Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

On Unconstrained Quasi-Submodular Function Optimization

Jincheng Mei, Kang Zhao and Bao-Liang Lu*
Center for Brain-Like Computing and Machine Intelligence
Department of Computer Science and Engineering

Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering
Shanghai Jiao Tong University
800 Dong Chuan Road, Shanghai 200240, China
{jcmei,sjtuzk,bllu} @sjtu.edu.cn

Abstract

With the extensive application of submodularity, its
generalizations are constantly being proposed. How-
ever, most of them are tailored for special problems. In
this paper, we focus on quasi-submodularity, a universal
generalization, which satisfies weaker properties than
submodularity but still enjoys favorable performance in
optimization. Similar to the diminishing return property
of submodularity, we first define a corresponding prop-
erty called the single sub-crossing, then we propose two
algorithms for unconstrained quasi-submodular func-
tion minimization and maximization, respectively. The
proposed algorithms return the reduced lattices in O(n)
iterations, and guarantee the objective function values
are strictly monotonically increased or decreased after
each iteration. Moreover, any local and global optima
are definitely contained in the reduced lattices. Experi-
mental results verify the effectiveness and efficiency of
the proposed algorithms on lattice reduction.

Introduction

Given a ground set N = {1,2,--- n}, a set function
F : 2N s R is said to be submodular (Fujishige 2005)
if¥X,Y C N,

F(X)+F(Y)>F(XNY)+ F(XUY).

An equivalent definition is given as following, i.e., VA C
BCN,ie N\ B,

F(i|A) = F(i| B),

where F(i|A) & F(A +1i) — F(A) is called the marginal
gain of ¢ with respect to A. It implies that submodular func-
tions capture the diminishing return property. To facilitate
our presentation, we use F'(A + i) to refer to F'(A U {i}),
and F'(A — 1) to refer to F'(A\ {i}).

Submodularity is widely applied in economics, combi-
natorics, and machine learning, such as welfare alloca-
tion (Vondrédk 2008), sensor placement (Krause, Singh, and
Guestrin 2008), feature selection (Das and Kempe 2011),
and computer vision (Liu et al. 2011), to name but a few.

With the wide application of submodularity, it has many
generalizations. For example, Singh et al. (Singh, Guillory,

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1191

and Bilmes 2012) formulate multiple sensor placement and
multimodal feature selection as bisubmodular function max-
imization, where the objectives have multiple set arguments.
Golovin and Krause (Golovin and Krause 2011) introduce
the concept of adaptive submodularity to make a sequence
of adaptive decisions with uncertain responses. Feige (Feige
2009) proposes maximizing subadditive functions on wel-
fare problems to capture the complement free property of
the utility functions. However, all the mentioned generaliza-
tions of submodularity enjoy benefits in special application
scenarios (multiset selection, adaptive decision, and comple-
ment free allocation).

In this paper, we study a universal generalization. Sub-
modularity is often viewed as the discrete analogue of con-
vexity (Lovasz 1983). One of the most important general-
izations of convexity is quasi-convexity (Boyd and Vanden-
berghe 2004). Quasi-convex functions satisfy some weaker
properties, but still benefit much from the optimization per-
spective. More specifically, quasi-convex constraints can
be easily transformed to convex constraints via sublevel
sets, and quasi-convex optimization problems can be solved
through a series of convex feasibility problems using bisec-
tion methods (Boyd and Vandenberghe 2004). Considering
the celebrated analogue between submodularity and convex-
ity, a natural question is whether submodularity has similar
generalizations which satisfy weaker properties but still en-
joy favorable performance in optimization? In this paper, we
positively answer this question and refer to this generaliza-
tion as quasi-submodularity.

As aforementioned, quasi-submodularity is a weaker
property than submodularity. Similar to the diminishing re-
turn property of submodular functions, we first define a cor-
responding property called single sub-crossing. Then we
propose two algorithms for unconstrained quasi-submodular
minimization and maximization, respectively. Our theoreti-
cal analyses show that the proposed algorithms strictly in-
crease or decrease the objective function values after each it-
eration. The output reduced lattices can be obtained in O(n)
iterations, which contain all the local and global optima of
the optimization problems. The theoretical and experimen-
tal results indicate that although quasi-submodularity is a
weaker property than submodularity, it enjoys favorable per-
formance in optimization.

