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Abstract

Approximating a matrix by a small subset of its columns
is a known problem in numerical linear algebra. Algo-
rithms that address this problem have been used in ar-
eas which include, among others, sparse approximation,
unsupervised feature selection, data mining, and knowl-
edge representation. Such algorithms were investigated
since the 1960’s, with recent results that use random-
ization. The problem is believed to be NP-Hard, and
to the best of our knowledge there are no previously
published algorithms aimed at computing optimal solu-
tions. We show how to model the problem as a graph
search, and propose a heuristic based on eigenvalues of
related matrices. Applying the A∗ search strategy with
this heuristic is guaranteed to find the optimal solution.
Experimental results on common datasets show that the
proposed algorithm can effectively select columns from
moderate size matrices, typically improving by orders
of magnitude the run time of exhaustive search.

1 Introduction
Let Y be an m × n data matrix. Consider the problem of
linearly estimating Y from k of its columns:

Y ≈ SA (1)

The matrix S = (ys1 , . . . , ysk) is formed by the selected
columns, and A is the coefficients matrix. Finding S in (1)
is known as the “Column Subset Selection Problem” (CSSP).
In Frobenius norm the approximation error is:

E(S) = min
A
‖Y − SA‖2F (2)

Some previous studies of the CSSP with the Frobenius
norm include (Cotter et al. 2005; Frieze, Kannan, and Vem-
pala 2004; Dasgupta et al. 2007; Deshpande et al. 2006;
Deshpande and Rademacher 2010; Boutsidis, Mahoney,
and Drineas 2009; Guruswami and Sinop 2012; Çivril and
Magdon-Ismail 2012). Obtaining approximations in other
norms, such as the spectral norm or the l1 norm is consid-
ered to be harder. See, e.g. (Gu and Eisenstat 1996; Tropp
2004). Column subset selection gives a sparse approxima-
tion to the data matrix, and has found applications in many
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areas. These include the computation of stable and rank re-
vealing QR factorizations (e.g. (Golub and Van-Loan 1996;
Gu and Eisenstat 1996; Boutsidis, Mahoney, and Drineas
2009)), unsupervised feature selection (e.g. (Drineas, Lewis,
and Paschou 2010; Maung and Schweitzer 2013), and data
mining and knowledge representation (e.g. (Kumar, Mohri,
and Talwalkar 2012; Drineas, Lewis, and Paschou 2010)).

Recent studies suggest that the CSSP is most likely NP-
hard (Çivril and Magdon-Ismail 2009), and that the optimal
solution is closely related to the dominant eigenvectors of
Y Y T . Let S∗k denote the best selection of k columns for
minimizing the error in (2), and let E∗k denote the error of
the best approximation of Y in terms of a rank-k matrix.
Then the following inequalities hold:

E∗k ≤ E(S∗k) ≤ (k + 1)E∗k (3)

CalculatingE∗k is easy, since the best rank-k matrix has the k
dominant eigenvectors of Y Y T as its columns. In particular:

E∗k =

m∑
t=k+1

λt(Y Y
T ) = Trace(Y Y T )−

k∑
t=1

λt(Y Y
T )

where λt(Y Y T ) is the t largest eigenvalue of Y Y T . This
fact, and the left-hand side inequality in (3) follow from the
Courant Fischer theorem (Golub and Van-Loan 1996). The
right-hand side inequality is a recent result (Deshpande and
Rademacher 2010) and holds only in the Frobenius norm.

Our main result is anA∗ search algorithm that uses a gen-
eralized form of the inequalities in (3) to compute heuris-
tic estimates. The search algorithm operates on a directed
graph, where nodes correspond to column subsets. There is
a directed edge from node n1 to node n2 if n2 can be created
by adding a single column to n1. We generalize the inequali-
ties in (3) to the case where some columns have already been
selected, so that the inequalities can be applied in intermedi-
ate nodes. The left-hand side inequality enables computing
a non-decreasing lower bound on the error of the optimal se-
lection, which we use as the heuristic. The right-hand side is
used to prune nodes that cannot lead to an optimal solution.

