
Limitations of Front-to-End Bidirectional Heuristic Search

Joseph K Barker and Richard E Korf
{jbarker,korf}@cs.ucla.edu

4732 Boelter Hall
Los Angeles, CA 90095

Abstract
We present an intuitive explanation for the limited effective-
ness of front-to-end bidirectional heuristic search, supported
with extensive evidence from many commonly-studied do-
mains. While previous work has proved the limitations of spe-
cific algorithms, we show that any front-to-end bidirectional
heuristic search algorithm will likely be dominated by unidi-
rectional heuristic search or bidirectional brute-force search.
We also demonstrate a pathological case where bidirectional
heuristic search is the dominant algorithm, so a stronger claim
cannot be made. Finally, we show that on the four-peg Tow-
ers Of Hanoi with arbitrary start and goal states, bidirec-
tional brute-force search outperforms unidirectional heuristic
search using pattern-database heuristics.

1 Introduction
Bidirectional search is a well-known algorithm schema
for pathfinding problems. Two searches are simultaneously
done forward from the start state and backward from the
goal. A solution is found when the two search frontiers in-
tersect, although more search may be required to prove op-
timality. Bidirectional brute-force search can be an effective
search technique. In a unidirectional brute-force search of a
space with unit edge costs, branching factor b, and a solu-
tion depth d, the number of nodes generated is O(bd). In a
bidirectional search that meets at the midpoint at depth d/2,
however, the number of nodes generated is only O(bd/2).

A refinement is to guide search with a heuristic. In a front-
to-end search, the heuristic is used to estimate cost to only
the start or goal state. The earliest such algorithm is the Bidi-
rectional Heuristic Path Algorithm (BHPA) (Pohl 1971),
Other variants include BS* (Kwa 1989). Despite initially-
promising results, these algorithms are not widely used.

We present an explanation for why front-to-end bidirec-
tional heuristic search is generally ineffective. However, we
also give a counterexample of a graph where bidirectional
heuristic search does outperform both unidirectional heuris-
tic and bidirectional brute-force search, and so there is no
general proof of its ineffectiveness. Our theory gives a strong
intuition for why the technique is usually not helpful, despite
such pathological cases, and is supported by extensive evi-
dence from many well-studied search domains. While there

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exist cursory discussions of similar explanations, we are un-
aware of a previous thorough treatment in the literature.

In our experiments, we examine the four-peg Towers Of
Hanoi problem with arbitrary start and goal states, where we
find that bidirectional brute-force search outperforms unidi-
rectional heuristic search. We also find that, contrary to a
common belief, bidirectional heuristic searches with strong
heuristics tend to find optimal solutions late in search.

We consider only domains with unit and additive g costs,
which are most domains commonly studied in the literature.

2 Background
2.1 Front-To-End Bidirectional Search
A bidirectional search does simultaneous forward and re-
verse searches. The reverse search is done from the goal to
the start, using the reverse of the standard operators. In a
problem space without invertible operators, the reverse op-
erators for a state s are those which generate s when ap-
plied to some other state. Both search directions have a fron-
tier of the deepest nodes generated so far. In an algorithm
like depth-first iterative deepening (Korf 1985) this fron-
tier may not be explicitly represented. Any time the fron-
tiers intersect—meaning the same node has been generated
in both directions—a path has been found from the start to
the goal. The first path found is not necessarily the cheapest,
so search continues until a solution is proven optimal.

Both directions of search can be explored using a heuris-
tic. The earliest bidirectional heuristic search algorithm is
BHPA (Pohl 1971), which does A* searches in both direc-
tions. When the frontiers intersect, a solution is found and
search continues until a solution has been proven optimal.
Search can stop under two conditions: either the minimum f
cost in either frontier, or the sum of the minimum g costs
of both frontiers, is at least the cost of the best solution
found so far. In the first case, if all nodes on one fron-
tier have f cost at least that of the cost of the current best
solution, then—assuming an admissible heuristic—any ad-
ditional paths found through those nodes cannot be lower
than the current best solution cost (Kaindl and Kainz 1997).
The second case is inherited from Djikstra’s algorithm: g
cost cannot decrease with depth and any additional solutions
must pass through a node on each frontier, so their cost must
be at least the sum of the minimum g costs on both frontiers.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1086