The rest of the paper is organized as follows. We first

introduce the concept of quasi-submodularity and define
the single sub-crossing property. Then we present the effi-
cient algorithms and theoretical analyses for unconstrained
quasi-submodular function minimization and maximization,
respectively. After that, we provide some discussion and
present some experimental results to verify the effectiveness
and efficiency of the proposed algorithms on lattice reduc-
tion. Finally, we introduce some related work and give some
conclusions about our work.

Quasi-Submodularity

It is well known that the term semi-modular is taken from
lattice theory (Edmonds 2003). A lattice is a partially or-
dered set, which contains the supremum and infimum of
each element pair. Here, we introduce a very useful lattice.

Definition 1 (Set Interval Lattice). Given two ground sets
A, B, a set interval lattice L = [A,B] is defined as
{U| ACU C B}. Lisnot empty if and only if A C B.

In the set interval lattice, the partially order relation is de-
fined as the set inclusion C. Aset S € Liff A C S C B.
Obviously, VX, Y € £L,wehave X NY, X UY € L, thus
L is a lattice.

The concept of quasi-supermodularity is first proposed
in economic fields (Milgrom and Shannon 1994). Quasi-
supermodularity captures the monotonicity of the solutions
as the problem parameters change, and has been proved use-
ful in game theory (Leininger 2006), parametric cuts (Gra-
not et al. 2012), and discrete convex analysis (Murota 2003).
Following (Milgrom and Shannon 1994), we give the defi-
nition of quasi-submodularity.

Definition 2 (QSB). A set function F : 2V s R is quasi-
submodular function if VX, Y C N, both of the following
conditions are satisfied
FIXNY)>F(X)=FY)>F(XUY),
FXNY)>FX)=FY)>FXUY).
The following proposition implies that the concept of
quasi-submodularity is a generalization of submodularity.

ey

Proposition 1. Any submodular function
submodular function, but not vice versa.

is quasi-

Proof. Suppose F' : 2V = R is a submodular function,
and F' is not a quasi-submodular function. Then we have
FXNY)>FX),FY)<FXUY),or F(XNY) >
F(X), F(Y) < F(X UY). Both of the two cases lead to
F(X)+F(Y) < F(XNY)+F(XUY), which contradicts
the definition of submodularity.

A counterexample is given to prove a quasi-submodular
function may not be a submodular function. Suppose N =
{1,2}, F(0) 1, F({1}) 0, F({2}) 1.5, and
F({1,2}) = 1. It is easy to check that F' satisfies the def-
inition of QSB. But F' is not a submodular function, since
F({1}) + F({2}) < F(0) + F({1,2}). Actually, F' is a
supermodular function. O

Similar to the diminishing return property of submodu-
lar functions, we define a corresponding property for quasi-
submodularity, and name it as single sub-crossing.

1192

Definition 3 (SSBC). A set function F : 2V — R satisfies

the single sub-crossing property if VA C B C N, i € N\B,
both of the following conditions are satisfied

F(A) > F(B)= F(A+1i) > F(B+1),

F(A)> F(B)= F(A+1i) > F(B+1).

As mentioned before, submodularity and diminishing re-

turn property are equivalent definitions. Analogously, quasi-

submodularity and single sub-crossing property are also
equivalent.

2

Proposition 2. Any quasi-submodular function satisfies the
single sub-crossing property, and vice versa.

Proof. Suppose F : 2V ++ R is a quasi-submodular func-
tionn VACBCN,ie N\B,letX=B,Y=A+iin
(1). It is obvious that F' satisfies the SSBC property.

On the other hand, suppose F' satisfies the SSBC property.
VX,Y C N,wedenote Y\ X = {iy,42, - ,i}. Based on
the SSBC property, if F(X NY) > (>)F(X), then we have
F(XNY +i1) > (>)F(X +41). Similarly, we have F/(X N
Y +i1+1i2) > (>)F(X +1i1 +12). Repeating the operation
until ¢, is added, we get F(Y) > (>)F(X UY). O

Note that in the proof above, if we exchange X and Y,
ie,let X =A+1i, Y =B, we will get

F(A) > F(A+1i) = F(B) > F(B +1),
F(A) > F(A+1) = F(B) > F(B +1).

We can rewrite it using the marginal gain notation, i.e.,
YVACBCN,ie N\ B,

F(i]A) < (<) 0= F(i|B) < (<) 0. 3)

Note that although X and Y are symmetric and interchange-
able in (1), we get a representation which is different with
the SSBC property. Actually, (3) is a weaker condition than
(1). The proposed algorithms work on the weaker notion (3),
and the results also hold for quasi-submodularity.