A direct implementation of the above idea requires a huge
number of eigenvalue calculations, which makes the algo-
rithm impractical. We are able to exploit a special struc-
ture of the relevant matrices that enables a fast calculation
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of these eigenvalues. This gives an algorithm that can ef-
fectively select a small number of columns even from very
large matrices. Running on a standard desktop our algorithm
can select several columns from very large matrices taken
from standard machine learning depositories. For example,
selecting the best 4 columns from the 29,261 columns of the
techtc01 dataset (Gabrilovich and Markovitch 2004) took
about one minute.

To put things in perspective, current state-of-the-art algo-
rithms for the CSSP, e.g. (Boutsidis, Mahoney, and Drineas
2009), take significantly less time to select hundreds of fea-
tures from very large datasets. However, the selection is typi-
cally non-optimal. (In fact, with non-optimal algorithms one
has no way of telling whether or not the result is optimal.)
There is a well known optimal algorithm, called Leaps and
Bounds (Furnival and Wilson 1974), for the related problem
of selecting columns for approximating a single vector. That
algorithm is based on an entirely different approach, and
can handle matrices of no more than 30-40 columns (Hastie,
Tibshirani, and Friedman 2009). By contrast, our algorithm
which searches the same subsets but for a different goal, can
handle much larger matrices, although it can effectively se-
lect only a small number of columns.

Attempting to solve the CSSP by exhaustive search re-
quires evaluating

(
n
k

)
subsets. For example, with n=100,

k=5 there are roughly 7.5·107 subsets to evaluate, and
with n=500,k=5 there are roughly 2.5·1011 subsets. As an-
other example, if exhaustive search is attempted to select 4
columns from the techtc01 dataset, we estimate the run time
to be 30 million years. Our algorithm computes the solution
in about a minute.

Statement of our main result
We describe a column subset selection algorithm that is opti-
mal in the Frobenius norm. Our algorithm is typically much
faster than exhaustive search (and, of course, has the same
accuracy). It is more accurate than the current state-of-the-
art algorithms, although it runs significantly slower. The
main idea is to use spectral lower bounds on the optimal
result as heuristics for A∗ search, and spectral upper bounds
on the optimal result for pruning.

2 Column subset selection by A∗

The search algorithm operates on a directed graph, where
nodes correspond to column subsets. There is a directed
edge from n1 to n2 if n2 can be created by adding a single
column to n1. An example of the search graph with n=4,k=2
is shown in Figure 1. Observe that the graph has no directed
cycles. We proceed to define the values for d, f, g, h which
in our case are similar, but not identical, to the standard treat-
ment of A∗ in the literature (e.g (Russell and Norvig 2010)).
Suppose ki columns are selected at node ni. Define:

d , Smallest error of estimating Y with k columns.

gi , Error of estimating Y using the ki columns in ni.

fi , Smallest error of estimating Y using the ki columns in
ni and additional k − ki “best possible” vectors.

hi , gi − fi.

Figure 1: the subsets graph for n=4, k=2

0. Put the root node into F .
1. While F is nonempty and no solution found:

1.1 Pick ni with the smallest fi from F .
1.2 If ni has k columns return it as the solution.
1.3 Otherwise:

1.3.1 Add ni to C.
1.3.2 Examine all children nj of ni.

1.3.2.1 If nj is in C or F do nothing.
1.3.2.2 Otherwise if fj > P put nj in C.
1.3.2.3 Otherwise put nj in F .

Figure 2: the A∗ algorithm for optimal subset selection

The following inequalities clearly holds for all ni: fi ≤ gi,
d ≤ gi. Also, if ni is on the path to the optimal solution
then fi ≤ d. Observe the following differences between the
“textbook” definition of f, g, h and ours:
1. The “textbook” definition has gi as the distance of ni from
the stating point so that it is monotonically increasing along
any path. From our definition it is clear that gi is monotoni-
cally decreasing along any path.
2. The relationship fi = gi − hi is different from the “text-
book” relationship of fi = gi + hi.
3. The values fi, gi, hi depend only on the node ni and not
on the path traversed to reach it.

The A∗ algorithm is shown in Figure 2. It keeps a fringe
list F of nodes that need to be examined, and a list C
of closed nodes, containing nodes that need not be visited
again. It also uses a pruning value P , known to be an upper
bound on the error of the optimal solution.

