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Abstract

We examine the quality of social choice mechanisms using a
utilitarian view, in which all of the agents have costs for each
of the possible alternatives. While these underlying costs de-
termine what the optimal alternative is, they may be unknown
to the social choice mechanism; instead the mechanism must
decide on a good alternative based only on the ordinal prefer-
ences of the agents which are induced by the underlying costs.
Due to its limited information, such a social choice mecha-
nism cannot simply select the alternative that minimizes the
total social cost (or minimizes some other objective function).
Thus, we seek to bound the distortion: the worst-case ratio
between the social cost of the alternative selected and the op-
timal alternative. Distortion measures how good a mecha-
nism is at approximating the alternative with minimum social
cost, while using only ordinal preference information. The
underlying costs can be arbitrary, implicit, and unknown; our
only assumption is that the agent costs form a metric space,
which is a natural assumption in many settings. We quan-
tify the distortion of many well-known social choice mech-
anisms. We show that for both total social cost and median
agent cost, many positional scoring rules have large distor-
tion, while on the other hand Copeland and similar mecha-
nisms perform optimally or near-optimally, always obtaining
a distortion of at most 5. We also give lower bounds on the
distortion that could be obtained by any deterministic social
choice mechanism, and extend our results on median agent
cost to more general objective functions.

1 Introduction
Social choice theory deals with aggregating agent prefer-
ences over a set of alternatives into a collective decision via
a social choice mechanism. The social choice mechanism
takes as input the preferences of agents, which are usually
total orderings over the set of alternatives, and typically out-
puts a single alternative as the winner. It is natural to now
ask about the quality of different social choice mechanisms;
to do this one needs to define what it means for a chosen
alternative to be “good” or to accurately represent the con-
sensus of the agent preferences. A popular way of achieving
this is to define criteria or axioms for social choice mech-
anisms, which guarantee that the alternatives selected by
these mechanisms satisfy desirable properties (see Related
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Work). Another common approach in fields like welfare
economics and algorithmic mechanism design, and which
we follow in this paper, is to use a utilitarian view (Boutilier
et al. 2012). Instead of assuming that agents only have ordi-
nal preferences over the alternatives, this approach assumes
that every agent has (possibly latent or implicit) utility or
cost values over the alternatives. These values are cardinal,
and represent how happy the agent is with each alternative.
The quality of an alternative can then be defined simply as
the sum (or some other objective function) of the utility re-
ceived by each agent for that alternative. Thus the best, or
optimal, alternative is simply the one that maximizes the to-
tal social welfare (or minimizes total cost), as measured by
the total utility received by the agents.

Utilitarian approach has recently received renewed atten-
tion in the study of social choice (Procaccia and Rosenschein
2006; Caragiannis and Procaccia 2011; Boutilier et al. 2012;
Branzei et al. 2013). Indeed, as argued in Boutilier et
al. (2012), although not all social choice problems are
amenable to the utilitarian approach (especially the ones
where it is unnatural to assume that agent utilities or costs
can be compared) there are many real-life settings which
fit the utilitarian view. For example, in recommender sys-
tems and many similar domains from mechanism design and
e-commerce, the computational agents typically use real-
valued rather than ordinal utilities (see Related Work and
Boutilier et al. (2012)).

If the social choice mechanism knew exactly what utilities
the agents receive from each alternative, then it could sim-
ply pick the alternative maximizing social welfare directly.
An important point here, however, is that while we assume
that some underlying utility structure exists, it is unreason-
able to assume that we (or even the agents themselves) know
exactly what it is. As discussed in Boutilier et al. (2012), it
is often difficult for agents to determine their exact cardinal
utilities, and most social choice mechanisms thus take only
the ordinal preference orderings of the agents as input, even
when latent utilities exist. Thus, a social choice function will
not simply output the alternative that maximizes global util-
ity, but instead may choose another alternative, since it only
has access to ordinal preferences. As a result, one can think
of a social choice function as an approximation algorithm
which attempts to choose the best possible alternative (max-
imize social welfare or minimize social cost), but only has
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Sum Median
Plurality 2m− 1 ∞