Unconstrained Quasi-Submodular Function

Minimization
In this section, we are concerned with general unconstrained
quasi-submodular minimization problems, where the objec-
tive functions are given in the form of value oracle. Gen-
erally, we do not make any additional assumptions (such
as nonnegative, monotone, symmetric, etc) except quasi-
submodularity.

Very recently, Iyer et al. (Iyer, Jegelka, and Bilmes 2013)
propose a discrete Majorization-Minimization like submod-
ular function minimization algorithm. In (Iyer, Jegelka, and
Bilmes 2013), for each submodular function, a tight mod-
ular upper bound is established at the current working set,
then this bound is minimized as the surrogate function of
the objective function. But for quasi-submodular function,
there is no known superdifferential, and it can be verified
that the upper bounds in (Iyer, Jegelka, and Bilmes 2013)
are no longer bounds for quasi-submodular functions. Ac-
tually, without submodularity, quasi-submodularity is suffi-
cient to perform lattice reduction. Consequently, we design
the following algorithm.

Algorithm 1 Unconstrained Quasi-Submodular Function

Minimization (UQSFMin)

Input: Quasi-submodular function F, N = {1,2,...,n},
XQ C N,t«+ 0.

Output: X; as a local optimum of)I(ncnlb F(X).

1: Atlteration ¢, find Uy = {u € N\ X; | F(u|X};) < 0}.
Y; — Xt U Ut.

2 Find Dy = {d € X; | F(d|Y; — d) > 0}. Xo1
Yi \ Ds.

3: If X441 = X, (iff Uy = Dy = (), stop and output X;.

4: t < t+ 1. Back to Step 1.

X is alocal minimum means Vi € X, F(X —i) > F(X),
andVje N\ X, F(X +j) > F(X).

Algorithm 1 has several nice theoretical guarantees. First,
the objective function values are strictly decreased after each
iteration, as the following lemma states.

Lemma 1. After each except the last iteration of Algorithm
1, the objective function value of the working set is strictly
monotonically decreased, i.e., ¥t, F(X;11) < F(Xy).

Proof. We prove F(Y;) < F(X}). F(Xty1) < F(Y:) can
be proved using a similar approach. Suppose U; # (). Define
U* € argming ¢y, =4 F(X: UU), and Y} = X, UU*.
According to the algorithm, Yu € U; \ U*, F(u|X;) < 0.
Since X; C Y[, and u ¢ Y/, based on the SSBC prop-
erty, we have F(u|YF) < 0. This implies F(Y}*!) <
F(X: U (UF +u)) < F(X; UU*) = F(Y}). Note that
F(Y}) = mingey, F(X; +u) < F(X;) = F(YP). We
then have F(V;) = F(Y") < Fy]UI7Y < .o <
PYY) = F(X,). 0

If we start from Xy = Qg £ (), after one iteration, we will
get X1 = Q1 = {i| F(i|0) < 0}. Similarly, if we start from
Xo=Sp =& N,wewill get X; = S; = {i | F(i|N —i) <
0}. Based on the SSBC property, we have Vi € N, F'(i|0) <
0 = F(UN —1i) <0,ie, @ C Sy. Thus the reduced
lattice £ = [@Q1,S51] C [0, N] is not empty, and we show
that it contains all the global minima.

Lemma 2. Any global minimum of F(X) is contained in
the lattice L = [Q1,51], i.e, VX, € argminy -y F(X),
@1 C X, CSh. -

Proof. We prove Q1 C X,. X, C S; can be proved in a
similar way. Suppose Q1 Z X, ie., Ju € Q1, u & X..
According to the definition of @1, F'(u|@) < 0. Since () C
X., based on the SSBC property, we have F(u|X,) < 0,
which implies F'(X, + u) < F(X.). This contradicts the
optimality of X,. O

If we start Algorithm 1 from Xo = Qo = (), suppose we
get (), after ¢ iterations. It is easy to check that, due to the
SSBC property, in each iteration, J; only adds elements. So
we getachain @ = Qo C Q1 C - C @ C - C Qy,
where () is the final output when the algorithm terminates.
Similarly, if we start from X, = Sy = NN, we can get an-
other chain S C --- C §; C --- C 51 C Sy = N. We

1193

then prove that the endpoint sets of the two chains form a
lattice, which contains all the local minima of F'.

Lemma 3. Any local minimum of F(X) is contained in the
lattice L = [Q+, S+].