Theorem 1: Figure 2 algorithm finds the optimal solution.
Proof: The proof is almost identical to the “textbook” proof
for the optimality of A∗ on search trees. As before let ki be
the selection size at node ni.

Claim 1. fi is monotonically increasing along any path.
Proof: if nj is a child of ni then fj is computed from the ki
columns of ni, one more column, and k-ki-1 “best possible”
vectors. This cannot be better than fi which is computed
from the same ki vectors and k-ki “best possible” vectors.

Claim 2. If ki=k then gi=fi. (Immediate from definition.)

Claim 3. Let n∗ be an optimal solution, and let nj be a non
optimal solution. Then any node nb on the path from the root
to n∗ satisfies: fb < fj .
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Proof: Since nj is not optimal we have: gj > g∗ so that: fj =
gj > g∗ = f∗ ≥ fb. The equalities follow from Claim 2, and
the right-hand inequality follows from Claim 1.

Claim 4. n∗ is selected from the fringe before nj .
Proof: Suppose the claim is false. Let nb be a node on the
path to n∗ that is in the fringe when nj is selected. But from
Claim 3 nb should be selected before nj , which leads to a
contradiction. This completes the proof of Theorem 1.

3 Calculating heuristic values
In this section we derive formulas for calculating the val-
ues of d, fi, gi, hi, the heuristic values of node ni, that were
defined in Section 2.

Recall that our goal is to approximate the matrix Y of size
m× n by a linear combination of k of its columns. The best
solution has the following error:

d , E(S∗k) = min
S,A
‖Y − SA‖2F

where S consists of k columns from Y . Consider the node
ni. Let ki be the number of columns selected at ni, and let
Si be the matrix formed by these columns. Let ki = k − ki
be the number of columns that still need to be selected, and
let Si denote the matrix formed by these columns. At node
ni our goal is to select the best Si in the sense of minimizing
the following error:

Ei(Si) , min
Ai,Ai

‖Y − SiAi − SiAi‖2F

We proceed to show that this can be viewed as a standard
subset selection from a reduced matrix that we call Yi.
Theorem 2: Let Qi be an orthonormal basis to Si. Define:

Yi , Y −QiQ
T
i Y = (I −QiQ

T
i )Y (4)

Recall that Si is the selection of additional ki columns, and
let Qi be an orthonormal basis to Si. Let S̃i be the selection
of the columns in Yi at the same locations as the Si columns
in Y : S̃i , (I −QiQ

T
i )Si. Let Ẽ be the error of estimating

Yi from S̃i. Then Ei(Si) = Ẽ.
Proof: Observe that Ei(Si) can be written as:

Ei(Si) = min
Wi,W i

‖Y −QiWi −QiW i‖2F (5)

where the matrix (Qi, Qi) is an orthonormal basis for
(Si, Si), and Qi is orthogonal to Qi. Solving for Wi that
minimizes (5) gives: Wi = QT

i Y . Substituting back in (5):

Ei(Si) = min
W i

‖Yi −QiW i‖2F

where Qi is orthogonal to Qi, and spans (I −QiQ
T
i )S.

By definition Ẽ , min
Ãi

‖Yi − S̃iÃi‖ = min
W̃ i

‖Yi − Q̃iW̃i‖

where Q̃i is an orthonormal basis to S̃i = (I − QiQ
T
i )Si.

Therefore we can always take Qi = Q̃i and the expres-
sions for Ẽ and Ei(Si) become identical. This completes
the proof of Theorem 2.

Theorem 2 allows us to generalize the inequalities in (3):

Corollary: At node ni let S
∗
i denote the best selection of

ki columns after the ki columns of Si have already been se-
lected, and letE∗

ki
denote the error of the best approximation

of Yi in terms of a rank-ki matrix. Then:

E∗
ki
≤ Ei(S

∗
i ) ≤ (ki + 1)E∗

ki
(6)

E∗
ki

=
m∑

t=ki+1

λt(YiY
T
i ) = Trace(YiY

T
i )−

ki∑
t=1

λt(YiY
T
i )

Proof: Apply the inequalities in 3 to Yi.
The corollary shows that fi = E∗

ki
is admissible. The fol-

lowing theorem summarizes the computational formulas.
Theorem 3: Searching for k columns, at node ni where ki
columns of Si have already been selected, set ki = k − ki.
Let Qi to be an orthonormal basis of Si and define: Bi =
YiY

T
i , where Yi is defined in (4). Let λ1 ≥ . . . ≥ λm be

the eigenvalues of Bi. Then the values of fi, gi, hi defined
in Section 2 can be calculated by:

fi =
m∑

t=ki+1

λt, hi =

ki∑
t=1

λt,

gi =
m∑
t=1

λt = Trace(Bi) = fi + hi

From the formulas in Theorem 3 it is clear that only the top
ki eigenvalues of Bi need to be calculated in addition to
its trace. However, this has to be calculated for each node,
which is not practical. In the next section we show that there
is a matrix related to Bi with a special structure that enables
fast calculations of these eigenvalues.

4 Efficient calculation of heuristic values
In this section we discuss fast calculations of the eigenval-
ues that are needed to calculate the heuristics. We observe
that the heuristics are needed only after line 1.3.2.2 of the
algorithm in Figure 2. At that point the parent of the node
is known. We show how to calculate the children eigenval-
ues efficiently by performing a more expensive eigenvalue
decomposition for the parent, at line 1.3.1 of the algorithm.
Furthermore, these more expensive calculations can be re-
duced by computing an expensive eigenvalue decomposition
once, at line 0. To summarize, we discuss three different
types of eigenvalue decompositions. The first is calculated
once, at the root, the second is calculated for each selected
node, and the third is calculated for each child.

4.1 Eigenvalue decomposition at the root
At the root we compute the eigenvalues and the eigenvec-
tors of the matrixB = Y Y T . The eigenvectors factorization
gives:

B = V DV T

Here V has orthonormal columns (the eigenvectors), and D
is diagonal. We note that V and D can also be calculated
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from the SVD of Y , and there are efficient algorithms for
computing it. The one we have used is described in (Halko,
Martinsson, and Tropp 2011). Let r be the numeric rank of
Y then r ≤ min{m,n}. It is enough to keep V as an m× r
matrix, and retain only the r nonzero eigenvalues.

4.2 Special structure
Instead of working with the matrix Bi of Theorem 3 we de-
scribe a related matrix which makes the calculations easier.
Lemma: Define the following r × r matrix:

Hi = D − ZiZ
T
i = D −

r∑
j=1

zjz
T
j (7)

where Zi = D1/2V TQi and zj = D1/2V T qj . Then the
matrices Bi and Hi have the same eigenvalues (and traces).
Proof: Using the eigenvalue decomposition of B we have:

Bi = YiY
T
i = (I −QiQ

T
i )B(I −QiQ

T
i ) = GiDG

T
i

where Gi = (I − QiQ
T
i )V . As we show later Hi can be

written as: Hi = D1/2GT
i GiD

1/2. From this it follows that
bothHi andBi can be viewed as the product of the same two
matrices (in different order) which implies that they have
the same eigenvalues. To complete the proof it remains to
show that the two expressions for Hi are identical. Direct
calculation gives:

GT
i Gi = V T (I −QiQ

T
i )V = I − V TQiQ

T
i V

D1/2GT
i GiD

1/2 = D −D1/2V TQiQ
T
i V D

1/2

= D − ZiZ
T
i

This completes the proof of the lemma. The special structure
of the matrixHi, which can be expressed as r rank-1 updates
to a diagonal matrix, allows for specialized routines for com-
puting its eigenvectors and eigenvalues. See, e.g (Bini and
Robol 2014; Melman 1998; Golub 1973).

4.3 Eigenvalue decomposition for parent nodes
This eigenvalue and eigenvector calculation is performed at
line 1.3.1 of the algorithm. As explained later, we need both
the eigenvectors and the eigenvalues of the matrix Hi de-
fined in (7). Any of the methods that exploit the special
structure can be used.

4.4 Computing eigenvalues for children nodes
The calculation of the heuristic at line 1.3.2.2 of the al-
gorithm is the most time consuming part of the algorithm.
We show how to compute these values efficiently from the
eigenvalue decomposition of the parent.
Theorem 4: Let np be a parent node encountered at line
1.3.1 of the algorithm with selection of size kp. Let Qp be
an orthonormal matrix that spans these kp vectors. Let Hp

be the matrix computed according to (7). Let Tracep be the
trace of Hp. Suppose a child node ny is created by adding
Column y to the selection of np. Then the following proce-
dure computes the heuristic values at ny without explicitly
computing the associated matrix Hy of Equation (7).

1. q̃y = QpQ
T
p y, qy =

q̃y
|q̃y| .

2. zy = D1/2V T qy .

3. gy = Trace(Hy) = Tracep − |zy|2.
4. The top k−kp−1 eigenvalues ofHy are computed using

a specialized method.
5 Compute hy as the sum of the eigenvalues computed at 4.
6 fy = gy − hy .

Proof: From (7) it follows that:

Hy = Hp − zyzTy , zy = D1/2V T qy (8)

The formula in 3. follows from the linearity of the trace,
applied to (8). This gives: Trace(Hy) = Trace(Hp) −
Trace(zyz

T
y ), and clearly Trace(zyz

T
y ) = |zy|2. The com-

putation of the top eigenvalues in 4. exploits the special
structure shown in (8). Our particular implementation uses
Gragg’s method (Melman 1998). This is an iterative proce-
dure with cubic convergence speed.

5 Pruning
We wish to point out the difference between the left-hand
and the right-hand side inequalities in (6) (and in (3)). The
left-hand side is a statement about any subsets Si. It must
satisfy: E∗

ki
≤ Ei(Si). By contrast, the right-hand side in-

equality implies existence. There exists a subset Si which
satisfies Ei(Si) ≤ (ki + 1)E∗

ki
.

Since our algorithm is guaranteed to find the optimal so-
lution we can use the right-hand side inequality for pruning.
Observe that the inequality can be written as:

d ≤ Ei(S
∗
i ) ≤ (ki + 1)fi

where d is the error of the optimal solution. This holds for
all nodes ni, and we can use it as follows. Set

P = min
i
(ki + 1)fi

where at any time i ranges over all the previously computed
nodes. Such P must satisfy d ≤ P , and any node nj with
fj > P can be pruned.

Observe that this pruning process cannot reduce the num-
ber of evaluated nodes. The algorithm evaluates a node ni
with the smallest value of fi in the fringe list. If such node
could have been pruned with the condition fi > P , all the
nodes in the fringe can also be pruned, and the algorithm
cannot return any solution. However, the pruning can reduce
the size of the fringe. This reduces the memory requirement.
Depending on the data structure used for implementing the
fringe, The pruning can also produce some savings in run
time, since the search for a node (Step 1.3.2.1 of the algo-
rithm) is faster when the fringe is smaller.

6 Experimental results
6.1 First experiment
We have tested the proposed algorithm on standard machine
learning datasets. These were obtained from the UCI Repos-
itory, except for the techtc01 that can be obtained as ex-
plained in (Gabrilovich and Markovitch 2004). The results
are shown in Figure 3.
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k
num of
children
nodes

num of
parent
nodes

num parent
/
(
n
k

) runtime exhaustive
/ runtime

error
TS/A∗

error
GKS/A∗

memory
without P
/ with P

wdbc dataset (m = 569, n = 31)
1 31 2 6.5·10−2 0.001 3.333 1 1 31.00
5 1037 40 2.4·10−4 0.002 4492.332 1 1 20.81

10 25386 1168 2.6·10−5 0.036 1.0 ·105 1 1 4.11
15 556991 32765 1.1·10−4 5.762 4374.933 1 1 1.53
16 1048470 65530 2.2·10−4 15.876 1587.679 1 1 2.29

sat dataset (m = 2000, n = 37)
1 37 2 5.4·10−2 0.001 3.000 1.039 1.072 9.25
2 532 20 3.0·10−2 0.002 42.167 1.068 1 12.85
3 2676 108 1.4·10−2 0.009 113.171 1.140 1.027 8.43
4 17718 872 1.3·10−2 0.066 167.055 1.137 1.158 9.76
5 37464 1928 4.4·10−3 0.158 174.104 1.153 1.244 3.96
6 297806 19003 8.2·10−3 1.678 87.604 1.137 1.358 4.00
7 1347579 105556 1.0·10−2 18.850 34.542 1.062 1.114 3.47