When using a consistent heuristic, performance can be
improved by not expanding a node if it has already been ex-
panded in the opposite direction (Kwa 1989). Consistency
guarantees that the g cost of an expanded node corresponds
to its lowest-cost path from the root. If the same node is
expanded in both directions, the path generated is the con-
catenation two optimal paths to that node, and no cheaper
path can be found through that node. The descendants of that
frontier intersection (in either direction) need not be gener-
ated. This is the primary improvement of BS* over BHPA.

This paper considers front-to-end search specifically, un-
less explicitly stated otherwise. A front-to-end heuristic
evaluation is done from a node to either the start or goal
node, depending on the direction of search. By contrast, a
front-to-front heuristic evaluation is done from a node to ev-
ery node on the opposing frontier and the minimum is used,
giving more accurate values at the expense of many more
heuristic evaluations. While such techniques are beyond the
scope of our analysis, we briefly discuss them in section 3.3.

2.2 Kaindl and Kainz 1997
Kaindl and Kainz (1997) performed one of the first anal-
yses of bidirectional heuristic search, focusing specifically
on BHPA. They showed that the then-accepted explanation
for its ineffectiveness—that the two search frontiers pass by
each other without intersecting—was incorrect. They proved
that the best-case performance of BHPA is only slightly bet-
ter than the best-case performance of unidirectional A*. In
fact, the only improvement of BHPA over A* is that it may
explore fewer nodes with f cost equal to the optimal solu-
tion cost C*. However, the total number of nodes explored
in both directions with f cost less than C* will be least as
large as the number explored by unidirectional A*.

They analyzed BHPA specifically, which allows the two
search frontiers to pass through each other. They explicitly
exclude algorithms that do not search past frontier intersec-
tions when using a consistent heuristic. If the number of
nodes whose generation is prevented is large enough, a bidi-
rectional heuristic search algorithm may yet be effective.

They also found that bidirectional heuristic search algo-
rithms find optimal solutions early, and spend most of their
time proving solution optimality. As we show in section 4.3,
however, with strong heuristics this is not true: optimal so-
lutions tend to be found quite late in search.

2.3 Edelkamp and Schrödl 2011
In Heuristic Search (2011), Edelkamp and Schrödl hypoth-
esize that bidirectional heuristic search perfoms poorly be-
cause the mean depth of nodes generated in heuristic search
tends to be near the solution midpoint. They claim that if the
search frontiers meet near this midpoint then bidirectional
heuristic search stores roughly twice as many nodes on its
open lists as unidirectional heuristic search, but that a bidi-
rectional search may perform better if the frontiers intersect
before or after the midpoint. They illustrate their hypothesis
with a graph of nodes generated at each search depth in one
15-puzzle problem instance with an optimal solution depth
of 15 (the average solution depth is 53) using the Manhattan-

distance heuristic. The distribution of these nodes is indeed
roughly centered on the solution midpoint.

As we show in section 4.1, however, the premise of this
hypothesis is incorrect: unidirectional searches with strong
heuristics tend to expand the vast majority of nodes before
the solution midpoint. Furthermore, we show that regardless
of the mean g cost, a bidirectional heuristic search will gen-
erally be outperformed by either a unidirectional heuristic or
bidirectional brute-force search. Our argument is supported
with extensive evidence from a large number of domains.

3 Analysis
3.1 Our Explanatory Theory
If a unidirectional heuristic search expands the majority
of its nodes deeper than the solution midpoint, we call
its heuristic weak and show that a bidirectional heuristic
search expands no fewer nodes than a bidirectional brute-
force search. If the majority are expanded at shallower depth
than the solution midpoint, then we call it a strong heuristic
and show that a bidirectional heuristic search would expand
more nodes than a unidirectional heuristic search.