Proof. Let P be a local minimum. In the proof of Lemma
2, we use singleton elements to construct contradictions, so
we have Q1 C P C S7. Suppose Q; C P C S, we then
prove Q;y1 € P C S;.;. First, we suppose ;11 € P.
Because Q141 = Q¢ U U, Ju € Uy, u ¢ P. According
to the definition of Uy, F'(u|Q;) < 0. Since Q; C P, based
on the SSBC property, we have F'(u|P) < 0. This indicates
F(P + u) < F(P), which contradicts the local optimality
of P. Hence ;41 € P. And P C S;1; can be proved in a
similar way. O

Moreover, the two endpoint sets ()4 and S, are local
minima.

Lemmad4. Q4 and S, are local minima of F(X).

Proof. We prove for Q. The S case is similar. According
to the algorithm, Vi € N\ Q4, F(i|Q+) > 0.If 3 j € Qy,
such that F'(j|Q+ — j) > 0, then we can suppose j was
added into Q4 at a previous iteration ¢. Since Q;—j C Q4+ —
Jj, based on the SSBC property, we have F(j|Q: — j) > 0.
This contradicts the proof of Lemma 1. O

Because a global minimum is also a local minimum,
Lemma 3 results in the following theorem.

Theorem 1. Any global minimum of F(X) is contained in
the lattice L = [Q4,S4), i.e, VX € argminy - F(X),
Q+ - X* Cc S—i—- -

Unconstrained Quasi-Submodular Function
Maximization

Unconstrained submodular function minimization problems
can be exactly optimized in polynomial time (Orlin 2009).
Yet unconstrained submodular maximization is NP-hard
(Feige, Mirrokni, and Vondrak 2011). The best approxima-
tion ratio for unconstrained nonnegative submodular maxi-
mization is 1/2 (Buchbinder et al. 2012), which matches the
known hardness result (Feige, Mirrokni, and Vondrak 2011).
As a strict superset of submodular case, unconstrained quasi-
submodular maximization is definitely NP-hard.

Iyer et al. (Iyer, Jegelka, and Bilmes 2013) also propose a
discrete Minorization-Maximization like submodular max-
imization algorithm. They employ the permutation based
subdifferential (Fujishige 2005) to construct tight modular
lower bounds, and maximize the lower bounds as surro-
gate functions. With different permutation strategies, their
algorithm actually mimics several existing approximation
algorithms, which means their algorithm does not really
reduce the lattices in optimization. In addition, for quasi-
submodular cases, it also can be verified that the lower
bounds in (Iyer, Jegelka, and Bilmes 2013) are no longer
bounds, and quasi-submodular functions have no known
subdifferential. Thus, even generalizing their algorithm is
impossible.

We find Buchbinder et al. (Buchbinder et al. 2012) pro-
pose a simple linear time approximation method. The algo-
rithm maintains two working sets, S7 and So, and S; C S5.
At the start, S; = 0 and Sy = N. Then at each iteration, one
element ¢ € S\ Sy is queried to compute its marginal gains
over the two working sets, i.e., F'(i|S1) and F(i|S2 — i).
If F(i|S1) + F(i|S2 — i) > 0, then S; < S7 + 4, other-
wise So < Sy — i. After n iterations, the algorithm outputs
S1 = So. This algorithm is efficient and reaches an approx-
imation ratio of 1/3. However, the approximate algorithm
may mistakenly remove a certain element e € X, from Ss,
or add an element u ¢ X, into S;. Here, X, is referred to
as a global maximum. Consequently, the working lattices of
their algorithm may not contain the global optima.

By contrast, we want to reduce the lattices after each it-
eration while avoid taking erroneous steps. Fortunately, we
find that if we simultaneously maintain two working sets
at each iteration, and take steps in a “crossover” method,
quasi-submodularity can provide theoretical guarantees that
the output lattices definitely contain all the global maxima.
Hence, we propose the following algorithm.

Algorithm 2 Unconstrained Quasi-Submodular Function
Maximization (UQSFMax)

Input: Quasi-submodular function F', N =
Xo+—0,Yy < N,t 0.
Output: Lattice [Xy, Y}].
1: Atlteration ¢, find Uy = {u € Y3 \ Xy | F(u]Y; —u) >
0} Xt+1 +— X; UU,.

{1,2,...,n},

2: Find Dt = {d S }/t \ Xt | F(d|Xt) < 0} }/t_;,_l —
Y\ Dy.
3: If Xyy1 = X; and Yy = Y4, stop and output [Xy, Yy].

4: t < t+ 1. Back to Step 1.

To ensure the result lattice is not empty, we prove that af-
ter each iteration Algorithm 2 maintains a nonempty lattice
as the following lemma shows.