Borda 2m− 1 ∞
k-approval 2n− 1 ∞

Veto 2n− 1 ∞
Copeland 5 5

Uncovered Set 5 5

Lower Bound 3 5

Table 1: The worst-case distortion of various social choice
mechanisms for both the sum and the median objective func-
tions. All of the above bounds are provably tight, meaning
that we provide example instances where the social choice
function cannot achieve a better bound. The lower bounds
of 3 and 5 are for any deterministic social choice functions.

access to limited information (ordinal preferences instead of
cardinal utilities). To denote the approximation factor of a
social choice function, Procaccia and Rosenschein (2006)
introduced the term distortion which we will continue to use,
although we will define it in terms of social cost instead of
social welfare. Informally, the distortion of a social choice
function is the worst-case ratio of the social cost of the alter-
native selected by the social choice function over the cost of
the optimal alternative.

In this work, we are primarily interested in determining
the quality of outcomes chosen by social choice mecha-
nisms, as measured by their distortion. We prove bounds
on the distortion of many well-known social choice func-
tions for both the sum and median objective functions. Our
results show that while the distortion is high for some mech-
anisms, the distortion of many important social choice func-
tions is bounded by a small constant, assuming that the pref-
erences of the agents are spatial. Specifically, we assume
that the costs of agents for various alternatives form an ar-
bitrary metric space. Such metric costs have a very natu-
ral interpretation – in the context of voting, as described in
the classic Downsian proximity model (Merrill and Grof-
man 1999), we can think of the cost experienced by voter i
due to candidate j being elected as the distance between i
and j’s beliefs in some high-dimensional space, as the num-
ber of issues they disagree on, etc. Such spatial preferences
have been extensively studied (see Related Work), although
usually the metric space is assumed to be simple, e.g., Eu-
clidean with only one or two dimensions. In contrast, we
make no assumptions about the metric space, other than the
fact that it is a metric space. To see how general our metric
assumption is, note that, unlike many common assumptions
on spacial agent preferences, our metric assumption does not
restrict the set of possible ordinal preferences in any way
(see Proposition 1 and discussion before it).

1.1 Our Contributions
In this work, we bound the worst-case distortion of many
well-known social choice functions. In other words, we
show how closely social choice functions approximate the

optimal alternative when they are given only the ordinal
preference orderings, instead of the underlying metric costs
which generate these preferences.1 We consider two gen-
eral objective functions to quantify the quality of alterna-
tives, and give distortion results for both. The first is the sum
objective function which defines the social cost of an alter-
native as the sum of all agent costs for that alternative. This
function is very natural, and is the most common measure of
social cost. Our other objective function defines the quality
of an alternative as the median of agent costs for that alter-
native: this captures the objective that the best alternative is
the one in which the cost of the median voter is minimized,
instead of the average voter.

Most of our results are summarized in Table 1. First, we
consider how well any social choice function could do when
it only knows the ordinal preferences, but is supposed to ap-
proximate the social optimum. We show that no determinis-
tic social choice mechanism can have worst-case distortion
better than 3 (for the sum objective), or better than 5 (for
the median objective). With these lower bounds established,
we can nevertheless ask: do there exist social choice rules
which meet this lower bound? Are there rules which obtain
the minimum possible distortion?

We begin with the bad news: for common positional scor-
ing rules such as plurality, Borda, k-approval, and veto,
we prove that the worst case distortion can be high: either
2m − 1 or 2n − 1 where m is the number of alternatives
and n is the number of agents/voters. There is good news
as well, however. For the Copeland social choice rule, we
prove that the distortion is always at most 5. This means
that, although the Copeland social choice mechanism knows
nothing about the metric costs other than the ordinal pref-
erences induced by them, and cannot possibly find the true
optimal alternative, it nevertheless always selects an alter-
native whose quality is only a factor of 5 away from opti-
mal! Moreover, due to our lower bound, no deterministic
mechanism can do better than Copeland for the median ob-
jective, and no deterministic mechanism can do much better
than Copeland for the sum objective, because the distortion
lower bound for any deterministic mechanism is 3.