A balanced bidirectional brute-force search expands
no nodes deeper than the solution midpoint. In a bidirec-
tional brute-force search that balances the number of nodes
expanded in each direction, the forward and reverse direc-
tions intersect at the solution midpoint and nodes deeper
than this radius are not expanded. In an unbalanced search,
so long as one direction of search does not expand signifi-
cantly more nodes than the other, search will meet near the
solution midpoint will not expand any deep nodes.

Figure 1 shows the number of nodes expanded at
each depth in unidirectional and bidirectional brute-force
searches of the 16-disk four-peg Towers Of Hanoi where all
disks start and end on a single peg. The dark gray nodes are
expanded in a bidirectional search, and the additional light
gray nodes are expanded in a unidirectional search, all of
which are deeper than the solution midpoint.

Adding a weak heuristic to a bidirectional brute-
force search cannot prevent it from expanding additional
nodes. In an admissible heuristic search, nodes with f cost
greater than C* are not expanded, either by being explic-
itly pruned (as in IDA* (Korf 1985)) or by being queued
for expansion after a solution has been proven optimal (as
in A* (Hart, Nilsson, and Raphael 1968)). The f cost of a
node n is the sum of two values: the g cost, which is the
cost of the current path from the start to n, and the h cost,
which is the heuristic estimate from n to the goal. These val-
ues are independent, and so nodes with higher g cost tend
to have higher f costs. With a consistent heuristic, in fact,
f costs are monotonically non-decreasing with increasing g
cost (Pearl 1984). As a result, nodes whose expansion is pre-
vented by a heuristic—those with f cost greater than C*—
tend to have high g cost. With a sufficiently weak heuris-
tic, the only nodes whose expansion is prevented have depth
greater than the solution midpoint, none of which are ex-
panded in a bidirectional brute-force search, either.

Figure 1 shows increasingly strong unidirectional heuris-
tic searches on a Towers Of Hanoi instance, drawn with

1087



Figure 1: Depths of nodes expanded in searches of a Towers
of Hanoi instance. Dashed lines are unidirectional searches
with heuristics of varying strengths. Nodes expanded in a
unidirectional brute-force search are light gray. Nodes ex-
panded in a bidirectional brute-force search are dark gray.

dashed lines. The algorithm used is breadth-first heuristic
search (BFHS) (Zhou and Hansen 2006), which expands
nodes in breadth-first order while maintaining a global cost
cutoff. Any node whose f cost exceeds that cutoff is pruned.
We set the cutoff to the optimal solution cost. We used in-
creasingly large pattern databases (PDBs) (Culberson and
Schaeffer 1996) to strengthen the heuristic. As expected,
fewer nodes are expanded with successively stronger heuris-
tics, and the nodes not expanded are the deepest. The nodes
whose expansion is prevented by these weak heuristics are
not expanded in the bidirectional brute-force search, either.

With a strong heuristic, a bidirectional heuristic
search expands more nodes than a unidirectional heuris-
tic search. The majority of nodes expanded in a forward or
reverse heuristic search with a sufficiently strong heuristic
will be shallower than the solution midpoint. Nodes that are
shallower than the midpoint in a reverse search are deeper
than the midpoint in a forward search, so combining the two
searches to form a bidirectional search expands more nodes
than doing either independently.

Figure 2 shows the depth of nodes expanded by heuris-
tic searches of a 24-Puzzle instance using PDBs described
in (Korf and Felner 2002). The light gray nodes are ex-
panded in a forward search and the dark gray nodes are ex-
panded in a reverse search; the hashed region is expanded in
both. A bidirectional heuristic search expands both regions,
while a unidirectional heuristic search expands only one.

With a heuristic that is neither strong nor weak, approxi-
mately half of all nodes expanded in a unidirectional heuris-
tic search are shallower than the midpoint. A bidirectional
heuristic search that meets at the midpoint allows the for-
ward direction of search to avoid expanding any nodes past
the midpoint. However, it also expands nodes in the reverse
direction to reach the midpoint. The number of additional
nodes expanded in the reverse direction is approximately
equal to the number of nodes pruned in the forward direc-
tion, and so a bidirectional heuristic search expands no fewer

Figure 2: Depths of nodes expanded in forward and reverse
searches on a 24-Puzzle instance.

nodes than a unidirectional heuristic search.
In a non-breadth-first search ordering, both directions of

search may expand some nodes deeper than the midpoint
before they expand shallower nodes. Section 3.2 shows how
this can result in pathological cases where a bidirectional
heuristic search outperforms the other two algorithms, and
discusses why such cases are unlikely. In general, bidirec-
tional heuristic search is no better than the stronger of uni-
directional heuristic or bidirectional brute-force search done
individually, and may be worse.

3.2 A Pathological Case
This does not prove that bidirectional heuristic search can
never be effective. As a counterexample, figure 3 is a patho-
logical graph where bidirectional heuristic search outper-
forms both unidirectional heuristic and bidirectional brute-
force search. Each node in the graph is labeled with its f, g,
and h costs, and the graph is entirely symmetrical. It has unit
edge costs and, as the h cost of siblings never differs by more
than one, the heuristic is consistent. A start-to-goal unidirec-
tional heuristic search expands all nodes with f cost less than
the optimal solution cost of six, of which there are 13: all but
k, l, and the goal. A bidirectional brute force search expands
all nodes up to depth two in both directions, at which point
an intersection would be generated at depth three and proved
optimal. There are 14 such nodes: all except c and h.

Bidirectional heuristic search expands fewer nodes if it
explores children in left-to-right order and breaks f cost ties
in favor of lower h cost. Node e will be expanded in the for-
ward direction before the reverse and node f in the reverse
direction before the forward; each direction of search will
not expand the children of these nodes because their f cost
(seven) exceeds the optimal solution cost of six. When node
e is considered for expansion in the reverse direction and
node f in the forward direction, both can be discarded as
they have already been expanded in the opposite direction.
Subgraphs A and B will not be expanded and search will ex-
pand only 12 nodes: all except k, l, m, and n. Thus, bidirec-
tional heuristic search outperforms unidirectional heuristic
and bidirectional brute-force search on this graph.

1088



Figure 3: A pathological graph where bidirectional heuristic
search outperforms both unidirectional heuristic and bidi-
rectional brute-force search. Nodes are labeled with g-cost
+ h-cost = f -cost, in the forward (f) and reverse (r) direction.

The size of subgraphs A and B can increased arbitrarily by
increasing their depth and branching factor, and their nodes’
h costs can be defined so that their f cost in only one direc-
tion is less than C*. With a sufficiently deep optimal solu-
tion, both bidirectional brute force and unidirectional heuris-
tic search will expand at least one of A or B, in addition to
the middle paths. Bidirectional heuristic search will expand
neither, and can thus expand arbitrarily fewer nodes. This
counterexample shows that no formal proof of the ineffec-
tiveness of bidirectional heuristic search is likely.

Such a pathological case is unlikely to occur in a real
search problem, however. In general, f costs of nodes in a
search space increase with depth, so we expect shallower re-
gions to be expanded earlier. This is particularly true with a
consistent heuristic, which results in f costs that are mono-
tonically non-decreasing with increased depth. As such, nei-
ther direction of search can intersect the other before most
nodes with lower depth have been expanded, and a patho-
logical case like that of figure 3 would be very unlikely.

3.3 Caveats
Here we identify some caveats to this theory. We consider
only static heuristic functions, but a bidirectional search
can use the frontiers to increase heuristic accuracy. Ex-
amples of algorithms that do so are KKAdd (Kaindl and
Kainz 1997), perimeter search (Dillenburg and Nelson 1994;
Manzini 1995), and single-frontier bidirectional search (SF-
BDS) (Felner et al. 2010). These algorithms all use some
variation of front-to-front evaluation to improve heuristic ac-
curacy. The state of the art solver for Peg Solitaire, a do-
main we examine later, uses the search frontiers to tighten
domain-specific pruning constraints (Barker and Korf 2012).

As previously mentioned, even a front-to-end algorithm
can reduce the number of nodes expanded with f cost equal
to C*. This may mean that, in some domains, a bidirectional
heuristic search could have reliably better tie-breaking prop-
erties than a unidirectional heuristic search.

Finally, we have so far assumed that the difficulty of

a forward and reverse search is roughly equivalent; how-
ever, in some domains one direction may be significantly
cheaper than the other. If the same direction is consistently
significantly easier, then it will be cheaper to do a unidirec-
tional search in that direction, regardless of the weakness
of the heuristic. Conversely, if the cheaper direction is un-
predictable, then even with a strong heuristic a bidirectional
search can be effective as it will solve the majority of the
instances in the cheaper direction. This is effectively equiv-
alent to doing a forward and reverse search in parallel and
terminating when the first one finds a solution.

4 Experiments
4.1 Empirical Studies of Search Spaces
We substantiated our theory by finding the depths of all
nodes expanded in many instances of several domains. We
computed the fraction of those nodes that are shallower than
the solution midpoint. We expect a unidirectional heuristic
search to dominate if this is the majority, and a bidirectional
brute-force search to dominate otherwise.

We tested seven domains using state-of-the-art heuristics:
the 15 Puzzle, the 24 Puzzle, the Pancake Problem, Peg Soli-
taire, Rubik’s Cube, Top Spin, and the four-peg Towers Of
Hanoi. We solved 100 random 15-Puzzle instances using
PDBs described in (Korf and Felner 2002). We solved the
50 24-Puzzle instances from (Korf and Felner 2002) using
IDA* with PDBs from the same paper. We solved 25 random
Rubik’s Cube instances using IDA* with an eight-corner-
cubie PDB and a nine-edge-cubie PDB using six rotational
lookups (Felner et al. 2011). We solved 20 random Top Spin
instances with 21 tokens and a four-token tray, using IDA*
with three seven-token, additive PDBs and three lookups, as
described in (Yang et al. 2008). We solved 60 Pancake Prob-
lem instances with 80 pancakes, using IDA* and the gap
heuristic (Helmert 2010). We solved all 35 Peg Solitaire in-
stances on the English, French, and Diamond(5) boards us-
ing BFHS and heuristics from (Barker and Korf 2012). For
the four-peg Towers Of Hanoi, we solved 100 random 20-
disk instances with arbitrary start and goal states, using disk-
based BFHS and the PDB techniques used in (Korf 2008).
This domain is further discussed in section 4.2.

Table 1 summarizes our experiments. Each column shows
the fraction of nodes expanded shallower than the midpoint;
the first is the mean fraction among all instances, and the last
two are the value for the instances with the minimum and
maximum fractions. In our IDA* searches, we only consider
the last iteration of search (the most expensive) to avoid mul-
tiple counting of nodes generated on multiple iterations.

In Peg Solitaire and Towers Of Hanoi, a mean of 6% and
31% of the nodes expanded have shallower depth than the
midpoint, respectively; as such, we expect a bidirectional
brute-force search to outperform a unidirectional heuristic
search. As we will show in section 4.2, bidirectional brute-
force search outperforms unidirectional heuristic search on
the four-peg Towers Of Hanoi. The state-of-the-art solver for
Peg Solitaire is in fact a bidirectional heuristic search algo-
rithm (Barker and Korf 2012). We found that forward search
in Peg Solitaire is consistently significantly cheaper than re-

1089



Domain Mean Min Max

15 Puzzle 0.93 0.63 0.99
24 Puzzle 0.96 0.80 1.00

Pancake Problem 0.57 0.49 0.66
Peg Solitaire 0.06 0.02 0.14

Rubik’s Cube 0.90 0.84 0.98
Top Spin 0.98 0.86 1.00

Towers of Hanoi 0.31 0.13 0.59

Table 1: Fraction of nodes expanded with with depth less
than or equal to the solution midpoint for many instances of
several search domains.

verse search due to an imbalance of branching factors so, as
discussed in section 3.3, we would expect a unidirectional
heuristic search to dominate. Barker and Korf’s algorithm is
based on BFIDA* (Zhou and Hansen 2006), however, which
has worst-case tie-breaking and generates a very large num-
ber of nodes with f cost equal to C*. Their bidirectional ap-
proach allows the solver to eliminate the generation of all
such nodes, which is the possible contribution of bidirec-
tional heuristic search identified by Kaindl and Kainz. As
such, Peg Solitaire is an example of a domain where the ex-
ceptions identified in section 3.3 make bidirectional heuris-
tic search an effective algorithm.

