
possible answers. Combined, these questions form a pro-
gression of increasingly difficult analogy problems.

Question Answering Performance

In this section, we evaluate the SSE’s performance in an-
swering questions. We track two performance metrics:

1. answer attempt proportion, which represents the num-
ber of questions for which our algorithm selected an an-
swer. As discussed earlier, our system attempts to answer
a question only if there is at least one answer for which
the HSSP has a non-zero similarity score, thus preventing
random guessing.

answer correctness proportion, which represents how
many of the attempted questions were answered correctly.

In our analysis, we limited the semantic context subgraphs
to have a maximum geodesic distance of two. The geodesic
distance is the shortest distance between two vertices in the
graph, measured in number of edges. Longer paths, while
feasible, proved to result in few answer attempts. In the re-
sults, we separately report performance for solutions with

!Section “Unit 2: Read Theory Word Pair Analogies” from http:
/Iwww.englishforeveryone.org/Topics/Analogies.htm



Table 1: Question examples from the SAT dataset and the answer results of our approach (correct answers shown in bold).

lull:trust

balk:fortitude

betray:loyalty

caj e

hinder:destination

soothe:passion

yes

QUESTION OPTION A OPTION B OPTION C OPTION D OPTION E ATTEMPTED CORRECT
custom:society hypothesis:evidence testimony:trial ballot:election rule:game contest:debate yes yes
seed:plant pouch:kangaroo root:soil drop:water bark:tree egg:bird yes yes

no

virtuoso:music

bard:poetry

crescendo:scale

lyricist:melody

portrait:photography

critic:performance

yes

no

querulous:complain

silent:talk

humorous:laugh

dangerous:risk

deceitful:cheat

no

audacious:boldness

anonymous:identity

remorseful:misdeed

deleterious:result

impressionable:temptation

gracious:accept

hypocrisy

no

a distance of 1, which we call direct, and those with a dis-
tance of two, which we call one-hop, to demonstrate the fre-
quency of occurrence and reliability of both cases. We show
results separately because an answer may be available for
each path length. These answers could be combined via en-
semble methods to increase the answer attempt proportion,
but that extension is outside the scope of this paper.

Additionally, to establish how well the SSE measures sim-
ilarity, we compare against a baseline approach that relies on
ConceptNet’s own metric for similarity provided by the Di-
visi toolkit (Speer, Arnold, and Havasi 2010). This metric is
a real number between 0 and 1, calculated using the SVD
within ConceptNet. In this experimental condition we per-
formed question answering as follows: for each pair of start
words, we computed the Divisi similarity value; we selected
the answer for which the similarity was numerically clos-
est to the similarity of the question pair, attempting answers
only if the question and at least one answer had non-zero
similarity.

Figure 5(a) presents answering performance for direct,
one-hop and baseline methods over the analogy data set. The
solid line shows the proportion of attempted questions, while
the histogram presents the proportion of correct answers of
each method. Across all four question levels, the baseline
technique attempts to answer a large percentage of ques-
tions, but has low accuracy. Its best performance is on the
elementary school data set, where it achieves 28% accuracy.
By comparison, both SSE conditions (direct and one-hop),
are less likely to attempt an answer, but have a significantly
higher accuracy.

In the elementary grade data set, the direct solver achieves
an accuracy of 85%. While performance declines as question
difficulty increases, both solvers answer correctly 83% of at-
tempts on average in the 1-12 grade dataset. As questions be-
come more difficult, especially for the SAT dataset, knowl-
edge of the words’ meanings becomes key. SAT questions
often focus on rarely encountered words, so it is unsurpris-
ing that the attempt ratio decreases due to lack of connec-
tions between the start words. Despite this, the SSE methods
achieve answer correctness of 40% on the SAT dataset.

The experimental results presented in Figure 5(a) were
obtained by utilizing all 46 relations found in ConceptNet.
In Figure 5(b) we present similar results for a second con-
dition in which we ignore two relation types, RelatedTo and
ConceptuallyRelatedTo, which are unique within Concept-
Net because they are derived statistically from document co-
occurrence and thus are far more noisy. Moreover, they are
not useful for generating explanations. In this condition we
note that the attempt proportion is lower, since many edges
within the context are ignored. However, the accuracy for
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attempted question is higher than in the original condition,
providing a means of regulating the algorithm’s behavior in
focusing more or less on accuracy vs. attempts.

In summary, the results demonstrate that the SSE-based
methods for analogy solving achieve high accuracy in this
difficult domain, but sacrifice coverage by not attempting
to answer questions which would require the algorithm to
guess. We made this design choice due to our focus on ex-
plaining analogy questions, which requires the ability to ac-
curately model the relationship between word pairs. We dis-
cuss our results for generating explanations in the following
section.