While this bound of 5 holds for both the sum and median
objectives, different techniques are required to prove it for
the two cases. In fact, this bound holds not just for Copeland,
but for similar voting rules as well, such as uncovered set
(Moulin 1986). Since Copeland does not perform as well as
the lower bound for the sum objective, we also analyze the
distortion of the ranked pairs mechanism. We show that it
performs even better than Copeland, but only when certain
conditions on the agent preference profiles are satisfied (see
Theorem 7).

In addition to the results in Table 1, we also analyze more
general objective functions. Specifically, instead of the me-
dian objective, which sets the quality of an alternative W
to be the cost to the median voter, we consider more gen-
eral percentile objectives, where the quality of an alternative
W is set to be the cost of the voter at the x’th percentile.

1This is assuming that agents submit their true ordinal prefer-
ences. We leave questions about non-truthful agents as future work.
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We show how the distortion of various mechanisms changes
with x, and establish that Copeland remains the mechanism
with the best possible distortion for most values of x.

1.2 Related Work
The focus of much of the existing literature in social choice
theory is the design and analysis of social choice func-
tions with respect to various normative criteria (See for
example (Faliszewski and Procaccia 2010; Bartholdi III,
Tovey, and Trick 1989; Conitzer and Sandholm 2002; Lang
and Xia 2009)). Results like Arrow’s impossibility theo-
rem and Gibbard-Satterthwaite theorem demonstrate non-
existence of social choice functions satisfying certain de-
sirable criteria, and additional assumptions must be made
in order to circumvent these results (e.g., (Moulin 1980;
Gans and Smart 1996; Myerson 1996)).

In this work, we instead adopt a utilitarian view of social
choice as described in the Introduction. Social choice with
utilitarian viewpoint has its advocates in welfare economics
(Roemer 1998; Ng 1997) and has recently received attention
from the AI community (Procaccia and Rosenschein 2006;
Caragiannis and Procaccia 2011; Boutilier et al. 2012). The
utilitarian approach has also been investigated in recom-
mender systems (Ghosh et al. 1999), information extraction
(Sigletos et al. 2005), etc. While assuming that agent util-
ities can be compared does not make sense for all settings
(Harsanyi 1976), it is nevertheless reasonable in many ap-
plications of interest: see Boutilier et al. (2012) for much
more discussion on this subject.

Distortion as a measure of performance of a social choice
function in utilitarian settings was introduced first in Pro-
caccia and Rosenschein (2006) and later used in Boutilier et
al. (2012). In both these works, the worst-case distortion of
social choice functions was shown to be unbounded or very
high. In our work, however, we show that considering agent
costs that form an unknown metric immediately greatly re-
duces the distortion of many mechanisms, from unbounded
to only a small constant. Caragiannis and Procaccia (2011)
use an analogous notion of distortion to analyze the worst-
case distortion of embeddings into voting rules: these em-
beddings are functions that take as input an agent’s utility
function and determine which alternative the agent should
select. Apart from the classic normative criteria, other pa-
pers have also used related interpretations of what makes a
good social choice function, such as distance rationalizabil-
ity (Elkind, Faliszewski, and Slinko 2009), rank approxima-
tion (Chakrabarty and Swamy 2014), and dynamic price of
anarchy (Branzei et al. 2013).

In our paper, we assume that agents have spatial prefer-
ences resulting from metric agent costs. Spatial preferences
and utility theory in the context of voting have a strong tra-
dition in social choice and political science (Enelow and
Hinich 1984; Merrill and Grofman 1999). Common as-
sumptions include single-peaked preferences (Moulin 1980;
Sui, Francois-Nienaber, and Boutilier 2013) and single-
crossing preferences (Saporiti 2009; Myerson 1996); often
preferences are assumed to be one-dimensional, while we
consider metrics with arbitrary dimension.

Finally, the concept of distortion is related to many other

notions of approximation, as it compares the optimal solu-
tion with the solution obtained given only limited informa-
tion. This is similar, for example, to the competitive ratio in
online algorithms, which is a measure of how an algorithm
performs with limited information (not knowing the future),
compared to how an all-knowing algorithm would perform
(Borodin and El-Yaniv 1998; Oren and Lucier 2014).

2 Preliminaries
Social Choice with Ordinal Preferences. Let N =
{1, 2, . . . , n} be the set of agents, and let A =
{A1, A2, . . . , Am} be the set of alternatives. Let S be the
set of all total orders on the set of alternatives A. We will
typically use i, j to refer to agents and W,X, Y, Z to refer
to alternatives. Every agent i ∈ N has a preference ranking
σi ∈ S; by X �i Y we will mean that X is preferred over
Y in ranking σi. We call the vector σ = (σ1, . . . , σn) ∈ Sn
a preference profile. We say that an alternative X pairwise
defeats Y if |{i ∈ N : X �i Y }| > n

2 .
Once we are given a preference profile, we want to aggre-

gate the preferences of the agents and select a single alterna-
tive as the winner. A social choice function f : Sn → A is
a mapping from a preference profile to an alternative. Some
well-known social choice functions which we consider in
this paper are as follows.

• Positional scoring rules. We are given a scoring vector
~s = (s1, s2, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm. If
an agent ranks an alternative in position l, then the alter-
native receives sl points. The total score s(X,σ) of an
alternative X for a preference profile σ is the total num-
ber of points that X receives. The positional scoring rule
is f(σ) = argmaxX∈A s(X,σ); that is, it selects the al-
ternative with the highest total score. Many well-known
voting rules can be thought of as positional scoring rules,
for example:

– Plurality: ~s = (1, 0, . . . , 0)

– Veto: ~s = (1, 1, . . . , 1, 0)

– Borda: ~s = (m− 1,m− 2, . . . , 1, 0)

– k-approval (1 < k < m): ~s = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0)

• Copeland: The score of an alternative X is |{Y ∈ A :
X pairwise defeats Y }|. The alternative with the highest
score, i.e., the alternative with the largest number of pair-
wise victories, is the winner.

• Ranked pairs: Construct a graphG in the following man-
ner. Let every alternative be a node inG. For every pair of
alternatives X,Y , let w(X,Y ) = |{i ∈ N : X �i Y }|.
Sort these w(X,Y ) values in non-increasing order and it-
erate over them. For eachw(X,Y ) value, add the directed
edge (X,Y ) toG if it won’t create a cycle, and do nothing
otherwise. The winner is the source node of the resulting
directed acyclic graph.

Cardinal Metric Costs. In our work we take the utilitar-
ian view, and study the case when the ordinal preferences σ
are in fact a result of the underlying cardinal agent costs.
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Formally, we assume that there exists an arbitrary metric
d : (N ∪ A)2 → R≥0 on the set of agents and alternatives
(or more generally a semi-metric, since we allow agents to
be identical and have d(i, j) = 0). Here d(i,X) is the cost
incurred by agent i of alternative X being selected as the
winner; these costs can be arbitrary but are assumed to obey
the triangle inequality. The metric costs d naturally give rise
to a preference profile. Formally, we say that σ is consistent
with d if ∀i ∈ N, ∀X,Y ∈ A, if d(i,X) < d(i, Y ), then
X �i Y . In other words, if the cost of X is less than the
cost of Y for an agent, then the agent should prefer X over
Y . Let p(d) denote the set of preference profiles consistent
with d (p(d) may include several preference profiles if the
agent costs have ties). Similarly, we define p−1(σ) to be the
set of metrics such that σ ∈ p(d).

When making additional assumptions on how the prefer-
ence rankings of the agents are generated, the set of possi-
ble preference profiles may become restricted. For example,
if we restrict agents to one-dimensional single-peaked pref-
erences, or to single-crossing preferences, then preference
profiles with the Condorcet paradox can no longer be re-
alized (Black 1948; Gans and Smart 1996; Saporiti 2009).
However, having arbitrary metric costs in our model does
not restrict the set of possible profiles σ in any way: metrics
are general enough that any preference profile in Sn can be
induced.

Proposition 1 For every preference profile σ, there exists a
metric d such that σ is consistent with d.

Any missing proofs can be found in the full version on
http://cs.rpi.edu/∼eanshel.

Social Cost and Distortion. We measure the quality of
each alternative using the costs incurred by all the agents
when this alternative is chosen. We use two different no-
tions of social cost. First, we study the sum objective func-
tion, defined as SC∑(X, d) =

∑
i∈N d(i,X); this is the

most common notion of social cost. We also study the me-
dian objective function, SCmed(X, d) = medi∈N (d(i,X)).
As described in the Introduction, we can view social choice
mechanisms in our setting as attempting to find the optimal
alternative (one that minimizes social cost), but only having
access to the ordinal preference profile σ, instead of the full
underlying costs d. The following proposition establishes
that this is impossible to do: the only way one can deter-
mine the optimal alternative while only having access to σ
is if there is a single alternative that is the top preference for
all agents. In fact, we cannot even eliminate any alternative
from consideration of being optimal, except in trivial cases.

Proposition 2 For any preference profile σ and alternative
X , there exists a metric d ∈ p−1(σ) such that X is optimal
with respect to the social cost function SC∑(X, d), except
when there exists an alternative Y such that for all i ∈ N ,
Y �i X .

Since it is impossible to compute the optimal alterna-
tive using only ordinal preferences, we would like to de-
termine how well the aforementioned social choice func-
tions select alternatives based on their social costs, de-

spite only being given the preference profiles. In particu-
lar, we would like to quantify how the social choice func-
tions perform in the worst-case. To do this, we use the no-
tion of distortion from (Procaccia and Rosenschein 2006;
Boutilier et al. 2012), defined as follows.

dist∑(f, σ) = sup
d∈p−1(σ)

SC∑(f(σ), d)

minX∈A SC∑(X, d)

distmed(f, σ) = sup
d∈p−1(σ)

SCmed(f(σ), d)

minX∈A SCmed(X, d)
.

In other words, the distortion of a social choice mecha-
nism f on a profile σ is the worst-case ratio between the
social cost of f(σ), and the social cost of the true optimum
alternative. The worst-case is taken over all metrics d which
may have induced σ, since the social choice function does
not and cannot know which of these metrics is the true one.

3 Distortion of Total Agent Cost
In this section, we study the sum objective function, which
measures the quality of an alternative to be the total agent
cost when this alternative is chosen. We prove tight upper
bounds for distortion of several well-known social choice
functions. Our main result in this section is that the
Copeland voting mechanism (as well as several others) ex-
hibit a distortion of at most 5; this guarantee is independent
of the number of agents or alternatives, and the underlying
metric space is allowed to be completely arbitrary (and un-
known).

Before proceeding with showing upper bounds on possi-
ble distortion, we ask the question: how well can any so-
cial choice function perform? The following simple theo-
rem tells us that we cannot possibly hope to approximate the
optimal alternative within a factor better than 3.

Theorem 3 No (deterministic) social choice function has
worst-case distortion less than 3 for the sum objective.

Proof. Suppose there are only two alternatives X and W .
Half of the agents prefer X over W , and the other half
prefer W over X . Suppose without loss of generality that
the given social choice function picks W as the winner.
The underlying metric can be as follows. All n/2 agents
who prefer X are located exactly at X , i.e., d(i,X) = 0
and d(i,W ) = 2. All n/2 agents who prefer W are ap-
proximately halfway between X and W , i.e., d(i,X) =
1 + ε and d(i,W ) = 1 − ε for some small ε > 0.
Then SC∑(X, d) =

∑
i∈N d(i,X) = (1 + ε) · n/2 and

SC∑(W,d) =
∑
i∈N d(i,W ) = 2 · n/2 + (1 − ε) · n/2.

Thus, the distortion approaches 3 as ε→ 0.

In fact, it is easy to show that for only two alternatives,
any social choice function that picks the winner preferred
by the majority of agents has a distortion of 3, i.e., all such
social choice functions achieve the optimal distortion bound
for two alternatives. This is a corollary of Theorem 4. Un-
fortunately, as the number of agents and candidates becomes
large, the distortion of many social choice mechanisms in-
creases linearly.
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Theorem 4 For plurality and Borda social choice func-
tions, the distortion is at most 2m − 1; for k-approval and
veto it is at most 2n − 1. Furthermore, these bounds are
tight, i.e., they are achieved exactly in some instances.

Before proving this theorem, we observe the helpful
lemma below (see the full version for complete proof). For
the remainder of this section, we will use the following no-
tation: WX = {i ∈ N : W �i X} and WXY = {i ∈ N :
W �i X �i Y }.
Lemma 5 For any instance σ and social choice function f ,
dist∑(f, σ) ≤ 1 + 2(n−|WX|)

|WX| , where W = f(σ) is the
winning alternative and X is the optimal alternative.

Proof Sketch of Theorem 4. Let W denote the winning
alternative, and let X denote an optimal alternative. Since
the bound from Lemma 5 decreases with |WX|, bounding
the smallest possible |WX| for each scoring function will
give us an upper bound on the worst-case distortion. For plu-
rality and Borda, it is not difficult to show that |WX| ≥ n

m .
For k-approval and veto, it is enough that |WX| ≥ 1. Fig-
ure 1 shows tight examples of these bounds for plurality
(left-hand side) and Borda (right-hand side), achieving the
distortion bound of 2m − 1 for m = 4 alternatives (these
examples can easily be generalized to any m ≥ 3). �

Figure 1: Examples showing tightness of distortion bound
for plurality (left) and Borda (right) with m = 4. Here W is
picked as winner andX is the optimal alternative. As ε→ 0,
distortion approaches 2m − 1. Adding an extra agent coin-
ciding with the center point makes W the unique winner.

Theorem 4 implies that the distortion for plurality and
Borda is unbounded in the number of candidates, and for
k-approval and veto it is unbounded in the number of vot-
ers. Informally, this is because the optimal alternative can
be preferred over the eventual winner by a relatively large
fraction of the agents, and yet still lose. We now consider
several social choice functions that escape this predicament,
resulting in significantly better performance.

Theorem 6 For the Copeland social choice function, dis-
tortion is always ≤ 5, and this bound is tight.

Proof Sketch. We will give a general outline of the proof;
see the full version for further details.

Let W denote the winner under Copeland, and let X de-
note the optimal alternative. We know that whenever W
pairwise defeats X , the distortion can be at most 3; hence
we need to only consider the case when X pairwise defeats
W . In Copeland, this implies that there must exist an alter-
native Y such thatW pairwise defeats Y and Y pairwise de-
feats X (Moulin 1986). We will quantify precisely the level

to which the existence of such an alternative Y prevents the
social cost of X from being too small.

If |WX| is large then the distortion cannot be too high, as
seen from Lemma 5. Suppose instead that a large fraction of
agents prefer X over W , i.e., |WX| is small. This together
with the fact that W pairwise defeats Y implies that a non-
trivial fraction of the agents are in XWY .

