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Abstract

Model-Based Diagnosis techniques have been successfully
applied to support a variety of fault-localization tasks both
for hardware and software artifacts. In many applications, Re-
iter’s hitting set algorithm has been used to determine the
set of all diagnoses for a given problem. In order to con-
struct the diagnoses with increasing cardinality, Reiter pro-
posed a breadth-first search scheme in combination with dif-
ferent tree-pruning rules. Since many of today’s computing
devices have multi-core CPU architectures, we propose tech-
niques to parallelize the construction of the tree to better uti-
lize the computing resources without losing any diagnoses.
Experimental evaluations using different benchmark prob-
lems show that parallelization can help to significantly re-
duce the required running times. Additional simulation ex-
periments were performed to understand how the characteris-
tics of the underlying problem structure impact the achieved
performance gains.

Introduction

Model-Based Diagnosis (MBD) is a principled and domain-
independent way of determining the possible reasons why a
system does not behave as expected (de Kleer and Williams
1987; Reiter 1987). MBD was initially applied to find
faults in hardware artifacts like electronic circuits. Later
on, due to its generality, the principle was applied to a
number of different problems including the diagnosis of
VHDL and Prolog programs, knowledge bases, ontolo-
gies, process descriptions and Java programs or spread-
sheet programs (Friedrich, Stumptner, and Wotawa 1999;
Console, Friedrich, and Dupré 1993; Felfernig et al. 2004;
Friedrich and Shchekotykhin 2005; Mateis et al. 2000;
Jannach and Schmitz 2014; Felfernig et al. 2009).

MBD approaches rely on an explicit description of the an-
alyzed system. This includes the system’s components, their
interconnections, and their normal “behavior”. Given some
inputs and expected outputs for the system, a diagnosis task
is initiated when there is a discrepancy between what is ex-
pected and observed. The task then consists in finding mini-
mal subsets of the components, i.e., diagnoses, which, if as-
sumed to be faulty, explain the observed outputs.
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To focus the search, (Reiter 1987) relied on conflicts,
which are subsets of the system’s components that expose
an unexpected behavior given the inputs and the observa-
tions. The set of diagnoses for a system corresponds to the
minimal hitting set of the conflicts. To determine the hit-
ting sets, a breadth-first procedure was proposed leading to
the construction of a hitting set tree (HS-tree), where the
nodes are labeled with conflicts and the edges are labeled
with elements of the conflicts. The breadth-first principle en-
sures that the generated diagnoses contain no superfluous el-
ements. Techniques like conflict re-use and tree pruning help
to further reduce the search effort.

The most costly operation during tree construction in
many application settings is to check if a new node is a
diagnosis for the problem and, if not, to calculate a new
conflict for the node using a “theorem prover” call (Reiter
1987). When applying MBD, e.g., to diagnose a specifica-
tion of a Constraint Satisfaction Problem (CSP), we would
need to determine at each node if a relaxed version of the
CSP — we assume some constraint definitions to be faulty —
has a solution. If not, a method like QuicKXPLAIN (Junker
2004) could be used to find a minimal conflict, which, in
turn, requires a number of relaxations of the original CSP
to be solved. In practice, the overall diagnosis running time
mainly depends on how fast a consistency check can be
done, since during this time, the HS algorithm has to wait
and cannot expand further nodes. However, today’s desktop
computers and even mobile phones and tablets have multiple
cores. Therefore, if the calculations are done sequentially,
most of the processing power remains unused.

In this work, we address application scenarios like the
ones mentioned above in which (a) the conflicts are gener-
ated “on-demand” and are not available before the diagnosis
step and (b) where we are interested in finding all minimal
diagnoses, which corresponds to a (worst case) scenario that
is common in many of the applications mentioned above. In
particular, we propose to parallelize the HS-tree construction
process to better utilize the potential of modern computer ar-
chitectures.

Reiter’s Theory of Diagnosis

A formal characterization of model-based diagnosis based
on first-order logic is given in (Reiter 1987) and can be sum-
marized as follows.



Definition 1. (Diagnosable System) A diagnosable system
is described as a pair (SD, COMPONENTS) where SD is a
system description (a set of logical sentences) and coOMpO-
NENTS represents the system’s components (a finite set of
constants).

The normal behavior of components is described by us-
ing a distinguished (usually negated) unary predicate AB(.),
meaning ‘“‘abnormal”. A diagnosis problem arises when
some observation o € 0Bs of the system’s input-output be-
havior (again expressed as first-order sentences) deviates
from the expected system behavior.

