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Abstract

In cooperative game theory, it is typically assumed that the
value of each coalition is known. We depart from this, as-
suming that v(S) is only a noisy estimate of the true value
V (S), which is not yet known. In this context, we investigate
which solution concepts maximize the probability of ex-post
stability (after the true values are revealed). We show how
various conditions on the noise characterize the least core and
the nucleolus as optimal. Modifying some aspects of these
conditions to (arguably) make them more realistic, we obtain
characterizations of new solution concepts as being optimal,
including the partial nucleolus, the multiplicative least core,
and the multiplicative nucleolus.

Introduction
Computational cooperative game theory (see the overview
by Chalkiadakis, Elkind, and Wooldridge (2011)) is emerg-
ing as an important toolbox in the coordination of coalitions
in multiagent systems. Much of cooperative game theory fo-
cuses on stability: no subset of agents should have an incen-
tive to break off and work on its own. Solutions satisfying
this criterion, straightforwardly interpreted, constitute the
core, which is the standard stability-oriented solution con-
cept. While it is a useful analytical tool, the core is likely
to fall short in real multiagent settings, as it does not distin-
guish between solutions that are just barely stable and ones
that are stable by a comfortable margin. This is particularly
troublesome when the numbers used to compute the solu-
tion are just noisy estimates of the true values of coalitions.
Existing solution concepts such as the least core and the nu-
cleolus appear to provide some relief, as they in some sense
give the solutions that are the “most” stable. But what is the
right sense of “most” stable, particularly when we are wor-
ried about the fact that our input numbers are no more than
noisy estimates? And does the right sense lead us to the least
core, the nucleolus, or something else? These are the ques-
tions we set out to answer in this paper.

Our contribution is to lay out a framework to address
these issues and obtain some first results. Specifically, we
show that noise models can be designed that justify the least
core, the nucleolus, and their multiplicative versions as the
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most stable solution(s). We do not claim to thereby establish
definitively that these concepts are the only ones that can
reasonably be said to maximize stability in noisy environ-
ments. One may find aspects of the noise model unappealing
and modify the noise model accordingly, which may lead ei-
ther to an altogether new concept, or to a better justification
of an existing concept. The first question to answer, though,
is whether existing solution concepts can be justified in this
manner at all, and what types of noise model are needed for
this. This is the aim of our paper.1

Definitions
In this section, we first review cooperative games without
uncertainty, and then extend to games with uncertainty (as
has been done in prior work). Finally, we discuss our frame-
work for taking a cooperative game without uncertainty and
considering “noisy” versions of it.

Cooperative Games
A cooperative game (or a characteristic function game) is
specified by a pair (N, v) where N is a set of n agents and
v : 2N → R is the characteristic function that assigns a
value v(S) to every subset S ⊆ N , representing the value
that agents in S can obtain and distribute among themselves
if they work (only) with each other.

A solution of such a cooperative game usually consists of
a payment vector x : N → R, where x(i) is the payment
agent i ∈ N receives. Let x(S) =

∑
i∈S x(i) denote the

total payment to a subset S ⊆ N . Generally it is required
that x(N) = v(N). Such a payment vector x is stable or in
the core if x(S) ≥ v(S) for all S ⊆ N (Gillies 1953). That
is, the total payment x(S) to a subset S should be no less
than the value S can generate by itself. