
Exploiting Variable Associations to Configure Efficient Local Search
in Large-Scale Set Partitioning Problems

Shunji Umetani
Graduate School of Information Science and Technology, Osaka University

2-1 Yamadaoka, Suita, Osaka, Japan
umetani@ist.osaka-u.ac.jp

Abstract

We present a data mining approach for reducing the
search space of local search algorithms in large-scale set
partitioning problems (SPPs). We construct a k-nearest
neighbor graph by extracting variable associations from
the instance to be solved, in order to identify promis-
ing pairs of flipping variables in the large neighborhood
search. We incorporate the search space reduction tech-
nique into a 2-flip neighborhood local search algorithm
with an efficient incremental evaluation of solutions and
an adaptive control of penalty weights. We also develop
a 4-flip neighborhood local search algorithm that flips
four variables alternately along 4-paths or 4-cycles in
the k-nearest neighbor graph. According to computa-
tional comparison with the latest solvers, our algorithm
performs effectively for large-scale SPP instances with
up to 2.57 million variables.

1 Introduction
Automated methods for designing algorithms called au-
tonomous search (Hamadi, Monfroy, and Subion 2011) have
recently emerged which improve both the efficiency and ap-
plicability of algorithms by extracting useful features from
the instance to be solved. It would certainly be difficult
to extract the useful features for improving the efficiency
of algorithms from the general form of constraint satis-
faction problems (CSPs) and mixed integer programming
problems (MIPs). However, we note that most of the in-
stances arising from real-world applications have represen-
tative features individually. Many MIP benchmark instances
contain many special constraints that represent their com-
binatorial structures (Achterberg, Koch, and Martin 2006;
Koch et al. 2011). We also note that it is not necessary to
configure all program parameters of algorithms in advance,
and instead it is possible to make some of them configurable
at runtime. Autonomous search is an automated system that
configures an algorithm for the instance to be solved by com-
bining various components and tuning program parameters
at runtime.

A major direction of autonomous search as found in the
literature is automated algorithm configuration based on su-
pervised learning approaches. This is commonly formulated

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to optimize the empirical performance of a highly param-
eterized algorithm for a set of training instances (Adenso-
Dı́az and Laguna 2006; Balaprakash, Birattari, and Stützle
2007; Hutter, Hoos, and Leyton-Brown 2009; KhudaBukhsh
et al. 2009; Kadioglu et al. 2010; Crawford et al. 2013;
Monfroy et al. 2013). A big advantage of this is that auto-
mated configuration approaches require no domain knowl-
edge or human effort to tackle a new domain. However, an
important drawback of these approaches is that they require
many training instances and much computation time for of-
fline learning. For example, it has been reported that it took
28 CPU days to learn 300 training instances of set parti-
tioning problems (SPPs) with up to 50 constraints and 2000
variables (Kadioglu, Malitsky, and Sellmann 2012). This is
particularly critical when solving large-scale combinatorial
problems in a limited period of time.

In this paper, we consider how to extract useful features
from the instance to be solved with the aim to reduce the
search space of local search algorithms for large-scale SPP
instances.

In designing local search algorithms for large-scale com-
binatorial problems, improvements in computational effi-
ciency become more effective than improvements in so-
phisticated search strategy as the instance size increases.
The quality of locally optimal solutions typically improves
if a larger neighborhood is used. However, the computa-
tion time to search the neighborhood also increases ex-
ponentially. To overcome this, ways to efficiently imple-
ment neighborhood search have been studied extensively,
and can be broadly classified into three types: (i) reduc-
ing the number of candidates in the neighborhood (Pesant
and Gendreau 1999; Yagiura and Ibaraki 1999; Shaw 2002;
Yagiura, Kishida, and Ibaraki 2006), (ii) evaluating solutions
by incremental computation (Yagiura and Ibaraki 1999;
Michel and Van Hentenryck 2000; Voudouris et al. 2001;
Van Hentenryck and Michel 2005), and (iii) reducing the
number of variables to be considered by using linear pro-
gramming (LP) and/or Lagrangian relaxation (Ceria, No-
bili, and Sassano 1998; Caprara, Fischetti, and Toth 1999;
Yagiura, Kishida, and Ibaraki 2006; Umetani, Arakawa, and
Yagiura 2013).

As an alternative, we have developed a data mining ap-
proach for reducing the search space of local search algo-
rithms. I.e., we construct a k-nearest neighbor graph by ex-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1226

tracting variable associations from the instance to be solved
in order to identify promising pairs of flipping variables in
the large neighborhood search. We incorporate the search
space reduction technique into a 2-flip local search algo-
rithm which offers efficient incremental evaluation of so-
lutions and adaptive control of penalty weights. We also
develop a 4-flip neighborhood local search algorithm that
flips four variables alternately along 4-paths or 4-cycles in
the k-nearest neighbor graph. Comparison of computations
against the latest solvers shows that our algorithm performs
effectively for large-scale SPP instances with up to 2.57 mil-
lion variables.

2 Set Partitioning Problem
The SPP is a representative combinatorial optimization
problem that has many real-world applications, such as crew
scheduling and vehicle routing. We are given a ground set
of m elements i ∈ M = {1, . . . ,m}, n subsets Sj ⊆ M
(|Sj | ≥ 1) and their costs cj ∈ R for j ∈ N = {1, . . . , n}.
We say that X ⊆ N is a partition of M if

⋃
j∈X Sj = M

and Sj1 ∩ Sj2 = ∅ hold for all j1, j2 ∈ X . The goal of the
SPP is to find a minimum cost partition X of M . The SPP
is formulated as a 0-1 integer programming (0-1IP) problem
as follows:

min.
∑
j∈N

cjxj

s.t.
∑
j∈N

aijxj = 1, i ∈M,

xj ∈ {0, 1}, j ∈ N,

(1)

where aij = 1 if i ∈ Sj holds and aij = 0 otherwise, and
xj = 1 if j ∈ X and xj = 0 otherwise, respectively. That
is, a column vector aj = (a1j , . . . , amj)

T of matrix (aij)
represents the corresponding subset Sj by Sj = {i ∈ M |
aij = 1}, and the vector x also represents the corresponding
partition X by X = {j ∈ N | xj = 1}.

Although the SPP is known to be NP-hard in the strong
sense, several efficient exact and heuristic algorithms for
large-scale SPP instances have been developed in the litera-
ture (Atamtürk, Nemhauser, and Savelsbergh 1995; Wedelin
1995; Borndörfer 1998; Chu and Beasley 1998; Barahona
and Anbil 2000; Linderoth, Lee, and Savelsbergh 2001;
Boschetti, Mingozzi, and Ricciardelli 2008; Bastert, Hum-
mel, and de Vries 2010). Many of them are based on the
variable fixing techniques that reduce the search space to
be explored by using lower bounds of the optimal values
obtained from linear programming (LP) and/or Lagrangian
relaxation. However, many large-scale SPP instances still
remain unsolved because there is little hope of closing the
large gap between the lower and upper bounds of the opti-
mal values.

3 2-flip Neighborhood Local Search
The local search (LS) starts from an initial solution x and
then repeatedly replaces x with a better solution x′ in its
neighborhood NB(x) until no better solution is found in
NB(x). For some positive integer r, let the r-flip neighbor-
hood NBr(x) be the set of solutions obtainable by flipping

at most r variables of x. We first develop a 2-flip neighbor-
hood local search (2-FNLS) algorithm as a basic component
of our algorithm. In order to improve efficiency, the 2-FNLS
first searches NB1(x), and then searches NB2(x) \NB1(x)
only if x is locally optimal with respect to NB1(x).

The SPP is NP-hard, and the (supposedly) simpler prob-
lem of judging the existence of a feasible solution is NP-
complete, since the satisfiability (SAT) problem can be re-
duced to this problem. We accordingly consider the follow-
ing formulation of SPP that allows violations of the par-
titioning constraints and introduce over and under penalty
functions with penalty weight vectors w+,w− ∈ Rm+ :

min. z(x) =
∑
j∈N

cjxj +
∑
i∈M

w+
i y

+
i +

∑
i∈M

w−i y
−
i

s.t.
∑
j∈N

aijxj − y+
i + y−i = 1, i ∈M,

xj ∈ {0, 1}, j ∈ N,
y+
i , y

−
i ≥ 0, i ∈M.

(2)
For a given x ∈ {0, 1}n, we can easily compute optimal
y+
i (x) = max{

∑
j∈N aijxj−1, 0} and y−i (x) = max{1−∑

j∈N aijxj , 0}. We note that when y+∗
= y−

∗
= 0 holds

for an optimal solution (x∗,y+∗
,y−

∗
) under the soft par-

titioning constraints, x∗ is also optimal under the original
(hard) partitioning constraints. Moreover, for an optimal so-
lution x∗ under the hard partitioning constraints, (x∗,0,0)
is also optimal with respect to the soft partitioning con-
straints if the values of penalty weights w+

i , w−i (i ∈ M)
are sufficiently large.

Since the region searched in a single application of LS
is limited, LS is usually applied many times. When a locally
optimal solution is found, a standard strategy is to update the
penalty weights and to resume LS from the obtained locally
optimal solution. We accordingly evaluate solutions with
an alternative evaluation function z̃(x), where the original
penalty weight vectors w+, w− are replaced with w̃+, w̃−,
which are adaptively controlled in the search (See details in
Section 5).

We first describe how 2-FNLS is used to search NB1(x),
which is called the 1-flip neighborhood. Let ∆z̃↑j (x) and
∆z̃↓j (x) denote the increases in z̃(x) due to flipping xj =
0→ 1 and xj = 1→ 0, respectively. 2-FNLS first searches
for an improved solution by flipping xj = 0 → 1 for
j ∈ N \ X . If an improved solution is found, it chooses
j with the minimum ∆z̃↑j (x); otherwise, it searches for an
improved solution by flipping xj = 1→ 0 for j ∈ X .

We next describe how 2-FNLS is used to search NB2(x)\
NB1(x), which is called the 2-flip neighborhood. We de-
rive conditions that reduce the number of candidates in
NB2(x) \ NB1(x) without sacrificing the solution quality
by expanding the results as shown in (Yagiura, Kishida, and
Ibaraki 2006). Let ∆z̃j1,j2(x) denote the increase in z̃(x)
due to simultaneously flipping the values of xj1 and xj2 .

Lemma 1 Suppose that a solution x is locally optimal with
respect to NB1(x). Then ∆z̃j1,j2(x) < 0 holds, only if
xj1 6= xj2 .

1227

Based on this lemma, we consider only the set of solutions
obtainable by simultaneously flipping xj1 = 1 → 0 and
xj2 = 0→ 1. We now define

∆z̃j1,j2(x) = ∆z̃↓j1(x) + ∆z̃↑j2(x)−
∑
i∈S̄(x)

(
w̃+
i + w̃−i

)
,

(3)
where S̄(x) = {i ∈ Sj1 ∩ Sj2 | si(x) = 1}.
Lemma 2 Suppose that a solution x is locally optimal
with respect to NB1(x), xj1 = 1 and xj2 = 0. Then
∆z̃j1,j2(x) < 0 holds, only if S̄(x) 6= ∅.
By Lemmas 1 and 2, the 2-flip neighborhood can be re-
stricted to the set of solutions satisfying xj1 6= xj2 and
S̄(x) 6= ∅. However, it may not be possible to search this
set efficiently without first extracting it. We thus construct a
neighbor list that stores promising pairs of variables xj1 and
xj2 for efficiency (See details in Section 4).

To increase the efficiency of 2-FNLS, we decompose the
neighborhood NB2(x) into a number of sub-neighborhoods.
Let NB(j1)

2 denote the subset of NB2(x) obtainable by flip-
ping xj1 = 1 → 0. 2-FNLS searches NB(j1)

2 (x) for each
j1 ∈ X in the ascending order of ∆z̃↓j1(x). If an improved
solution is found, it chooses a pair j1 and j2 with the mini-
mum ∆z̃j1,j2(x) among those in NB(j1)

2 (x). 2-FNLS is for-
mally described as follows.

Algorithm 2-FNLS(x, w̃+, w̃−)

Input: A solution x and penalty weight vectors w̃+ and
w̃−.

Output: A solution x.

Step 1: If I↑1 (x) = {j ∈ N \X | ∆z̃↑j (x) < 0} 6= ∅ holds,
choose j ∈ I↑1 (x) with the minimum ∆z̃↑j (x), set xj ← 1
and return to Step 1.

Step 2: If I↓1 (x) = {j ∈ X | ∆z̃↓j (x) < 0} 6= ∅ holds,
choose j ∈ I↓1 (x) with the minimum ∆z̃↓j (x), set xj ← 0
and return to Step 2.

Step 3: For each j1 ∈ X in the ascending order of ∆z̃↓j1(x),
if I2(x) = {j2 ∈ N \ X | ∆z̃j1,j2(x) < 0} 6= ∅ holds,
choose j2 ∈ I2(x) with the minimum ∆z̃j1,j2(x) and set
xj1 ← 0 and xj2 ← 1. If the current solution x has been
updated at least once in Step 3, return to Step 1; otherwise
output x and exit.

If implemented naively, 2-FNLS requires O(σ) time to
compute the value of the evaluation function z̃(x) for the
current solution x, where σ =

∑
i∈M

∑
j∈N aij denote the

number of non-zero elements in the constraint matrix. This
computation is quite expensive if we evaluate the neighbor
solutions of the current solution x independently. To over-
come this, we develop an efficient method for incrementally
evaluating ∆z̃↑j (x) and ∆z̃↓j (x) in O(1) time by keeping
auxiliary data in memory. By using this, 2-FNLS is also able
to evaluate ∆z̃j1,j2(x) in O(|Sj |) time by using (3).

4 Exploiting Variable Associations
We recall that the quality of locally optimal solutions im-
proves if a larger neighborhood is used. However, the com-
putation time to search the neighborhood NBr(x) also in-
creases exponentially with r, since |NBr(x)| = O(nr) holds
substantially. A large amount of computational time is thus
needed in practice in order to scan all candidates in NB2(x)
for large-scale instances with millions of variables. To over-
come this, we develop a data mining approach that identifies
promising pairs of flipping variables in NB2(x) by extract-
ing variable associations from the instance to be solved us-
ing only a small amount of computation time.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x98 x809 x701

x186 x810 x99 x303

x100 x811 x304 x187 x78

x79 x491 x85 x1064 x101

x102 x813 x705 x492

x493 x1066 x731

x494 x309 x104 x86

x495 x87 x105 x708 x83

x496 x311 x106 x193 x84

x194 x85 x497 x735

x108 x821 x86

Figure 1: An example of the neighbor list

Based on Lemmas 1 and 2, the 2-flip neighborhood can
be restricted to the set of solutions satisfying xj1 6= xj2 and
S̄(x) 6= ∅. We further observe from (3) that it is favorable
to select pairs of flipping variables xj1 and xj2 with larger
|Sj1∩Sj2 | for attaining ∆z̃j1,j2(x) < 0. Based on this obser-
vation, we keep limited pairs of variables xj1 and xj2 with
large |Sj1 ∩ Sj2 | in memory, called the neighbor list (Fig-
ure 1). We note that |Sj1 ∩ Sj2 | represents a kind of similar-
ity between subsets Sj1 and Sj2 (or column vectors aj1 and
aj2 of matrix (aij)) and we keep the k-nearest neighbors for
each subset Sj (j ∈ N) in the neighbor list.

For each variable xj1 (j1 ∈ N), we first enumerate xj2
(j2 ∈ N) satisfying j2 6= j1 and Sj1 ∩ Sj2 6= ∅ to generate
the set L[j1], and store the variables xj2 (j2 ∈ L[j1]) with
the top 10% largest |Sj1 ∩ Sj2 | in the j1th row of the neigh-
bor list. To be precise, we sort the variables xj2 (j2 ∈ L[j1])
in the descending order of |Sj1 ∩ Sj2 | and store the first
max{α|L[j1]|, |M |} variables in this order, where α is a
program parameter that is set to 0.1. Let L′[j1] be the set
of variables xj2 stored in the j1th row of the neighbor list.
We then reduce the number of candidates in NB2(x) by re-
stricting pairs of flipping variables xj1 and xj2 to those in
the neighbor list j1 ∈ X and j2 ∈ (N \X) ∩ L′[j1].

We note that it is still expensive to construct the whole
neighbor list for large-scale instances with millions of vari-

1228

ables. To overcome this, we develop a lazy construction al-
gorithm for the neighbor list. That is, 2-FNLS starts from an
empty neighbor list and generates the j1th row of the neigh-
bor list L′[j1] only when 2-FNLS searches NB(j1)

2 (x) for
the first time.

Figure 2: An example of the k-nearest neighbor graph

We can treat the neighbor list as an adjacency-list repre-
sentation of a directed graph, and illustrate associations be-
tween variables by the corresponding directed graph called
the k-nearest neighbor graph (Figure 2). Using the k-nearest
neighbor graph, we extend 2-FNLS to search a set of promis-
ing neighbor solutions in NB4(x). For each variable xj1
(j1 ∈ X), we keep j2 ∈ (N \ X) ∩ L′[j1] with the min-
imum ∆z̃j1,j2(x) in memory as π(j1). The extended 2-
FNLS, called the 4-flip neighborhood search (4-FNLS) al-
gorithm, then searches for an improved solution by flipping
xj1 = 1 → 0, xπ(j1) = 0 → 1, xj3 = 1 → 0 and
xπ(j3) = 0 → 1 for j1 ∈ X and j3 ∈ X ∩ L′[π(j1)] sat-
isfying j1 6= j3 and π(j1) 6= π(j3), i.e., flipping the values
of four variables alternately along 4-paths or 4-cycles in the
k-nearest neighbor graph. Let ∆z̃j1,j2,j3,j4(x) denote the in-
crease in z̃(x) due to simultaneously flipping xj1 = 1→ 0,
xj2 = 0→ 1, xj3 = 1→ 0 and xj4 = 0→ 1. 4-FNLS com-
putes ∆z̃j1,j2,j3,j4(x) in O(|Sj |) time by applying the incre-
mental evaluation alternately. 4-FNLS is formally described
by replacing the part of algorithm 2-FNLS after Step 2 with
the following:

Step 3′: For each j1 ∈ X in the ascending order of
∆z̃↓j1(x), if I ′2(x) = {j2 ∈ (N \ X) ∩ L′[j1] |
∆z̃j1,j2(x) < 0} 6= ∅ holds, choose j2 ∈ I ′2(x) with
the minimum ∆z̃j1,j2(x) and set xj1 ← 0 and xj2 ← 1.
If the current solution x has been updated at least once in
Step 3′, return to Step 1.

Step 4′: For each j1 ∈ X in the ascending order of
∆z̃j1,π(j1)(x), if I4(x) = {j3 ∈ X ∩ L′[π(j1)] |
j3 6= j1, π(j3) 6= π(j1),∆z̃j1,π(j1),j3,π(j3)(x) <
0} 6= ∅ holds, choose j3 ∈ I4(x) with the minimum
z̃j1,π(j1),j3,π(j3)(x) and set xj1 ← 0, xπ(j1) ← 1, xj3 ←
0 and xπ(j3) ← 1. If the current solution x has been up-
dated at least once in Step 4′, return to Step 1; otherwise
output x and exit.

Although a similar approach has been developed in lo-
cal search algorithms for the Euclidean traveling salesman
problem (TSP) that stores sorted lists containing only the
k-nearest neighbors for each city in a geometric data struc-
ture called the k-dimensional tree (Johnson and McGeoch
1997), it is not suitable for finding the k-nearest neigh-
bors efficiently in high-dimensional spaces. We thus extend
it to be applicable to the high-dimensional column vectors
aj ∈ {0, 1}m (j ∈ N) of SPP by using a lazy construction
algorithm for the neighbor list.

5 Adaptive Control of Penalty Weights
Recall that in our algorithm, solutions are evaluated by
the alternative evaluation function z̃(x) in which the fixed
penalty weight vectors w+,w− in the original objective
function z(x) are replaced with w̃+, w̃−, and the values of
w̃+
i , w̃−i (i ∈ M) are adaptively controlled in the search.

It is often reported that a single application of LS tends to
stop at a locally optimal solution of insufficient quality when
the large penalty weights are used. This is because it is of-
ten unavoidable to temporarily increase the values of some
violations y+

i and y−i in order to reach an even better so-
lution from a good solution through a sequence of neigh-
borhood operations, and large penalty weights thus prevent
LS from moving between such solutions. To overcome this,
we incorporate an adaptive adjustment mechanism for de-
termining appropriate values of penalty weights w̃+

i , w̃−i
(i ∈ M) (Nonobe and Ibaraki 2001; Yagiura, Kishida,
and Ibaraki 2006; Umetani, Arakawa, and Yagiura 2013).
I.e., LS is applied iteratively while updating the values of
the penalty weights w̃+

i , w̃−i (i ∈ M) after each call to
LS. We call this sequence of calls to LS the weighting lo-
cal search (WLS) according to (Selman and Kautz 1993;
Thornton 2005). This strategy is also referred as the breakout
algorithm (Morris 1993) and dynamic local search (Hutter,
Tompkins, and Hoos 2002) in the literature.

Let x denote the solution at which the previous local
search stops. We assume the original penalty weights w+

i ,
w−i (i ∈ M) are sufficiently large. WLS resumes LS from
x after updating the penalty weight vectors w̃+, w̃−. Start-
ing from the original penalty weight vectors (w̃+, w̃−) ←
(w+,w−), the penalty weight vectors w̃+, w̃− are updated
as follows. Let x∗ denote the best solution with respect
to the original objective function z(x) obtained so far. If
z̃(x) ≥ z(x∗) holds, WLS uniformly decreases the penalty
weights by (w̃+, w̃−) ← β(w̃+, w̃−), where 0 < β < 1 is
a program parameter that is adaptively computed so that the
new value of ∆z̃↓j (x) becomes negative for 10% of variables
satisfying xj = 1. Otherwise, WLS increases the penalty
weights by

w̃+
i ← w̃+

i +
z(x∗)− z̃(x)∑
l∈M (y+2

l + y−
2

l)
y+
i , i ∈M,

w̃−i ← w̃−i +
z(x∗)− z̃(x)∑
l∈M (y+2

l + y−
2

l)
y−i , i ∈M.

(4)

WLS iteratively applies LS, updating the penalty weight
vectors w̃+, w̃− after each call to LS until the time limit is

1229

reached. Note that we modify 4-FNLS to evaluate solutions
with both z̃(x) and z(x), and update the best solution x∗

with respect to the original objective function z(x) when-
ever an improved solution is found.

Algorithm WLS(x)

Input: A solution x.

Output: The best solution x∗ with respect to z(x).

Step 1: Set x∗ ← x, x̃← x and (w̃+, w̃−)← (w+,w−).

Step 2: Apply 4-FNLS(x̃, w̃+, w̃−) to obtain an improved
solution x̃′. Let x′ be the best solution with respect to the
original objective function z(x) obtained during the call
to 4-FNLS(x̃, w̃+, w̃−). Set x̃← x̃′.

Step 3: If z(x′) < z(x∗) holds, then set x∗ ← x′. If the
time limit is reached, output x∗ and halt.

Step 4: If z̃(x̃) ≥ z(x∗) holds, then uniformly decrease
the penalty weights by (w̃+, w̃−) ← β(w̃+, w̃−); oth-
erwise, increase the penalty weight vectors (w̃+, w̃−) by
(4). Return to Step 2.

6 Computational Results
We report computational results for the 42 SPP instances
from (Borndörfer 1998; Chu and Beasley 1998; Koch et al.
2011). Table 1 summarizes the information about the origi-
nal and presolved instances. The second and fourth columns
“#cst.” shows the number of constraints, and the third and
fifth columns “#var.” shows the number of variables. Since
several preprocessing techniques that often reduce the size
of instances by removing redundant rows and columns are
known (Borndörfer 1998), all algorithms were tested on the
presolved instances. The instances marked with stars “?” are
hard instances that cannot be solved optimally within at least
1h by the latest MIP solvers.

Original Presolved Time
Instance #cst. #var. #cst. #var. limit
aa01–06 675.3 7587.3 478.7 6092.7 600s
us01–04 121.3 295085.0 65.5 85772.5 600s
t0415–0421 1479.3 7304.3 820.7 2617.4 600s
?t1716–1722 475.7 58981.3 475.7 13193.6 3600s
v0415–0421 1479.3 30341.6 263.9 7277.0 600s
v1616–1622 1375.7 83986.7 1171.9 51136.7 600s
?ds 656 67732 656 67730 3600s
?ds-big 1042 174997 1042 173026 3600s
?ivu06-big 1177 2277736 1177 2197774 3600s
?ivu59 3436 2569996 3413 2565083 3600s

Table 1: Benchmark instances for SPP

We first compare our algorithm with two latest MIP
solvers called CPLEX12.6 and SCIP3.1 (Achterberg 2009),
and a local search solver called LocalSolver3.1 (Benoist et
al. 2011). LocalSolver3.1 is not the latest version, but it per-
forms better than the latest version 4.5 for SPP instances.
These algorithms were tested on a MacBook Pro laptop
computer with a 2.7 GHz Intel Core i7 processor, and were
run on a single thread with time limits of 3600s for hard

instances and 600s for other instances. We also compare
our algorithm with a Lagrangian heuristic algorithm called
the Wedelin heuristic (Wedelin 1995; Bastert, Hummel, and
de Vries 2010). The computational results for the Wedelin
heuristic are taken from (Bastert, Hummel, and de Vries
2010), where it was tested on a 1.3 GHz Sun UltraSPARC-
IIIi processor and was run with a time limit of 600s.