Lemma 5. At each iteration of Algorithm 2, the lattice
[X:, Y] is not empty, i.e., Vt, X; C Y.

Proof. According to the definition, we have Xy C Yj. Sup-
pose X; C Y;, we then prove X;+; C Y,i;. Because
Uy, Dy CY;\ Xy, if weprove Uy N Dy = 0, Xy 11 C Yigq
will be satisfied. According to the algorithm, Vu € Uy,
F(ulY; —u) > 0. Since X; C YV; —u,and u & Y; — u,
based on the SSBC property, we have F'(u|X;) > 0, which
implies u & Dy. O

Algorithm 2 also has several very favorable theoretical
guarantees. First, the objective function values are strictly
increased after each iteration, as the following lemma states.

Lemma 6. After each except the last iteration of Algo-
rithm 2, the objective function values of endpoint sets of

lattice [X, Yy] are strictly monotonically increased, i.e., Vt,
F(Xt+1) > F(Xt) or F(}/t+1) > F(}ft)

Proof. We prove F(X;y1) > F(X:). F(Yiy1) > F(Yh)
can be proved using a similar approach. Suppose U; # ().

1194

Define U* € argmaxycy,.)= F(X: UU), and Xf =
X; U U*. According to the algorithm, Vu € U; \ U’“,
F(u|Y; —u) > 0. Since Xf C Y, —u,andu ¢ Y; —

based on the SSBC property, we have F(u|Xk) > 0. ThlS
indicates F(XF ™) > F(X,U(U* +u)) > F(X,uU*) =

F(XF). Note that F(X}) maxyey, F(Xy +u) >
F(X,) = F(X?). We then have F(X, 1) = F(X/"!) >
FX[PTh > s F(XD) = F(X). 0

After the first iteration of Algorithm 2, we get X; =
{¢ | F(i|]N —i) > 0},and Y1 = {i | F(i|@) > 0}. Based
on Lemma 5, we have X; C Y. Thus the reduced lattice
L = [X1,Y1] C [0, N] is not empty, and we show that it
contains all the global maxima.

Lemma 7. Any global maximum of F(X) is contained in
the lattice L = [X1,Y1), i.e, VX, € argmaxyxcn F(X),
X1 X, TV B

Proof. We prove X; C X,. X, C Y] can be proved in a
similar way. Suppose X7 € X,, ie.,, Ju € X1, u € X,.
According to the definition, F'(u|N — wu) > 0. Since X, C
N — u, based on the SSBC property, we have F'(u|X,) > 0
thatis F'(X. 4+ u) > F(X,). This contradicts the optimality
of X,. O

At each iteration of Algorithm 2, due to the SSBC prop-
erty, X; only adds elements and Y; only removes elements.
Thus we have X; C X1 and Vi1 C Y, ie, VA,
[Xt+1,Yir1] € [X:, Y:]. We denote the output lattice of
Algorithm 2 as [X,Y,]. Then [X,,Y,] is the smallest
lattice in the chain which consists of the working lattices:
[X-l—aY-i-] c c [Xt71/t] - - [leyl] C [X07}/0] =
[@, N]. Based on Lemma 5, [X, Y. | is not empty, then we
prove that it contains all the global maxima of F'.

Theorem 2. Suppose Algorithm 2 outputs lattice [X 1, Y,].
Any global maximum of F(X) is contained in the lattice
L = [X4,Y4] ie, VX, € argmaxycy F(X), Xy C
X, CY,. -

Proof. Based on Lemma 7, we have X; C X, C Yj. Sup-
pose X; C X, CY;, we then prove X;11 C X, C Y.
First, we suppose X;11 € X.. Because X;11 = Xy U Uy,
so du € U, u € X,.. According to the definition of
Ui, F(ulYy —u) > 0. Since X, C Y; — u, based on
the SSBC property, we have F(u|X,) > 0. This implies
F(X,. +u) > F(X.), which contradicts the optimality of
X,.Hence X;11 C X,. And X, C Y;; can be proved in a
similar way. O

Note that the proofs of Lemma 7 and Theorem 2 also work
for local maximum cases, since we use singleton elements to
construct contradictions.

Lemma 8. Any local maximum of F(X
lattice L = [X1,Y,].