First, consider the easier case in which d(X,Y ) ≥
d(X,W ). Since Y pairwise defeats X , at least half of
the agents have a significant distance to X , i.e., d(i,X) ≥
d(X,Y )/2 ≥ d(X,W )/2. This implies that the cost of X
cannot be too small compared to the cost of W .

Now, consider the more difficult case when d(X,Y ) <
d(X,W ). Notice that the agents in XWY cannot have
d(i,X) = 0, because otherwise they would prefer Y over
W . In fact, for such agents i we show that d(i,X) ≥
1
2 · (d(X,W ) − d(X,Y )). This lower bound, along with
d(i,X) lower bounds for agents who prefer W or Y over
X , suffice to show that the social cost of X must be large.
While obtaining a loose upper bound using these insights is
easy, combining this together to form a bound of 5 requires
somewhat careful analysis: see the full version for further
details.

Remark: In fact, the result for distortion being at most 5
holds whenever for any other alternative Z, the winner W
either pairwise defeats Z or there exists an alternative Y
whom W pairwise defeats and Y pairwise defeats Z. This
precisely corresponds to the notion of W being a member of
the uncovered set (Moulin 1986). Thus the distortion is at
most 5 for several notions of tournament winners other than
Copeland such as the winner being selected from minimal
covering set, bipartisan set, banks set, tournament equilib-
rium set, etc., as all these sets are a subset of the uncovered
set (Laffond, Laslier, and Le Breton 1995).

Recall that no social choice function can have distortion
less than 3. Thus, Copeland is nearly optimal with a distor-
tion of at most 5. We can show that the ranked pairs mecha-
nism achieves the best possible distortion bound, but only in
the special case when the majority graph (directed graph in
which a link (X,Y ) denotes that X pairwise defeats Y ) has
small circumference (i.e., maximum cycle size).

Theorem 7 The distortion of ranked pairs is ≤ 3, as long
as the majority graph has circumference ≤ 4.

4 Distortion of Median Agent Cost
In this section we study the distortion of social choice func-
tions as measured by the median agent cost. We define
the median social cost of an alternative SCmed(Y, d) =
medi∈N d(i, Y ) to be the median of the list of distances of
all the agents to the alternative Y . If n is even, we define it to
be the (n2 + 1)th smallest value of the distances. As a short-
hand, we will refer to this as med(Y ) when the cost metric
d is fixed. The distortion of a social choice function is now
distmed as defined in Section 2. We begin by establishing
lower bounds on the distortion achieved by any determinis-
tic social choice function; this bound is higher than in the
sum case.
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Theorem 8 No (deterministic) social choice function has
worst-case distortion less than 5 for the median objective.
Proof. Suppose there are only three alternatives W , X ,
Y . Let there be n/3 agents corresponding to each of the
preference rankings W � Y � X , Y � X � W and
X � W � Y . Without loss of generality, suppose that the
given social choice function picks W as the winner. Con-
sider an underlying metric as shown in Figure 2. (The dis-
tances not shown in the figure can be chosen to be consistent
with the metric and the preference profile). In this instance,
we have med(W ) = 5 + ε and med(X) = 1 + ε. Thus, the
distortion approaches 5 as ε→ 0.

Figure 2: With median objective, W being picked as the
winning alternative leads to worst-case distortion arbitrarily
close to 5 as ε→ 0.

As for the sum objective function, the distortion of the
common positional scoring rules remains high for the me-
dian objective. In fact, it becomes unbounded for anym > 2
number of alternatives.
Theorem 9 Plurality, Borda, k-approval, and veto have un-
bounded distortion for any number of alternatives m > 2.
Proof Sketch. The same examples which are bad for the
sum objective provide an unbounded distortion for the me-
dian objective.