Definition 2. (Diagnosis) Given a diagnosis problem (sD,
COMPONENTS, OBS), a diagnosis is a minimal set A <
COMPONENTS such that sSD U 0Bs U {AB(c)lc € A} v
{—aB(c)|c € cOMPONENTS\A} is consistent.

In other words, a diagnosis is a minimal subset of the sys-
tem’s components, which, if assumed to be faulty (and thus
behave abnormally) explain the system’s behavior, i.e., are
consistent with the observations.

Finding all diagnoses can in theory be done by simply
trying out all possible subsets of COMPONENTS and checking
their consistency with the observations. In (Reiter 1987), Re-
iter however proposes a more efficient procedure based on
the concept of conflicts.

Definition 3. (Conflict) A conflict for (SD, COMPONENTS,
oBS) is a set {c1,...,cp} S COMPONENTS such that sD U
oBs U{—AB(c1), ..., ~AB(cg)} is inconsistent.

A conflict thus corresponds to a subset of the components,
which, if assumed to behave normally, are not consistent
with the observations. A conflict c is considered to be mini-
mal, if there exists no proper subset of ¢ which is also a
conflict.

Reiter finally shows that finding all diagnoses can be ac-
complished by finding the minimal hitting set of the given
conflicts. Furthermore, he proposes a breadth-first search
procedure and the construction of a corresponding hitting
set tree (HS-Tree) to determine the minimal diagnoses. Later
on, Greiner et al. in (Greiner, Smith, and Wilkerson 1989)
found a potential problem that can occur during the HS-tree
construction in presence of non-minimal conflicts. To fix the
problem, they proposed an extension to the algorithm which
is based on a directed acyclic graph (DAG) instead of the
HS-tree.

In this paper, we will use the original HS-tree variant to
simplify the presentation of our parallelization approaches;
the same scheme can however also be applied to the HS-
DAG version proposed by (Greiner, Smith, and Wilkerson
1989). Note that in our experiments the additional tree-
pruning step in case of non-minimal conflicts is not required,
since our approach is based on QUICKXPLAIN — a conflict de-
tection technique which guarantees to return only minimal
conflicts.

Reiter’s HS-Tree Algorithm

Figure 1 shows how an example HS-tree is constructed. Af-
ter an unexpected behavior was detected, a first conflict, in
this case {C1,C2,C3}, is computed and used as a label for

1504

the tree’s root note ((1)). The tree is then expanded in left-
to-right breadth first manner. Each new node is either la-
beled with a new conflict that is created on-demand (2),(3)),
closed because of pruning rules ((4),(5)) or represents a di-
agnosis (marked with v'). The diagnoses finally correspond
to the path labels of the nodes marked with v/, i.e., {{C2},
{C1,C4}, {C3,C4}} in this example.

O]

{C1,C2, C3}

v
@ c4 &) \
s

Figure 1: Example for HS-tree construction.

Algorithm 1 shows the main loop of a non-recursive imple-
mentation of a breadth-first procedure that maintains a list of
open nodes to be expanded. Algorithm 2 contains the node
expansion logic and includes mechanisms for conflict re-
use, tree pruning and the management of the lists of known
conflicts, paths and diagnoses. We use this implementation
as a basis for illustrating our new parallelization schemes.

Input: A diagnosis problem (SD, ComPs, OBS)
Result: The set A of diagnoses

A = ¢¥; paths = ¢F; conflicts = f; newNodes = (;
rootNode = CREATEROOTNODE(SD, ComPs, OBS);
nodesToExpand = {rootNode);
while nodesToExpand # { ) do

newNodes = { );

node = head(nodesToExpand) ;

foreach c € node.conflict do

\ EXPAND(node, ¢, A, paths, conflicts, newNodes);

end

nodesToExpand = tail(nodesToExpand) ® newNodes;
end
return A;

Algorithm 1: DIAGNOSE: Main loop.

Algorithm 1 takes a diagnosis problem (DP) instance
as input and returns the set A of diagnoses. The DP is
given as a tuple (SD, CoMmps, OBS), where SD is the sys-
tem description, Comps the set of components that can
potentially be faulty, and OBs a set of observations. The
method CREATEROOTNODE creates the initial node, which
is labeled with a conflict and an empty path label. Within
the while loop, the first element of the list of open nodes
NODESTOEXPAND is taken. The function ExPAND (Algorithm
2) is called for each element of the node’s conflict and it
adds new leaf nodes to be explored to a global list. These
new nodes are then appended (@) to the remaining list of
open nodes in the main loop which continues until no more
elements remain for expansion.