SPECTF dataset (m = 187, n = 45)
1 45 2 4.4·10−2 0.001 4.500 1 1.070 11.25
2 1035 47 4.7·10−2 0.001 17.667 1.029 1.028 21.09
3 11272 499 3.5·10−2 0.008 35.310 1.066 1.055 11.93
4 100848 5794 3.9·10−2 0.094 36.603 1.059 1.087 10.32
5 619332 40535 3.3·10−2 0.888 37.352 1.052 1.059 14.91
6 2298695 187582 2.3·10−2 20.444 20.717 1.092 1.039 8.44

movement libras dataset (m = 360, n = 91)
1 91 2 2.2·10−2 0.001 2.250 1 1 91.00
2 445 6 1.5·10−3 0.004 39.133 1 1.019 4.55
3 8625 188 1.5·10−3 0.016 379.283 1.002 1.015 25.50
4 182366 3977 1.5·10−3 0.351 195.656 1.005 1.042 24.18
5 1345415 23963 5.2·10−4 2.616 457.191 1.034 1.153 10.80

madelon dataset (m = 2000, n = 500)
1 500 2 4.0·10−3 0.011 40.119 1.401 2.798 166.67
2 12675 27 2.2·10−4 0.508 215.373 1.976 6.247 24.80
3 71309 148 7.1·10−6 2.950 6150.857 1.441 3.399 11.09
4 234635 485 1.9·10−7 9.802 2.3 ·105 1.574 1.308 11.21
5 286725 588 2.3·10−9 12.351 1.8 ·107 1.181 1.310 14.03

isolet5 dataset (m = 1559, n = 618)
1 618 2 3.2·10−3 0.014 34.400 1 1 56.18
2 4916 9 4.7·10−5 0.244 622.926 1.051 1.122 7.77
3 76173 131 3.3·10−6 4.234 7360.414 1.206 1.177 30.77

CNAE-9 dataset (m = 1080, n = 857, number of nonzero columns is 695)
1 695 2 2.3·10−3 0.020 34.500 1 1 695.00
2 2082 4 1.1·10−5 0.172 1739.796 1 1 2.97
3 7613 12 1.1·10−7 0.789 1.1 ·105 1 1 3.65
4 23456 35 1.6·10−9 2.615 7.0 ·106 1.018 1 3.64
5 136765 201 5.3·10−11 15.665 2.0 ·108 1.038 1.007 5.06

techtc01 dataset (m = 163, n = 29261, number of nonzero columns is 9238)
1 9238 2 6.8·10−5 0.007 2231.078 1 1 4618.50
2 27711 4 9.3·10−9 0.017 1.3 ·107 1 1 3.00
3 240017 27 6.5·10−12 0.070 3.0 ·1010 1 1 8.66
4 2823249 308 1.0·10−14 1.000 1.5 ·1013 1.035 1 41.62

Figure 3: Performance comparison on various datasets (see text)
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k
error

TS/A∗
error

GKS/A∗
1 1.000 1.000
3 1.102 1.204
5 1.129 1.164
7 1.133 1.126
9 1.125 1.125

11 1.125 1.125
13 8.860 1.157
15 8.368 1.125
16 8.122 1.125

Figure 4: Accuracy comparison on a 50× 50 Kahan matrix

Column 2 shows the number of children nodes evaluated
by the algorithm at Step 1.3.1, and not eliminated at Step
1.3.2.1. This is the number of heuristic values that needs to
be calculated. Column 3 shows the number of parent nodes
evaluated by the algorithm. These are the nodes that have
their children calculated. It is typically much smaller than
the number of children nodes.

Column 4 shows the ratio between Column 3 and
(
n
k

)
,

the number of nodes that need to be evaluated by exhaus-
tive search. Observe that this number is typically very small,
especially for the larger datasets.

Columns 5,6 show the run time. Column 5 gives the run
time in minutes, and Column 6 gives the ratio between run
time of an exhaustive search and Column 5. In most cases
the exhaustive search run time was not explicitly calculated.
We measured the exhaustive search run time for a small
value k1, and then extrapolated to the desired value of k.