Lemma 8 indicates that if X (Y) is a local maximum, it
is the local maximum which contains the least (most) num-
ber of elements. Unfortunately, finding a local maximum for
submodular functions is hard (Feige, Mirrokni, and Vondrak

) is contained in the

2011), let alone quasi-submodular cases. Nonetheless, Al-
gorithm 2 provides an efficient strategy for search interval
reduction, which is helpful because the reduction is on the
exponential power. In the experimental section, we show the
reduction can be quite surprising. Moreover, when an ob-
jective function has a unique local maximum, which is also
the global maximum X = Y, our algorithm can find it
quickly.

Theorem 3. Algorithm 2 terminates in O(n) iterations. The
time complexity is O(n?).

Proof. After each iteration, at least one element is removed
from the current working lattice, so it takes O(n) iterations
to terminate. At each iteration, all the elements in the cur-
rent working lattice need to be queried once. Hence, the total
complexity of Algorithm 2 is O(n?). O

Discussions

In Algorithm 1, Q4 and S are local minima. While in Al-
gorithm 2, X and Y may not be local maxima. Is it pos-
sible to find a lattice for quasi-submodular maximization,
where the endpoint sets are local maxima? We give an ex-
ample to show that such a lattice may not exist. Suppose
N = {1,2}, F(0) = (N) = L and F({1}) = F({2}) =
1.5. It is easy to check that F' is submodular, thus quasi-
submodular. The set of local maxima is {{1}, {2}}. There is
no local maximum which contains or is contained by all the
other local maxima, since {1} and {2} are not comparable
under the set inclusion relation.

As aforementioned, unconstrained quasi-submodular
function maximization is NP-hard. While for unconstrained
minimization, whether there exists a polynomial time algo-
rithm or not is open now.

Experimental Results

In this section, we experimentally verify the effectiveness
and efficiency of our proposed algorithms. We implement
our algorithms using the SFO toolbox (Krause 2010) and
Matlab. All experiments are run on a single core Intel 15 2.8
GHz CPU with 4GB RAM.
We list several widely used quasi-submodular functions
and the settings of our experiments as the following:
o Iwata’s function F(X) = |X||N \ X| — > (5i —2n)
ieX
(Fujishige and Isotani 2011). The ground set cardinality
is set to be n = 5000.

e The COM (concave over modular) function F'(X)
Vw1 (X) +wa(N \ X), where wy and ws are randomly
generated in [0, 1]™. This function is applied in speech
corpora selection (Iyer, Jegelka, and Bilmes 2013). The
ground set cardinality is set to be n = 5000.

e The half-products function F'(X) = > a(i)b(j) —
1,jEX,i<]

¢(X), where a,b, c are modular functions, and «a,b are

non-negative. This function is employed in formulations

of many scheduling problems and energy models (Boros

and Hammer 2002). Since F' is quasi-supermodular, we

1195

minimize F' through equivalently maximizing the quasi-
submodular function —F, i.e., min F = —max (—F). n
is set to be 100.

e The linearly perturbed functions. We consider the per-
turbed facility location function F(X) = L(M,X) +
o(X), where L(M, X) is the facility location function.
M is an x d positive matrix. o is a n-dimensional modu-
lar function which denotes the perturbing noise of facility.
We set n = 100, d = 400, and randomly generate M in
[0.5, 1]"*4, the perturbing noise & in [—0.01,0.01]™.

e The determinant function F(X) = det(Kx), where K
is a real n X n positive definite matrix indexed by the
elements of IV, and K'x = [K;;|; jcx is the restriction of
K to the indices of X. This function is used to represent
the sampling probability of determinantal point processes
(Kulesza and Taskar 2012). We set n. = 100.

e The multiplicatively separable function F(X)
I1%_, F;(X;). One example is the Cobb-Douglas produc-
tion function F(X) = TI™ ,w(#)*, where w > 0 and
a; > 0. This function is applied in economic fields (Top-
kis 1998). We set n = 2000.

We are concerned with the approximation ratio of an op-
timization algorithm. We compare the approximation ratio
and running time of UQSFMax with MMax (Iyer, Jegelka,
and Bilmes 2013). For MMax, we consider the follow-
ing variants: random permutation (RP), randomized local
search (RLS), and randomized bi-directional greedy (RG).
For UQSFMax, we use it as the preprocessing steps of RP,
RLS and RG, and denote the corresponding combined meth-
ods as URP, URLS, and URG.

Table 1: Average lattice reduction rates.