Now we show that the Copeland social choice function
achieves the optimal distortion bound: due to the lower
bound in Theorem 8 no deterministic rule can have better
median distortion than Copeland. Note that this result holds
also for several other notions of tournament winners men-
tioned in the concluding remark in Section 3.
Theorem 10 For the Copeland social choice function, me-
dian distortion is always ≤ 5, and this bound is tight.
Proof Sketch. At first we proceed in the same way as in
the proof of Theorem 6; let W,X, Y be defined in the same
way. The case when med(W ) > 5

4 · d(X,W ) is easy, since
d(i,X) ≥ d(i,W ) − d(X,W ), and so the ratio between
med(W ) and med(X) cannot be too high. When instead
med(W ) ≤ 5

4 · d(X,W ), then we can show that

med(X) ≥ max

(
d(X,Y )

2
,
d(X,W )− d(X,Y )

2

)
.

The first term in the above inequality is due to half of the
agents preferring Y over X , and the second to half of the
agents preferring W over Y . Finding the worst possible
value for med(W )

med(X) gives us the desired bound of 5.

4.1 Generalizing Median: Percentile Distortion
Instead of considering the happiness of the median voter or
agent, it also makes sense to consider the happiness of the
25’th or 75’th percentile. We can generalize the median ob-
jective function med(Y ) above by using percentiles as fol-
lows. Let α-PC(Y ) be the value from the set {d(i, Y ) :
i ∈ N} below which lie an α fraction of the values. Thus
α-PC(Y ) with α = 1/2 is the same as med(Y ). The distor-
tion with α-PC is defined analogously to Section 2.

For various ranges of α, we now give lower bounds on the
distortion that any social choice function must have in The-
orem 11, and then give social choice functions that always
achieve these bounds in Theorems 12 and 13.

Theorem 11 For any deterministic social choice function:
(a) For α ∈ [ 23 , 1), worst-case α-PC distortion is at least 3.
(b) For α ∈ [ 12 ,

2
3 ), worst-case α-PC distortion is at least 5.

(c) For α ∈ [0, 12 ), worst-case distortion is unbounded.

Theorem 12 For the plurality social choice function, dis-
tortion is always ≤ 3 for α-PC objective with α ≥ m−1

m .

Theorem 13 For the Copeland social choice function, dis-
tortion is always ≤ 5 for α-PC objective with 1

2 ≤ α < 1,
and this bound is tight.

The proofs of Theorems 11 and 12 appear in the full ver-
sion. For Theorem 13, the proof of Theorem 10 works ver-
batim with median replaced by α-PC, and we show tight-
ness in the full version. Together with the lower bound from
Theorem 11, this shows that for α ≥ m−1

m , no determinis-
tic rule can have better worst-case distortion than plurality,
whereas Copeland achieves the optimal worst-case distor-
tion for 1

2 ≤ α <
2
3 .

5 Conclusion and Future Directions
We analyzed the distortion of many common social choice
mechanisms in the setting where the agent costs form a
metric space. We showed that despite the process of win-
ner determination having absolutely no extra information
about the underlying metric space except the induced ordi-
nal agent preferences, mechanisms like Copeland achieve
a small constant-factor approximation to the optimal candi-
date (and in fact, for median objective function they achieve
the best approximation to an optimal candidate that a deter-
ministic mechanism can ever hope to achieve).

Nevertheless, some important open questions remain.
Foremost among them is the question of a social choice rule
which beats Copeland, and maybe achieves the best possi-
ble distortion of 3. While we showed some weaker results
for the ranked pairs mechanism, we believe there is a good
chance that it performs even better than we anticipate, and
actually guarantees a distortion of 3 for all instances, not
just the ones with small graph circumference. Exploring the
space of randomized mechanisms could also be very fruitful.
Randomized mechanisms still cannot get arbitrarily close to
the optimal alternative (we can prove a lower bound of 2 on
distortion instead of 3), but a small amount of randomization
added to Copeland and ranked pairs has a chance to greatly
improve their distortion properties.
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