In the remaining domains the majority of nodes expanded
are shallower than the midpoint, so we expect unidirectional
heuristic search to dominate. Indeed, we are unaware of a
front-to-end bidirectional search in the literature that out-
performs the best unidirectional search on these domains1

As an interesting case, the gap heuristic for the Pancake
Problem is extremely strong: in all instances we tested very
few nodes expanded had f cost less than C*; often none did.
With a perfect heuristic a search algorithm expands only the
nodes on a single optimal solution path, and the mean g cost
of expanded nodes is C*/2. With a strong heuristic, we pre-
dict that most nodes are expanded with g cost less than C*/2;
the gap heuristic is close enough to perfect, though, that the
g cost distribution of nodes expanded is relatively flat and
the mean is closer to the solution midpoint.

As the absence of a published state-of-the-art bidirec-
tional algorithm does not prove that one does not ex-
ist, we implemented bidirectional heuristic search in three
domains—the 15 Puzzle, the Pancake Problem, and Rubik’s
Cube—and compared it to unidirectional heuristic search.
We compared BS*, as a canonical representative of front-
to-end search, to A* on 1,000 random instances in each do-
main. The Pancake Problem instances have 50 pancakes and
the Rubik’s Cube instances were generated with 16 random
moves, the hardest solvable within our memory limitations.
In the 15 Puzzle, we observed that the standard additive
PDBs are inconsistent, as they compress the location of the
blank (Felner et al. 2007; Korf and Felner 2002); while this

1The state-of-the-art solver for Rubik’s Cube and the Sliding
Tile puzzle is a front-to-front bidirectional algorithm, SFBDS. As
we address only front-to-end algorithms, however, this is outside
the scope of our paper.

has been briefly noted (Breyer and Korf 2010), it appears to
be generally overlooked. As we require a consistent heuris-
tic, we made our 15 Puzzle PDBs consistent by not com-
pressing away the blank tile. As a side-effect, this reduces
node expansions at the cost of greater memory requirements.

These results are summarized in table 2. Shown are the
average reduction in nodes expanded by A* over BS*, the
average reduction in time of A* over BS*, and the percent-
age of instances where BS* beats A*.

Domain A* Node A* Time BS*
Reduction Reduction Wins

15 Puzzle 20% 37% 18%
Pancake Problem 11% 32% 16%

Rubik’s Cube 15% 74% 29%

Table 2: A* vs BS* in three domains

In all three domains A* expands fewer nodes on aver-
age. BS* wins on some instances; importantly, though, BS*
always expands at least as many nodes as A* with f cost
less than C*. It only wins by expanding fewer nodes with
f cost equal to C*. This was shown possible by Kaindl and
Kainz, and is no different than the effect of changing the
order of node exploration in a unidirectional search. Par-
ticularly when accounting for bookkeeping overhead, it is
clear that a unidirectional search outperforms a bidirectional
search when using a strong heuristic, as predicted.

4.2 Four-Peg Towers of Hanoi
One domain we examined is the four-peg Towers Of Hanoi
with arbitrary start and goal states. In the standard game,
all disks start and end on a single (different) peg, allowing
only one problem instance for a given number of disks. With
arbitrary start and goal states we can consider many more
instances. In the standard instance an optimal solution can
be found by searching to all possible midpoint states, where
all but the largest disk are distributed among the middle two
pegs; the second half of the solution is a mirror image of the
first half with relabeled pegs (Hinz 1997). In a sense, this
conducts half of a bidirectional search to the midpoint, with
the other half of the search being obtained for free. With
arbitrary start and goal states this symmetry is lost and we
must do complete searches all the way to the goal.