The ExPAND method determines the path label for the new
node and checks if the new path label is not a superset of an
already found diagnosis. The function CHECKANDADDPATH



Input: An existingNode to expand, a conflict element c €
Cowmps, the sets A, paths, conflicts, newNodes

Input: A diagnosis problem (SD, ComPs, OBS)
Result: The set A of diagnoses

newPathLabel = existingNode.pathLabel U {c};
if (31e A : 1< newPathLabel) A
CHECKANDADDPATH (paths, newPathLabel) then
node = new Node(newPathLabel);
if 3 S € conflicts : S n newPathLabel = 5 then
| node.conflict = S;
else
node.conflict = CHECKCONSISTENCY
(SD, Comps, OBSs, node.pathLabel)

end

if node.conflict # & then

newNodes = newNodes U {node};
conflicts = conflicts U node.conflict;
else

| A = A U {node.pathLabel};

end

end

Algorithm 2: EXPAND: Node expansion logic.

Input: Already explored paths,
the newPathLabel to be explored
Result: Flag indicating successful addition

if 1 € paths : | = newPathLabel then
paths = paths U newPathLabel;
return true;
end
return false;
Algorithm 3: CHECKANDADDPATH: Create a path label.

(Algorithm 3) then checks if the node was not already ex-
plored elsewhere in the tree. The function returns true if the
set of labels corresponding to the new path was successfully
inserted into the list of known paths. Otherwise, the list of
known paths remains unchanged and the node is “closed”.
For new nodes, either an existing conflict is reused or a new
one is created with a call to the consistency checker, which
tests if the new node is a diagnosis or returns a minimal con-
flict otherwise. Depending on the outcome, a new node is
added to the list NODESTOEXPAND or a diagnosis is stored.
Note that Algorithm 2 has no return value but instead modi-
fies the sets A, paths, conflicts, and newNodes, which were
passed as parameters.

Parallelization Approaches

Level-Wise Parallelization In this scheme (Algorithm 4),
we examine all nodes of one tree level in parallel, collect
the new nodes in the variable newNodes, and proceed with
the next level once all nodes are processed. The breadth-first
character of the search strategy is thus maintained.

The Java-like API calls have to be interpreted as follows:
threads.execute() takes a function as a parameter and sched-
ules it for execution in a fixed-size thread pool. Given, e.g., a
pool of size 2, the expansion of the first two nodes is in par-
allel and the next ones are queued until one of the threads
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A = 5, conflicts =
rootNode = GETROOTNODE(SD, Comps, OBS);
nodesToExpand = {rootNode);
while nodesToExpand # () do
paths = ; newNodes =
for node € nodesToExpand do
for ¢ € node.conflict do
threads.execute(EXPAND(node, ¢, A, paths,
conflicts, newNodes));
end
end
threads.await();
nodesToExpand = newNodes;
end
return A;
Algorithm 4: Level-wise parallelization approach.

finishes. This way we ensure that the number of threads ex-
ecuted in parallel is smaller than the number of hardware
threads or CPUs. The statement threads.await() is used for
synchronization and blocks the execution of the subsequent
code until all scheduled threads are finished.

To guarantee that the same path is not explored twice,
we declare the function CHECKANDADDPATH as a “critical
section”, which means that no two threads can execute the
function in parallel. In addition, we make the access to the
global data structures (e.g., the already known conflicts or
diagnoses) thread-safe so that no two threads can simultan-
uously manipulate them.

Full Parallelization In the level-wise scheme, there can
be situations where the computation of a conflict for a
specific node takes particularly long. This however means
that the HS-tree expansion cannot proceed even if all other
nodes of the current level are finished and many threads are
idle. We therefore propose Algorithm 5, which immediately
schedules every expandable node for execution and avoids
such potential CPU idle times at the end of each level.

The main loop of the algorithm is slightly different and
basically monitors the list of nodes to expand. Whenever
new entries in the list are observed, i.e., when the last ob-
served list size is different from the current one, we retrieve
the recently added elements and add them to the thread
queue for execution. The algorithm returns the diagnoses
when no new elements are added since the last check and
no more threads are active. In order to not actively wait for
new open nodes, the main loop sleeps using the function
wait() until it is reawakened by one of the expansion threads
through a notify() call.

With the full parallelization approach, the search does
not necessarily follow the breadth-first strategy and non-
minimal diagnoses are found during the process. Therefore,
whenever we find a new diagnosis d, we check if the set
of known diagnoses A contains supersets of d and remove
them from A. The updated parts of the EXPAND method are
listed in Algorithm 6. When updating shared data structures



Input: A diagnosis problem (SD, ComPs, OBS)
Result: The set A of diagnoses

Input: An existingNode to expand, c € COMPS,
sets A, paths, conflicts, nodesToExpand

A = F; conflicts = (f; paths = ;
rootNode = GETROOTNODE(SD, ComPs, OBS);
nodesToExpand = (rootNode);
size = 1; lastSize = 0;
while (sizes£lastSize) v (threads.activeThreads# 0) do
for i = 1 to size — lastSize do
node = nodesToExpand.get[lastSize + i];
for ¢ € node.conflict do
threads.execute(EXPANDFP(node, ¢, A, paths,
conflicts, nodesToExpand));
end
end
lastSize = size;
wait();
size = nodesToExpand.length();
end
return A;
Algorithm 5: Fully parallelized HS-tree construction.

(nodesToExpand, conflicts, ), we ensure that the threads do
not interfere with each other. The mutually exclusive section
is marked with the synchronized keyword.

Discussion of Soundness and Completeness Algorithm
1, the sequential version, is a direct implementation of Re-
iter’s sound and complete HS-algorithm. That is, each hit-
ting set found by the algorithm is minimal (soundness) and
the algorithm finds all minimal hitting sets (completeness).
Consequently, every diagnosis will be found by Algorithm 1.

Soundness: The level-wise algorithm retains the sound-
ness property of Reiter’s algorithm. It processes the nodes
level-wise and, thus, maintains the breadth-first strategy of
the original algorithm. The assumption that all conflicts re-
turned by a conflict computation algorithm are minimal en-
sures that all identified hitting sets are diagnoses. The prun-
ing rule that removes supersets of already found diagnoses
can be applied as before due to the level-wise construction of
the tree and guarantees that all found hitting sets are subset
minimal.

In the full parallel approach, the minimality of the hitting
sets encountered during the search is not guaranteed, since
the algorithm schedules a node for processing immediately
after its generation. The special treatment in the EXPANDFP
function ensures that no supersets of already found hitting
sets are added and that supersets of a newly found hitting
set will be removed in a thread-safe manner. Consequently,
the algorithm is sound in cases where it is applied to com-
pute all possible diagnoses. In such scenarios, the algorithm
will stop only if no further hitting set exists and, because of
the logic of EXPANDFP, all returned hitting sets are minimal.
Therefore, every element of the returned set corresponds to
a diagnosis.

However, if the algorithm is applied to compute one sin-
gle diagnosis, the returned hitting set of the minimal conflict
sets might not be minimal, and, therefore, the output of the
algorithm might not be a diagnosis. In this case the returned
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... % same as in previous version
if (J1€ A : 1< newPathLabel) A
CHECKANDADDPATH(paths, newPathLabel) then
... % Obtain a conflict
synchronized
if node.conflict # (& then
nodesToExpand = nodesToExpand U {node};
conflicts = conflicts U node.conflict;
elseif 1 d € A : d < newPathLabel then
A = A U {node.pathLabel};
for d € A : d 2 newPathLabel do
| A=A\d;
end
end
end
end
notify();
Algorithm 6: Node expansion of the full parallelization.

hitting set can be minimized through the application of an al-
gorithm like INV-Quick XPLAIN (Shchekotykhin et al. 2014).
Given a hitting set H for a diagnosis problem, the algorithm
is capable of computing a minimal hitting set A < H requir-
ing only O(|A| + |A|log(|H|/|Al))) calls to a solver, where
the first part, |A|, reflects the computational costs of deter-
mining whether or not  is minimal and the second part the
costs of the minimization.

Completeness: Similar to the sequential version, both pro-
posed parallelization variants systematically explore all pos-
sible candidates. Since we do not introduce any additional
pruning strategies or node closing rules none of the minimal
hitting sets are removed from the resulting set.

Empirical Evaluation

In this section, we report the results of a comprehensive em-
pirical evaluation of our parallelization approaches.

Diagnosing DXC Benchmark Problems

Dataset and Procedure For these experiments, we se-
lected the first five systems of the DX Competition 2011
Synthetic Track' (see Table 1). For each system, the com-
petition specifies 20 scenarios with injected faults resulting
in faulty output values. We used the system description and
the given input and output values for the diagnosis process.
The diagnosis algorithms were implemented in Java using
Choco 2 as a constraint solver and QuICKXPLAIN for con-
flict detection. As the computation times required to find a
conflict strongly depend on the order of the possibly faulty
constraints, we shuffled the constraints for each test and re-
peated all tests 100 times. We report the wall clock times for
the actual diagnosis task; the times required for input/output
are independent from the HS-tree construction scheme.
Table 1 shows the characteristics of the systems in terms
of the number of constraints (#C) and the problem variables

"https://sites.google.com/site/dxcompetition2011/



System | #C | #V | #F #D o#D | O|D|
74182 21 | 28 [4-5| 30-300 139 4.66
74185 35 | 44 | 1-3 1-215 66.4 3.13
74283 38 | 45 |2-4|180-4,991 | 1,232.7 | 442
74181*% | 67 | 79 |3-6| 10-3,828 | 877.8 | 4.53
c432* 162 1196 |2-5| 1-6944 | 1,069.3| 3.38
Table 1: Characteristics of selected DXC benchmarks.
System | Abs. seq. LW-pP F-P
[ms] S,s | Ey4 Sis | E4
74182 78 1 1.95 1049 | 1.78 | 0.44
74185 209 | 2.00 | 0.50 | 2.08 | 0.52
74283 152,835 | 1.52 | 0.38 | 2.32 | 0.58
74181%* 14,534 | 1.79 | 0.45 | 3.44 | 0.86
c432* 64,150 | 1.28 | 0.32 | 2.86 | 0.71

Table 2: Observed performance gains for DXC benchmarks.

(#V)?2. The numbers of the injected faults (#F) and the cal-
culated diagnoses per setting vary strongly because of the
different scenarios for each system. Column #D contains
the range of the identified diagnoses for a system. Columns
@#D and @|D| indicate the average number of diagnoses
and their average cardinality over all scenarios. As can be
seen, the search tree for the diagnosis can become extremely
broad with up to 6,944 diagnoses with an average diagnosis
size of only 3.38 for the system c432.

Results Table 2 shows the averaged results over all scenar-
ios when using a thread pool of size 4. We first list the run-
ning times® in milliseconds for the sequential version (Abs.
seq.) and then the improvements of the level-wise (LW-P)
and full parallelization (F-P) in terms of speedup and effi-
ciency. Speedup S, is computed as = T4/T},, where T3 is
the wall time when using 1 thread (the sequential algorithm)
and T}, the wall time when p parallel threads are used. The
efficiency E,, is defined as .S, /p and compares the speedup
with the theoretical optimum.

In all tests, both parallelization approaches outperform the
sequential algorithm. Furthermore, the differences between
the sequential algorithm and one of the parallel approaches
were statistically significant (p < 0.05) in 96 of the 100
tested scenarios. In most scenarios, the full-parallel variant
was more efficient than the level-wise parallelization and the
speedups range from 1.78 to 3.44 (i.e., up to a reduction of
running times of more than 70%). Only in the very small
scenario the level-wise parallelization was slightly faster due
to its limited synchronization overhead.

Diagnosing Constraint Satisfaction Problems

Data Sets and Procedure In the next set of experiments,
we used a number of CSP instances from the 2008 CP solver

2For systems marked with *, the search depth was limited to
their actual number of faults to ensure termination of the sequential
algorithm within a reasonable time frame.

3We used a standard laptop computer (Intel i7-3632QM, 4 cores
with Hyper-Threading, 16GB RAM) running Windows 8.
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Scenario #C | #V |#F| #D |9 |D|
costasArray-13 87 |88 | 2| 2 25
e0ddr1-10-by-5-8 | 265 | 50 |17 | 15 4
fischer-1-1-fair 320 [343| 9 |2006| 2.98
graceful-K3-P2 60 |15 |4 | 117 | 2.94
graph2 2245400 | 14| 72 3
series-13 156 | 25 | 2 3 1.3
hospital payment 3817514 40 4
course planning 457 |583| 2 3024 2
preservation model | 701 {803 | 1 | 22 1
revenue calculation | 93 |154| 4 | 1452| 3

Table 3: Characteristics of selected problem settings.

competition* in which we injected faults. We first gener-
ated a random solution using the original CSP formula-
tions. From each solution, we randomly picked about 10%
of the variables and stored their value assignments which
then served as test cases. These stored variable assignments
correspond to the expected outcomes when all constraints
are formulated correctly. Next, we manually inserted errors
(mutations) in the constraint problem formulations, e.g., by
changing a “less than” operator to a “more than” operator.
The diagnosis task then consists of identifying the possibly
faulty constraints using the partial test cases.

In addition to the benchmark CSPs we converted a num-
ber of spreadsheet diagnosis problems from (Jannach and
Schmitz 2014) to CSPs to test the performance gains on re-
alistic application settings. Table 3 shows the problems char-
acteristics including the number of diagnoses (#D) and the
average diagnosis size (@|D|). In general, we selected CSPs
which are quite diverse with respect to their size.

Results The measurement results are given in Table 4. Im-
provements could be achieved for all problem instances. For
some problems, the improvements are very strong (with a
running time reduction of over 50%), whereas for others
the improvements are modest. Again, the full parallelization
mode is not consistently better than the level-wise mode and
in several cases the differences are small. For all problem in-
stances the differences between the parallel algorithms and
the sequential version were statistically significant.

The observed results indicate that the performance gains
depend on a number of factors including the size of the con-
flicts, the computation times for conflict detection and the
problem structure itself.

Systematic variation of problem characteristics

Procedure To better understand in which way the problem
characteristics influence the performance gains, we used a
suite of artificially created hitting set construction problems
with the following varying parameters: number of compo-
nents (#Cp), number of conflicts (#Cf), average size of con-
flicts (J|Cf]). Given these parameters, we used a problem
generator which produces a set of minimal conflicts with the

*See http://www.cril.univ-artois.fr/CPAIO8/. To be able to do a
sufficient number of repetitions, we again picked instances with
comparably small running times.



Scenario Abs. seq. LW-pP F-P
[ms] | Sy E4 [ Sy E4
costasArray-13 9,640 | 1.70 | 0.42 | 1.88 | 0.47
e0ddr1-10-by-5-8 7,461 | 2.42 | 0.61 | 2.54 | 0.63
fischer-1-1-fair 461,162 | 1.09 | 0.27 | 1.12 | 0.28
graceful-K3-P2 4,019 12.47 10.62 | 2.64 | 0.66
graph-2 118,094 | 1.98 [ 0.49 | 1.99 | 0.50
series-13 8,042 | 1.79|0.45|1.73 | 043
hospital payment 3,563 11.49|0.37|1.63 | 041
course planning 31,622 | 2.17 | 0.54 | 2.19 | 0.55
preservation model 478 | 1.31 | 0.33 | 1.31 | 0.33
revenue calculation 1,824 1 1.32 1 0.33 [ 1.32 | 0.33

Table 4: Results for CSP benchmarks and spreadsheets.

desired characteristics. The generator first creates the given
number of components and then uses these components to
generate the requested number of conflicts. To obtain more
realistic settings, not all generated conflicts were of equal
size but rather varied according to a Gaussian distribution
with the desired size as a mean. Similarly, not all compo-
nents should be equally likely to be part of a conflict and
we again used a Gaussian distribution to assign component
failure probabilities.

Since the conflicts are all known in advance, the function-
ality of the conflict detection algorithm within the consis-
tency check call is reduced to returning one suitable conflict
upon request. Since zero computation times are however un-
realistic and our assumption is that this is actually the most
costly part of the diagnosis process, we varied the assumed
conflict computation times to analyze their effect on the rela-
tive performance gains. These computation times were sim-
ulated by adding artificial active waiting times (Wt) inside
the consistency check (shown in ms in Table 5). Note that the
consistency check is only called if no conflict can be reused
for the current node; the artificial waiting time only applies
to cases in which a new conflict has to be determined.

Each experiment was repeated 100 times on different vari-
ations of each problem setting to factor out random effects.
The number of diagnoses #D is thus an average as well. All
algorithms had however to solve identical sets of problems
and thus returned identical diagnoses. We limited the search
depth to 4 for all experiments to speed up the benchmark
process. The average running times are reported in Table 5.

Results Varying computation times: First, we varied the
assumed conflict computation times for a quite small diag-
nosis problem using 4 parallel threads (Table 5). The first
row with assumed zero computation times shows how long
the HS-tree construction alone needs. The improvements of
the parallelization are modest for this case because of the
overhead of thread creation. However, as soon as the aver-
age running time for the consistency check is assumed to
be 1ms, both parallelization approaches result in a speedup
of more than 3. Further increasing the assumed computation
time does not lead to better relative improvements.

Varying conflict sizes: The average conflict size impacts
the breadth of the HS-tree. Next, we therefore varied the av-
erage conflict size. Our hypothesis was that larger conflicts
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#Cp, #Cf, | #D | Wt | Seq. LW-P F-P
@|Cf| [ms] [ms] S4 ‘ E4 S4 ‘ E4

Varying computation times Wt

50,5,4 | 25 0 23 1226|0.56|2.58 | 0.64

50,5,4 | 25 1 466 |3.09|0.77 | 3.11 | 0.78

50,5,4 | 25| 10 | 483 [298|0.75|3.10 | 0.77

50,5,4 | 25 | 100 | 3,223 | 2.83|0.71 | 2.83 | 0.71
Varying conflict sizes

50,5,6 | 99 | 10 |1,672|3.62|0.91|3.68|0.92

50,5,9 |214| 10 |3,531|3.80|0.95|3.83]0.96
50,5,12 [ 278 | 10 | 4,605 | 3.83 | 0.96 | 3.88 | 0.97
Varying numbers of components

50,10,9 {201 | 10 |3,516|3.79|0.95|3.77 | 0.94
75,10,9 [ 105 | 10 |2,223 {3.52 (0.88 |3.29|0.82
100, 10,9 | 97 | 10 |2,419|3.13|0.78 | 3.45 | 0.86
#Cp, #Cf, | #D | Wt | Seq. LW-P F-P

®|Cf| [ms] [InS] Sg ‘ Eg Sg ‘ Eg

Adding more threads (8 instead of 4)

50,5,6 | 99 | 10 | 1,672 |6.40|0.80 | 6.50 | 0.81

50,5,9 |[214| 10 |3,531|7.10|0.89|7.15]0.89
50,5,12 | 278 | 10 | 4,605 |7.25|091|7.27 | 0.91

Table 5: Simulation results.

and correspondingly broader HS-trees are better suited for
parallel processing. The results shown in Table 5 confirm
this assumption. The full parallel version is always slightly
more efficient than the level-wise parallel version.

Adding more threads: For larger conflicts, adding more
additional threads leads to further improvements. Using 8
threads results in improvements of up to 7.27 (corresponding
to a running time reduction of over 85%) for these larger
conflict sizes, as here even higher levels of parallelization
can be achieved.

Adding more components: Finally, we varied the problem
complexity by adding more components that can potentially
be faulty. Since we left the number and size of the conflicts
unchanged, fewer diagnoses were found when restricting the
search level, e.g., to 4, as done in this experiment. As a re-
sult, the relative performance gains were lower than when
there are fewer components (constraints).

Discussion: The simulation experiments demonstrate the
advantages of parallelization. In all tests both parallelization
approaches were statistically significantly faster than the se-
quential algorithm. The results also confirm that the perfor-
mance gains can depend on different characteristics of the
underlying problem. The additional gains of not waiting at
the end of each search level for all worker threads to be fin-
ished typically leads to small further improvements.

Redundant calculations can however still occur, in par-
ticular when the conflicts for new nodes are determined in
parallel and two worker threads return the same conflict.
Although without parallelization the computing resources
would have been left unused anyway, redundant calculations
can lead to overall longer computation times for very small
problems because of the thread synchronization overheads.



Relation to Previous Work

Over the years, a number of approaches were proposed for
finding diagnoses more efficiently than with Reiter’s pro-
posal, which can be divided into exhaustive and approximate
ones. The former perform a sound and complete search for
all minimal diagnoses; the latter often improve the computa-
tional efficiency in exchange for completeness, i.e., they for
example search for only one or a small set of diagnoses.

Approximate approaches can, e.g., be based on stochas-
tic search techniques like genetic algorithms (Li and Yun-
fei 2002) or greedy stochastic search (Feldman, Provan, and
van Gemund 2010). The greedy method proposed in (Feld-
man, Provan, and van Gemund 2010), for example, uses a
two-step approach. In the first phase, a random and possibly
non-minimal diagnosis is determined, which is then min-
imized in the second step by repeatedly applying random
modifications. In the approach of Li and Yunfei the genetic
algorithm takes a number of conflict sets as input and gen-
erates a set of bit-vectors (chromosomes), where every bit
encodes a truth value of an atom over the AB(.) predicate. In
each iteration the algorithm applies genetic operations, such
as mutation, crossover, etc., to obtain new chromosomes.
Then, all obtained bit-vectors are evaluated by a “hitting
set” fitting function which eliminates bad candidates. The
algorithm stops after a predefined number of iterations and
returns the best diagnosis. In general, such approximate ap-
proaches are not directly comparable with ours since they
are incomplete. Our goal in contrast is to improve the perfor-
mance while at the same time maintaining the completeness
property.