Table 2 shows the relative gap (%) z(x)−zbest
z(x) × 100 of

the obtained feasible solutions under the original (hard) par-
titioning constraints, where zbest is the best upper bound
among all algorithms and settings in this paper. The sec-
ond column “zLP” shows the optimal values of LP relaxation
for SPP. The best upper bounds among the compared algo-
rithms (or settings) are highlighted in bold. The numbers in
parentheses show the number of instances for which the al-
gorithm obtained at least one feasible solution, e.g., “(6/7)”
shows that the algorithm obtained a feasible solution for six
instances out of seven. Table 2 also summarizes the average
performance of compared algorithms for both hard instances
and other instances.

We observe that our algorithm achieves best upper bounds
in 18 instances out of 42 for all instances, especially 7 in-
stances out of 11 for hard instances. We note that local
search algorithms and MIP solvers are quite different in
character. Local search algorithms do not guarantee opti-
mality because they typically search only a portion of the
solution space. On the other hand, MIP solvers examine ev-
ery possible solution, at least implicitly, in order to guarantee
optimality. Hence, it is inherently difficult to find optimal so-
lutions by local search algorithms even in the case of small
instances, while MIP solvers find optimal solutions quickly
for small instances and/or those having small gap between
lower and upper bounds of optimal values. In view of these,
our algorithm achieves sufficiently good upper bounds com-
pared to the other algorithms for the benchmark instances,
especially for the hard instances. We also note that there may
still be room for large improvements in the case of hard in-
stances because an optimal value of 93.52 was found for the
instance “ds” by using a parallel extension of the latest MIP
solvers called ParaSCIP on a supercomputer through a huge
amount of computational effort (Shinano et al. 2013).

Table 3 shows the completion rate of the neighbor list in
rows, i.e., the proportion of generated rows to all rows in
the neighbor list. We observe that our algorithm achieves
good performance while generating only a small part of the
neighbor list for the large-scale “ds-big”, “ivu06-big” and
“ivu59” instances.

Table 4 shows the computational results of our algorithm
for different settings. The left side of Table 4 shows the com-
putational results of our algorithm for different neighbor list
sizes, that is, when we stored the variables xj2 with the top
1%, 10%, or 100% largest |Sj1 ∩ Sj2 | in the j1th row of
the neighbor list, respectively. The column “w/o” shows the
results of our algorithm without the neighbor list. We ob-
serve that the performance of the local search algorithm is
much improved by the neighbor list, and our algorithm at-
tains good performance even if the size of the neighbor list
is considerably small. The right side of Table 4 shows the

1230

Instance zLP zbest CPLEX12.6 SCIP3.1 Wedelin LocalSolver3.1 Proposed
aa01–06 40372.8 40588.8 0.00% (6/6) 0.00% (6/6) — 13.89% (1/6) 1.95% (6/6)
us01–04 9749.4 9798.3 0.00% (4/4) 0.00% (3/4) — 11.26% (2/4) 0.78% (4/4)
t0415–0421 5199083.7 5471010.9 0.25% (7/7) 1.13% (6/7) 1.30% (5/7) ∞ (0/7) 0.87% (6/7)
?t1716–1722 121445.8 162039.9 5.88% (7/7) 4.57% (7/7) 10.27% (7/7) 37.36% (1/7) 1.25% (7/7)
v0415–0421 2385764.2 2393130.0 0.01% (7/7) 0.01% (7/7) 0.71% (6/7) 0.06% (7/7) 0.02% (7/7)
v1616–1622 1021288.8 1025552.4 0.00% (7/7) 0.00% (7/7) 2.42% (3/7) 4.60% (7/7) 0.16% (7/7)
?ds 57.23 200.36 2.60% 36.44% 24.16% 84.15% 0.00%
?ds-big 86.82 876.67 55.13% 66.46% — 91.24% 0.00%
?ivu06-big 135.43 168.17 19.83% 16.83% — 51.93% 0.00%
?ivu59 884.46 1299.40 50.55% 57.01% — 64.69% 4.15%
Avg. gap (w/o stars) 0.06% (31/31) 0.24% (29/31) 1.29% (14/21) 4.25% (17/31) 0.71% (30/31)
Avg. gap (with stars) 15.39% (11/11) 18.98% (11/11) 12.01% (8/ 8) 65.87% (5/11) 1.17% (11/11)

Table 2: Computational results of the latest solvers and the proposed algorithm for the benchmark instances