Algorithm UQSFMax | UQSFMin
Iwata’s function 99.9% 99.9%
COM function 99.5% 100.0%
half-products function 51.2% 48.8%
linearly perturbed function 99.3% 99.8%
determinant function 87.0% 72.6%
Multi. separable function 100.0% 100.0%

Table 2 presents the approximation ratios while Table 3
shows the running time. According to the comparison re-
sults, we find that using our UQSFMax as the preprocessing
steps of other approximation methods can reach comparable
or better approximation performance while improve the effi-
ciency, since the UQSFMax can efficiently reduce the search
spaces of other approximation algorithms, and the reduced
lattices definitely contain all the local and global optima as
shown in the previous theoretical analysis.

Note that for non-submodular functions (determinant
function and multiplicatively separable function), at present
we have no efficient method to get approximate optima. So
we cannot calculate the approximation ratios and we just
record the average lattice reduction rates. We also record the
rates of other functions for completeness.

Table 2: Approximation ratios of different algorithms and functions.

Algorithm RP | URP || RLS | URLS || RG | URG

Iwata’s function 094 | 1.00 || 0.99 | 1.00 || 0.98 | 1.00
COM function 0.99 | 1.00 || 0.99 | 1.00 || 0.99 | 1.00
half-products function 0.96 | 097 || 095 | 0.94 0.96 | 0.99
linearly perturbed function | 0.99 | 1.00 || 0.99 | 1.00 0.99 | 1.00

Table 3: Running time (seconds) of different algorithms and functions.

Algorithm RP | URP || RLS | URLS RG URG

Iwata’s function 96.18 | 2.42 || 240.62 | 247 19430 | 2.41
COM function 43.85 | 7.01 || 19452 | 6.91 366.43 | 7.16
half-products function 035 | 0.22 0.98 0.52 9.96 4.59
linearly perturbed function | 1.37 | 0.06 3.12 0.06 15.92 | 0.06

The average lattice reduction rates are shown in Table 1.
This result also matches the running time. For example, the
average lattice reduction rate for half-products function is
51.2%, and the running time of URG is about a half of the
running time of RG. For minimization, we have similar lat-
tice reduction results, which are also presented in Table 1.

Related Work

In this section, we introduce some related work of quasi-
submodularity.

Quasi-submodularity stems from economic fields. Mil-
grom and Shannon (Milgrom and Shannon 1994) first pro-
pose the definition of quasi-supermodularity. They find that
the maximizer of a quasi-supermodular function is mono-
tone as the parameter changes. In combinatorial optimiza-
tion, for quasi-submodular functions, this property means
the set of minimizers has a nested structure, which is the
foundation of the proposed UQSFMin algorithm.

Another related direction is discrete quasi-convexity
(Murota 2003; Murota and Shioura 2003), which departs
further from combinatorial optimization. In this paper, we
consider set functions, i.e., functions defined on {0,1}".
While in (Murota and Shioura 2003), quasi L-convex func-
tion, which is defined on Z", is proposed.

In (Murota and Shioura 2003), quasi L-convex function
is a kind of integer-valued function. When we restrict its do-
main from Z" to {0, 1}", quasi L-convex function reduces to
quasi-submodular function. Meanwhile, their results based
on Z™ domain extension reduces to trivial cases in com-
binatorial optimization. Hence, we view quasi L-convexity
(Murota and Shioura 2003) as a generalization of quasi-
submodularity based on domain extension, i.e., extending
the domain from {0, 1}"™ to Z™.

Unlike submodularity, quasi-submodularity is not well-
known. Nonetheless, there are several applications related
to quasi-submodularity scattered in different fields.

In rent seeking game, every contestant tends to maximize
his probability of winning for a rent by adjusting his bidding.

1196

The payoff function of each contestant is quasi-submodular
on his bidding and the total bidding of all the contestants.
Rent seeking game is aggregative quasi-submodular game,
where each player’s payoff function is quasi-submodular.
We refer readers to (Schipper 2004) for more details and
examples of aggregative quasi-submodular games.

In minimum cut problems with parametric arc capacities,
submodularity implies nested structural properties (Granot
et al. 2012). While quasi-submodularity also leads to the
same properties. But how to employ the properties to find
an efficient max flow update algorithm for quasi-submodular
functions is open at present (Granot et al. 2012).

Conclusions

In this paper, we go beyond submodularity, and focus on
a universal generalization of submodularity called quasi-
submodularity. We propose two effective and efficient al-
gorithms for unconstrained quasi-submodular function opti-
mization. The theoretical analyses and experimental results
demonstrate that although quasi-submodularity is a weaker
property than submodularity, it has some good properties in
optimization, which lead to lattice reduction while enable us
to keep local and global optima in reduced lattices.