Another way of finding approximate solutions is to use
heuristic search approaches. In (Abreu and van Gemund
2009), for example, Abreu and van Gemund suggest the
STACCATO algorithm which applies a number of heuris-
tics for pruning the search space. More “aggressive” prun-
ing techniques result in better performance of the search
algorithms. However, they also increase the likelihood that
some of the diagnoses will not be found. In this approach
the “aggressiveness” of the heuristics can be varied through
input parameters depending on the application goals. Later
on, Cardoso and Abreu suggested a distributed version of
the STACCATO algorithm (Cardoso and Abreu 2013), which
is based on the Map-Reduce scheme (Dean and Ghemawat
2008) and can therefore be executed on a cluster of servers.
Other more recent algorithms focus on the efficient com-
putation of one or more minimum cardinality (minc) diag-
noses (de Kleer 2011). Both in the distributed approach and
in the minimum cardinality scenario, the assumption is that
the (possibly incomplete) set of conflicts is already available
as an input at the beginning of the hitting-set construction
process. In the application scenarios that we address with
our work, finding the conflicts is considered to be the com-
putationally expensive part and we do not assume to know
all/some minimal conflicts in advance but rather to compute
them “on-demand” (Pill, Quaritsch, and Wotawa 2011).

Exhaustive approaches are often based on HS-trees and,
e.g., use a tree construction algorithm that reduces the num-
ber of pruning steps in presence of non-minimal conflicts
(Wotawa 2001). Alternatively, one can use methods that
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compute diagnoses without the explicit computation of con-
flict sets, i.e., by solving a problem dual to minimal hitting
sets (Satoh and Uno 2005). Stern et al., for example, suggest
a method that explores the duality between conflicts and di-
agnoses and uses this symmetry to guide the search (Stern
et al. 2012). Other approaches exploit the structure of the
underlying problem, which can be hierarchical (Autio and
Reiter 1998), tree-structured (Stumptner and Wotawa 2001),
or distributed (Wotawa and Pill 2013). Parallel exhaustive
algorithms — see (Burns et al. 2010) for an overview — can-
not be efficiently applied in our approach. Like most search
algorithms they assume that the main search overhead is due
to the simultaneous expansion of the same node by parallel
threads. The extra effort caused by the generation of nodes
is ignored as this operation can be done fast. The latter is not
the case in our approach since the generation of conflicts,
i.e., nodes of the HS-tree, is time consuming.

Finally, some diagnosis problems — but not all, like ontol-
ogy debugging (Friedrich and Shchekotykhin 2005) — can
be encoded as SAT problems (Metodi et al. 2012) or CSPs
(Nica and Wotawa 2012; Nica et al. 2013) allowing multi-
threaded solvers to compute diagnoses in parallel. To ensure
minimality of the diagnoses, such algorithms implement an
iterative deepening strategy and increase the cardinality of
the diagnoses to search for in each iteration. This paralleliza-
tion approach roughly corresponds to our level-wise one and
a performance comparison is part of our future work.

Summary

We propose to parallelize Reiter’s algorithm to speed up the
computation of diagnoses. In contrast to many heuristic or
stochastic approaches, our parallel algorithms are designed
for scenarios where all minimal diagnoses are needed. At
the same time, the parallelization schemes are independent
of the underlying problem structure and encoding. Our ex-
perimental evaluation showed that significant performance
improvements can be obtained through parallelization.

In our future work, we plan to investigate if there are cer-
tain problem characteristics which favor the usage of one or
the other parallelization scheme. In addition we plan to do
an evaluation regarding the additional memory requirements
that are caused by the parallelization of the tree construction.

Regarding algorithmic enhancements, we furthermore
will investigate how information about the underlying prob-
lem structure can be exploited to achieve a better distribution
of the work on the parallel threads and to thereby avoid du-
plicate computations. In addition, messages between threads
could be used to inform a thread in case the currently pro-
cessed node has become irrelevant and can be closed or
when newly found conflicts can potentially be reused. Fur-
thermore, we plan to explore the usage of parallel solving
schemes for the dual problem.
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