Size of neighbor list Type of neighborhood
Instance α = 0.01 α = 0.1 α = 1.0 w/o 2-FNLS 4-FNLS
aa01–06 1.95% (6/6) 1.95% (6/6) 1.79% (6/6) 3.57% (6/6) 3.05% (6/6) 1.95% (6/6)
us01–04 0.83% (4/4) 0.78% (4/4) 1.14% (4/4) 1.01% (4/4) 0.47% (4/4) 0.78% (4/4)
t0415–0421 0.87% (6/7) 0.87% (6/7) 0.87% (6/7) 2.36% (2/7) 2.24% (6/7) 0.87% (6/7)
?t1716–1722 4.76% (7/7) 1.25% (7/7) 2.50% (7/7) 5.85% (7/7) 4.76% (7/7) 1.25% (7/7)
v0415–0421 0.01% (7/7) 0.02% (7/7) 0.01% (7/7) 0.03% (7/7) 0.02% (7/7) 0.02% (7/7)
v1616-1622 0.16% (7/7) 0.16% (7/7) 0.15% (7/7) 0.71% (7/7) 0.19% (7/7) 0.16% (7/7)
?ds 11.68% 0.00% 6.27% 14.94% 18.23% 0.00%
?ds-big 35.88% 0.00% 24.99% 28.97% 27.62% 0.00%
?ivu06-big 3.29% 0.00% 1.90% 18.64% 3.99% 0.00%
?ivu59 9.63% 4.15% 0.00% 33.40% 4.88% 4.15%
Avg. gap (w/o stars) 0.71% (30/31) 0.71% (30/31) 0.72% (30/31) 0.92% (26/31) 1.17% (30/31) 0.71% (30/31)
Avg. gap (with starts) 8.53% (11/11) 1.17% (11/11) 4.61% (11/11) 12.45% (11/11) 8.01% (11/11) 1.17% (11/11)

Table 4: Computational results of the proposed algorithm for different settings

Instance 1min 10min 30min 1h
aa01–06 33.15% 51.77% — —
us01–04 23.10% 27.76% — —
t0415–0421 89.75% 97.11% — —
?t1716–1722 38.00% 86.55% 96.29% 98.56%
v0415–0421 36.78% 39.44% — —
v1616-1622 5.28% 8.81% — —
?ds 1.37% 10.15% 22.22% 34.69%
?ds-big 0.13% 1.11% 3.27% 5.70%
?ivu06-big 0.01% 0.02% 0.08% 0.18%
?ivu59 0.01% 0.01% 0.04% 0.41%

Table 3: Completion rate of the neighbor list in rows

computational results of 2-FNLS and 4-FNLS. We observe
that the 4-flip neighborhood search substantially improves
the performance of our algorithm, even though it explores a
quite limited space in the search.

7 Conclusion
We presented a data mining approach for reducing the search
space of local search algorithms for large-scale SPPs. In this
approach, we construct a k-nearest neighbor graph by ex-
tracting variable associations from the instance to be solved
in order to identify promising pairs of flipping variables in
the 2-flip neighborhood. We also developed a 4-flip neigh-
borhood local search algorithm that flips four variables al-

ternately along 4-paths or 4-cycles in the k-nearest neighbor
graph. Comparison of computation with the latest solvers
shows that our algorithm performs efficiently for large-scale
SPP instances.

We note that these data mining approaches could also be
beneficial for efficiently solving other large-scale combina-
torial problems, particularly for hard instances having large
gaps between the lower and upper bounds of the optimal val-
ues.

References
Achterberg, T.; Koch, T.; and Martin, A. 2006. MIPLIB2003.
Operations Research Letters 34:361–372.

Achterberg, T. 2009. SCIP: Solving constraint integer pro-
grams. Mathematical Programming Computation 1:1–41.

Adenso-Dı́az, B., and Laguna, M. 2006. Fine-tuning of algo-
rithms using fractional experimental designs and local search.
Operations Research 54:99–114.

Atamtürk, A.; Nemhauser, G. L.; and Savelsbergh, M. W. P.
1995. A combined Lagrangian, linear programming, and impli-
cation heuristic for large-scale set partitioning problems. Jour-
nal of Heuristics 1:247–259.

Balaprakash, P.; Birattari, M.; and Stützle, T. 2007. Improve-
ment strategies for the F-race algorithm: Sampling design and
iterative refinement. In Proceedings of International Workshop
on Hybrid Metaheuristics (HM), 108–122.