In our future work, we would like to make our algorithms
exact for quasi-submodular function minimization and ap-
proximate for quasi-submodular function maximization if it
is possible, and try to incorporate the constrained optimiza-
tion into our framework.

Acknowledgments

This work was supported partially by the National Basic Re-
search Program of China (No. 2013CB329401), the National
Natural Science Foundation of China (No. 61272248), the
Science and Technology Commission of Shanghai Munici-
pality (No. 13511500200), and the European Union Seventh
Framework Program (No. 247619).

Asterisk indicates the corresponding author.

References

Boros, E., and Hammer, P. L. 2002. Pseudo-boolean opti-
mization. Discrete applied mathematics 123(1):155-225.

Boyd, S. P,, and Vandenberghe, L. 2004. Convex optimiza-
tion. Cambridge university press.

Buchbinder, N.; Feldman, M.; Naor, J.; and Schwartz, R.
2012. A tight linear time (1/2)-approximation for uncon-
strained submodular maximization. In IEEE Annual Sympo-
sium on Foundations of Computer Science, 649—658.

Das, A., and Kempe, D. 2011. Submodular meets spectral:
Greedy algorithms for subset selection, sparse approxima-
tion and dictionary selection. In International Conference
on Machine Learning, 1057-1064.

Edmonds, J. 2003. Submodular functions, matroids, and
certain polyhedra. In Combinatorial Optimization-Eureka,
You Shrink! Springer. 11-26.

Feige, U.; Mirrokni, V. S.; and Vondrak, J. 2011. Maximiz-
ing non-monotone submodular functions. SIAM Journal on
Computing 40(4):1133-1153.

Feige, U. 2009. On maximizing welfare when utility
functions are subadditive. SIAM Journal on Computing
39(1):122-142.

Fujishige, S., and Isotani, S. 2011. A submodular function
minimization algorithm based on the minimum-norm base.
Pacific Journal of Optimization 7(1):3-17.

Fujishige, S. 2005. Submodular functions and optimization,
volume 58. Elsevier.

Golovin, D., and Krause, A. 2011. Adaptive submodular-
ity: Theory and applications in active learning and stochas-
tic optimization. Journal of Artificial Intelligence Research
42(1):427-486.

Granot, F.; McCormick, S. T.; Queyranne, M.; and Tardella,
F. 2012. Structural and algorithmic properties for parametric
minimum cuts. Mathematical programming 135(1-2):337—-
367.

Iyer, R.; Jegelka, S.; and Bilmes, J. 2013. Fast
semidifferential-based submodular function optimization. In
International Conference on Machine Learning, 855—-863.

Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-optimal
sensor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. The Journal of Machine
Learning Research 9:235-284.

Krause, A. 2010. Sfo: A toolbox for submodular function
optimization. The Journal of Machine Learning Research
11:1141-1144.

Kulesza, A., and Taskar, B. 2012. Determinantal point pro-
cesses for machine learning. Foundations and Trends in Ma-
chine Learning 5(2-3):123-286.

Leininger, W. 2006. Fending off one means fending off
all: evolutionary stability in quasi-submodular aggregative
games. Economic Theory 29(3):713-719.

Liu, M.; Tuzel, O.; Ramalingam, S.; and Chellappa, R. 2011.
Entropy rate superpixel segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, 2097-2104.

1197

Lovasz, L. 1983. Submodular functions and convexity. In
Mathematical Programming The State of the Art. Springer.
235-257.

Milgrom, P., and Shannon, C. 1994. Monotone comparative
statics. Econometrica: Journal of the Econometric Society
157-180.

Murota, K., and Shioura, A. 2003. Quasi m-convex and I-
convex functions - quasiconvexity in discrete optimization.
Discrete Applied Mathematics 131(2):467-494.

Murota, K. 2003. Discrete convex analysis, volume 10.
SIAM.

Orlin, J. B. 2009. A faster strongly polynomial time algo-
rithm for submodular function minimization. Mathematical
Programming 118(2):237-251.

Schipper, B. C. 2004. Submodularity and the evolution of

walrasian behavior. International Journal of Game Theory
32(4):471-4717.

Singh, A. P.; Guillory, A.; and Bilmes, J. 2012. On bisub-
modular maximization. In International Conference on Ar-
tificial Intelligence and Statistics, 1055—-1063.

Topkis, D. M. 1998. Supermodularity and complementarity.
Princeton University Press.

Vondrék, J. 2008. Optimal approximation for the submod-
ular welfare problem in the value oracle model. In ACM
Symposium on Theory of Computing, 67-74. ACM.