We considered many random instances with 20 and 21
disks. We compared a bidirectional brute-force search to
unidirectional heuristic search, using disk-based search for
both, as described in (Korf 2008). Bidirectional search was
performed using brute-force breadth-first search and unidi-
rectional search was performed using BFHS with C* as a
cutoff. In general, the optimal solution cost is not known
in advance, so this is an idealized algorithm. A more real-
istic solver would have to implement a more complicated
algorithm—like disk-based A*—or use a more expensive,
iterative-deepening approach to find optimal solutions.

For the heuristic we considered PDBs of various sizes.
As we are using arbitrary goal states, a new PDB must be
generated for each instance. While we found the savings of

1090



the heuristic function can outweigh the cost of generating
the PDB, this introduces a degree of freedom: the size of the
PDB to generate for a given instance.

For N=21 disks, we solved 10 random instances with both
algorithms using three PDB sizes. The weakest PDB config-
uration partitions the disks into two sets of disks, one of size
15 and one of size 6; the strongest partitions them into sets of
size 17 and 4. The results are given in table 3. The first row
gives PDB creation time, which applies only to unidirec-
tional searches and does not vary by instance. The remain-
ing rows are the time required by each solver for each in-
stance, including PDB creation. The best performance over-
all is bolded (always bidirectional search), and the best uni-
directional search is underlined. Times are in seconds.

Bidir. Unidir. Unidir. Unidir.
BF 15/6 16/5 17/4

PDB Creation N/A 83s 328s 1,380s
Instance 1 3,707s 51,186s 20,770s 8,315s

2 125s 202s 411s 1,445s
3 1,299s 9,385s 3,338s 1,858s
4 300s 461s 474s 1,461s
5 589s 1,223s 1,057s 1,650s
6 7,283s 88,349s 50,967s 24,261s
7 158s 272s 466s 1,415s
8 4,104s 60,981s 26,803s 7,660s
9 414s 869s 693s 1,539s

10 445s 2,168s 1,022s 1,577s

Table 3: Instances of 21-disk Towers of Hanoi.

Bidirectional brute-force search outperformed the best
unidirectional heuristic search by an average factor of 1.5-3.
In some instances, like number three, unidirectional search
is faster when ignoring PDB creation; when counted, how-
ever, bidirectional brute-force search is always fastest. If
bidirectional brute-force search is compared to each uni-
directional search independently, rather than against the
strongest of the three for a given instance, the relative perfor-
mance is often much stronger, sometimes by over an order of
magnitude. As one would expect, the weaker heuristic does
relatively worse on harder instances and the stronger heuris-
tic does relatively worse on easier instances (due to PDB
creation cost). We cannot know the difficulty of an instance
in advance, and thus do not have the luxury of guaranteeing
we will always use the best PDB.

In addition, we solved 100 random instances with 20
disks. We selected the heuristic by solving the first 10 in-
stances with different PDBs and finding the configuration
with the best overall performance, which was a partitioning
into two PDBs of 15 and 5 disks. We then used this con-
figuration to solve all 100 instances. Table 4 summarizes
this data. The first two columns give the solution time for
each algorithm, and the third gives the relative slowdown
of unidirectional heuristic search over bidirectional brute-
force search. The first row gives PDB creation time, the sec-
ond gives the mean solution time over all 100 instances,
and the third and fourth give the values for the instances

with the worst and best relative performance of bidirectional
brute-force search. All times are in seconds. Again, bidirec-
tional brute-force search outperforms unidirectional heuris-
tic search in all instances, by an average factor of 3.65.

Bidir. Unidir. 15/5 Slowdown

PDB Generation N/A 83s N/A
Mean Results 217s 793s 3.65

Best for BiDir. 347s 3939s 11.35
Worst for BiDir. 85s 126s 1.48

Table 4: 100 instances of 20-disk Towers of Hanoi.