This was done by multiplying the time taken for k1 by (nk)
( n
k1
)

.

Observe that our algorithm is typically much faster than ex-
haustive search by many orders of magnitude.

To evaluate the gain in accuracy over previously proposed
algorithms we compared the results with two other algo-
rithms. The first is the state-of-the-art Two-Stage algorithm
as described in (Boutsidis, Mahoney, and Drineas 2009).
The second is the classical algorithm of Golub Kelma and
Stewart, as described, for example, in (Golub and Van-Loan
1996). In the table we refer to these algorithm as the “TS”
and the “GKS”.

Column 7 shows the ratio between the error of the Two-
Stage algorithm and the error of our algorithm. Column 8
shows the ratio between the error of the GKS and the error
of our algorithm. Clearly, these ratios are at least 1, and in
most cases they are bigger than 1. In some cases, e.g. when
experimenting with the Madelon dataset, the reduction of the
error is very significant.

Column 9 shows the memory reduction obtained by the
pruning technique discussed in Section 5. The saving is
sometimes as small as a factor of 2, and sometimes as large
as a factor of 4600.

6.2 Second experiment
The results of the first experiment were performed on real
data that comes from real applications. While it clearly

shows the accuracy advantage of our algorithm when com-
pared to the TS and the GKS, there were many cases in
which the accuracy was identical. (These are indicated by
the value of 1 in columns 7,8.) We ran a second experi-
ment, computing column subset selection on a matrix that
is known to be a challenge for subset selection algorithms.
The matrix structure was proposed by Kahan (Kahan 1966),
and the results are shown in Figure 4. Observe that in most
cases our results are better by at least 10%.

7 Concluding remarks
This paper describes an optimal heuristic search algorithm
for column subset selection. It gives huge run-time improve-
ments over exhaustive search, but it is much slower than the
current state-of-the-art non-optimal algorithms.

Our algorithm should not be considered as a competitor
to previously proposed fast but non-optimal algorithms. For
example, to the best of our knowledge prior to our algorithm
there was no guaranteed way of selecting the best 4 columns
from a dataset such as the techtc01. In fact, even if an algo-
rithm selects, perhaps by luck, the best 4 columns (e.g., the
GKS), there is no current technique that can verify that these
are, indeed, the best. By contrast, our algorithm run time for
selecting these columns is about 1 minute, and the selection
is guaranteed to be optimal.

Thus, our algorithm solves a range of problems that were
previously computationally intractable. If one is interested
in selecting a small number of columns, running our algo-
rithm for a few minutes may not be much different than run-
ning a fast algorithm for under a second. However, our al-
gorithm should not be used when hundreds of columns are
needed.

With regard to practical applications, it appears that there
are situations where one may be interested in a selection of
a small number of features. An example is data mining and
knowledge representation, where one may be interested in
identifying a small number of features that ”cover” the entire
data. One can typically “understand” the result if it contains
a small number of features, but not if the number of features
is large.

A different situation where our algorithm may be used “in
practice” is in two-stage algorithms. In the first stage these
algorithms apply a fast method for selecting larger than nec-
essary subset of the columns. In the second stage, an ac-
curate algorithm is applied to select the desired number of
columns out of those selected in the first stage. Our algo-
rithm can be used for the second stage.

The work described here can be extended in several di-
rections. It may be interesting to identify other search tech-
niques that use admissible or consistent heuristics and apply
them with the heuristics developed here. It is also interesting
to try and identify other problems in numerical linear alge-
bra that can benefit from the optimality inherent in heuristic
combinatorial search.

8 Acknowledgments
The first author would like to thank the Japan Air Self-
Defence Force for supporting his studies.

1084



References
Bini, D. A., and Robol, L. 2014. Solving secular and poly-
nomial equations: A multiprecision algorithm. Journal of
Computational and Applied Mathematics 272:276–292.
Boutsidis, C.; Mahoney, M. W.; and Drineas, P. 2009. An
improved approximation algorithm for the column subset se-
lection problem. In Mathieu, C., ed., Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2009, New York, NY, USA, January 4-6, 2009,
968–977. SIAM.
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