1231

Barahona, F., and Anbil, R. 2000. The volume algorithm: Pro-
ducing primal solutions with a subgradient method. Mathemat-
ical Programming A87:385–399.
Bastert, O.; Hummel, B.; and de Vries, S. 2010. A generalized
Wedelin heuristic for integer programming. INFORMS Journal
on Computing 22:93–107.
Benoist, T.; Estellon, B.; Gardi, F.; Megel, R.; and Nouioua, K.
2011. LocalSolver 1.x: A black-box local-search solver for 0-1
programming. 4OR 9:299–316.
Borndörfer, R. 1998. Aspects of set packing, partitioning and
covering. Ph.D. Dissertation, Technischen Universität, Berlin.
Boschetti, M. A.; Mingozzi, A.; and Ricciardelli, S. 2008. A
dual ascent procedure for the set partitioning problem. Discrete
Optimization 5:735–747.
Caprara, A.; Fischetti, M.; and Toth, P. 1999. A heuristic
method for the set covering problem. Operations Research
47:730–743.
Ceria, S.; Nobili, P.; and Sassano, A. 1998. A Lagrangian-based
heuristic for large-scale set covering problems. Mathematical
Programming 81:215–228.
Chu, P. C., and Beasley, J. E. 1998. Constraint handling in
genetic algorithms: The set partitioning problem. Journal of
Heuristics 11:323–357.
Crawford, B.; Soto, R.; Monfroy, E.; Palma, W.; Castro, C.; and
Paredes, F. 2013. Parameter tuning of a choice-function based
hyperheuristic using particle swarm optimization. Expert Sys-
tems with Applications 40:1690–1695.
Hamadi, F.; Monfroy, E.; and Subion, F., eds. 2011. Au-
tonomous Search. Springer.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2009.
ParamILS: An automated algorithm configuration framework.
Journal of Artificial Intelligence Research 36:267–306.
Hutter, F.; Tompkins, D. A.; and Hoos, H. H. 2002. Scaling
and probabilistic smoothing: Efficient dynamic local search for
SAT. In Proceedings of International Conference on Principles
and Practice of Constraint Programming (CP), 233–248.
Johnson, D. S., and McGeoch, L. A. 1997. The traveling sales-
man problem: A case study. In Aarts, E., and Lenstra, K., eds.,
Local Search in Combinatorial Optimization. Princeton Univer-
sity Press. 215–310.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K. 2010.
ISAC – Instance-specific algorithm configuration. In Proceed-
ings of European Conference on Artificial Intelligence (ECAI),
751–756.
Kadioglu, S.; Malitsky, Y.; and Sellmann, M. 2012. Non-
model-based search guidance for set partitioning problems.
In Proceedings of AAAI Conference on Artificial Intelligence
(AAAI), 493–498.
KhudaBukhsh, A. R.; Xu, L.; Hoos, H.; and Leyton-Brown, K.
2009. SATenstein: Automatically building local search SAT
solvers from components. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 517–524.
Koch, T.; Achterberg, T.; Andersen, E.; Bastert, O.; Berthold,
T.; Bixby, R. E.; Danna, E.; Gamrath, G.; Gleixner, A. M.;
Heinz, S.; Lodi, A.; Mittlmann, H.; Ralphs, T.; Salvagnin, D.;
Steffy, D. E.; and Wolter, K. 2011. MIPLIB2010: Mixed in-
teger programming library version 5. Mathematical Program-
ming Computation 3:103–163.

Linderoth, J. T.; Lee, E. K.; and Savelsbergh, M. W. P. 2001.
A parallel, linear programming-based heuristic for large-scale
set partitioning problems. INFORMS Journal on Computing
13:191–209.
Michel, L., and Van Hentenryck, P. 2000. Localizer. Con-
straints 5:43–84.
Monfroy, E.; Castro, C.; Crawford, B.; Soto, R.; Paredes, F.;
and Figueroa, C. 2013. A reactive and hybrid constraint solver.
Journal of Experimental & Theoretical Artificial Intelligence
25:1–22.
Morris, P. 1993. The breakout method for escaping from local
minima. In Proceedings of National Conference on Artificial
Intelligence (AAAI), 40–45.
Nonobe, K., and Ibaraki, T. 2001. An improved tabu search
method for the weighted constraint satisfaction problem. IN-
FOR 39:131–151.
Pesant, G., and Gendreau, M. 1999. A constraint program-
ming framework for local search methods. Journal of Heuris-
tics 5:255–279.
Selman, B., and Kautz, H. 1993. Domain-independent exten-
sions to GSAT: Solving large structured satisfiability problems.
In Proceedings of International Conference on Artificial Intel-
ligence (IJCAI), 290–295.
Shaw, P. 2002. Improved local search for CP toolkits. Annals
of Operations Research 115:31–50.
Shinano, Y.; Achterberg, T.; Berthold, T.; Heinz, S.; Koch, T.;
and Winkler, M. 2013. Solving hard MIPLIB2003 problems
with ParaSCIP on supercomputers: An update. Technical Re-
port ZIB-Report 13-66, Zuse Institute Berlin.
Thornton, J. 2005. Clause weighting local search for SAT.
Journal of Automated Reasoning 35:97–142.
Umetani, S.; Arakawa, M.; and Yagiura, M. 2013. A heuris-
tic algorithm for the set multicover problem with generalized
upper bound constraints. In Proceedings of Learning and Intel-
ligent Optimization Conference (LION), 75–80.
Van Hentenryck, P., and Michel, L. 2005. Constraint-Based
Local Search. The MIT Press.
Voudouris, C.; Dorne, R.; Lesaint, D.; and Liret, A. 2001. iOpt:
A software toolkit for heuristic search methods. In Proceedings
of Principles and Practice of Constraint Programming (CP),
716–729.
Wedelin, D. 1995. An algorithm for large scale 0-1 integer pro-
gramming with application to airline crew scheduling. Annals
of Operations Research 57:283–301.
Yagiura, M., and Ibaraki, T. 1999. Analysis on the 2 and 3-flip
neighborhoods for the MAX SAT. Journal of Combinatorial
Optimization 3:95–114.
Yagiura, M.; Kishida, M.; and Ibaraki, T. 2006. A 3-flip neigh-
borhood local search for the set covering problem. European
Journal of Operational Research 172:472–499.

1232