The mean improvement of bidirectional brute-force over
unidirectional heuristic search is roughly equal to the frac-
tion of nodes expanded shallower than the midpoint, shown
in table 1. This is as we expect if the contribution of a bidi-
rectional brute-force search is to avoid expanding nodes that
appear past the midpoint in a unidirectional search.

4.3 Work Spent Proving Optimality
Finally, we refute a statement from (Kaindl and Kainz 1997)
that is often used to explain the ineffectiveness of bidirec-
tional heuristic search: that front-to-end algorithms tend to
find optimal solutions very early and spend a long time prov-
ing optimality (Edelkamp and Schrödl 2011; Felner et al.
2010; Lippi, Ernandes, and Felner 2012). This claim is sep-
arate from their proof of BHPA’s ineffectiveness. In fact,
in our bidirectional experiments, the optimal solution was
found very late: on average after 90% of the nodes had been
generated in the 15 Puzzle, after 86% had been generated in
the Pancake Problem, and after 96% had been generated in
Rubik’s Cube. We used much stronger heuristics than Kaindl
and Kainz, and so our results make sense: in a best-first
search with a strong heuristic there are few nodes generated
with high g cost and thus fewer opportunities for frontier in-
tersections. This reinforces our expectation that pathological
cases such as the one in figure 3 will rarely occur in practice.

5 Conclusions
We presented an intuitive explanation for the limited effec-
tiveness of front-to-end bidirectional heuristic search. Bidi-
rectional brute-force and unidirectional heuristic search both
prevent expansion of nodes with high g cost. As such, for
a given domain we would expect one of the techniques to
dominate the other and for there to be no benefit from com-
bining the two. We also show that there is no general proof
of this claim, as there are pathological cases where a bidi-
rectional heuristic search is the preferred algorithm.

We also considered a new variant on a well-studied do-
main: the four-peg Towers Of Hanoi with arbitrary start and
goal states. We found that bidirectional brute-force search,
surprisingly, is the state-of-the-art, outperforming unidirec-
tional heuristic search. This data is predicted by our theory.

Finally, we found that an often-repeated claim explaining
the poor performance of bidirectional heuristic search—that
most of its time is spent proving solution optimality—is not
true in general, in particular when using strong heuristics.

1091



References
Barker, J. K., and Korf, R. E. 2012. Solving peg solitaire
with bidirectional BFIDA*. In Association for the Advance-
ment of Artificial Intelligence.
Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In Association for the Advancement of Artificial
Intelligence.
Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. In Advances in Artifical Intelligence.
Springer. 402–416.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence 65(1):165–178.
Edelkamp, S., and Schrödl, S. 2011. Heuristic Search: The-
ory and Applications. Morgan Kaufmann.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. Journal of Artificial
Intelligence Reseach 30:213–247.
Felner, A.; Moldenhauer, C.; Sturtevant, N. R.; and Schaef-
fer, J. 2010. Single-frontier bidirectional search. In Associ-
ation for the Advancement of Artificial Intelligence.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175(9):1570–1603.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on
4(2):100–107.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Third Annual Symposium on Combinatorial
Search.
Hinz, A. M. 1997. The tower of hanoi. Algebras and Com-
binatorics: Proceedings of ICAC97 227–289.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence Re-
search 7:283–317.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1):9–22.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial intelligence 27(1):97–
109.
Korf, R. E. 2008. Linear-time disk-based implicit graph
search. Journal of the ACM 55(6):26.
Kwa, J. B. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence 38(1):95–
109.
Lippi, M.; Ernandes, M.; and Felner, A. 2012. Efficient
single frontier bidirectional search. In Proceedings of the
Fifth Symposium on Combinatorial Search.
Manzini, G. 1995. BIDA*: an improved perimeter search
algorithm. Artificial Intelligence 75(2):347–360.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

Pohl, I. 1971. Bi-directional search. Machine Intelligence
6:127–140.
Yang, F.; Culberson, J. C.; Holte, R.; Zahavi, U.; and Felner,
A. 2008. A general theory of additive state space abstrac-
tions. Journal of Artificial Intelligence Research 32:631–
662.
Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170(4):385–408.

1092