Explanation Performance

The ultimate goal of our system is to generate full sentence,
human readable explanations of analogy question solutions.
To evaluate our success, we surveyed people to test whether
the explanations generated by our algorithm were meaning-
ful to them. We conducted our survey through the Crowd-
Flower crowdsourcing market using the 74 explanations (60
direct, 14 one-hop) produced by SSE from the correct an-
swers selected when ignoring RelatedTo and Conceptual-
lyRelatedTo edges.

For each explanation, the survey first presented the cor-
responding analogy question in its full form, including the
question statement and all possible answers (as in Figure
1). Then we told readers the true answer, followed by the
explanation. Participants were asked to choose whether the
explanation correctly justified the answer.

To evaluate the quality of our explanations, and to ensure
that human readers were paying attention, we ran this study
by randomly interleaving examples from three conditions:

1. SSE-generated explanations - an explanation generated
from a HSSP selected by SSE;

2. randomized explanations - we substituted the relations in
the SSE-generated set with random selections from the set
of 44 relations;

3. edited explanations - we substituted the relations in the
SSE-generated set with manually edited relations that
were contradictory to the true relation.

Table 2 presents examples of all three explanation types.
We included the randomized and edited conditions in our
analysis because many relations within ConceptNet are sim-
ilar, and thus selecting one at random may result in a relation
that was very close, but not identical to, the SSE-selected
one. Our goal was to verify that the SSE-selected relations,
and the explanations derived from them, were clearly cor-
rect and differentiable from both random noise and wrong
answers.
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Figure 5: Answer performance on four datasets, compar-
ing the direct (D) and one-hop (1H) methods with the Di-
visi similarity baseline (S) both when using (top) and when
ignoring (bottom) statistically derived relations. Questions
are grouped by elementary grades (G1-G4), middle school
grades (G5-G8), high school (G9-G12) grades and SAT.

In total, the surveys tested 222 explanations (three study
conditions applied to 74 questions), and each question re-
ceived at least 5 judgements (5.79 on average). Figure 6
reports the proportion of analogy explanations that partic-
ipants considered to be valid for each condition, reported
separately for direct and one-hop solvers. We observe that
human evaluators agreed with 96% of the explanations pro-
duced by our method — all but a single one-hop explana-
tion were accepted. Approximately half of the randomly se-
lected explanations were considered valid, and we observed
higher disagreement between participants in this dataset
(study-wide inter-user agreement was high, 87% on aver-
age, but only 78% for randomized condition). When ana-
lyzing these instances case by case, we found many of the
randomly selected explanations to be reasonable, if not en-
tirely sound. However, in the edited dataset, which contained
intentionally illogical relations, very few were considered
valid. This result strongly supports the validity of the SSE-
generated similarity relationships and the analogy explana-
tions founded upon them.
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Figure 6: Evaluation of explanation quality for direct (D)
and one-hop paths (1H), comparing our system’s output (C)
with randomized (R) and edited (E) conditions.

Table 2: Question examples from the SAT dataset and the
answer results of our approach (correct answers in bold).

Solver Dataset Explanation Pair
Direct SSE-selected ﬁ re has property of hot
ice has property of cold
Direct Randomized .ﬁre. is a member O.f hot
ice is a member of cold
Direct Edited .ﬁl‘e.IS not hot
ice is not cold
tub is used for bath, which is at location bathroom
One-hop SSE-selected stove is used for cook, which is at location kitchen
One-h Randomized tub is located near bath, which is attribute of bathroom
ne-hop andomize stove is located near cook, which is attribute of kitchen
. tub is participle of bath, which inherits from bathroom
One-hop Edited stove is the participle of cook, which inherits from kitchen

Finally, we note that the relatively strong performance of
the randomized dataset suggests that humans were less sen-
sitive to the exact wording of the analogy explanation and
accepted relatively close relation substitutes, as long as the
substituted relation was sufficiently similar to the one in-
tended by the analogy. This result has broader implications,
as it suggests that correctly identifying the ideal relation rep-
resented by the analogy may not be necessary. Computation-
ally, the set of all possible analogy relations is potentially
very large. However, if we allow for approximations, multi-
ple analogy relationships can be collapsed, a hypothesis that
is supported by these results.

Conclusion

Analogies are an essential reasoning pattern that enables
learning through similarity and skill transfer. In this work,
we presented a method for evaluating analogical similar-
ity by comparing paths within semantic context graphs de-
rived from large scale noisy semantic networks. We demon-
strated the effectiveness of our approach on two applica-
tions, solving multiple choice analogy questions and gen-
erating human-readable explanations for the analogies. Our
results demonstrate that our methods achieve high accuracy
in correctly answering attempted questions, and surveyed
study participants agreed with the analogy explanations gen-
erated by our algorithm in 96% of cases. In future work, we
plan to explore the use of semantic similarity in other do-
mains, including scene understanding and skill transfer.
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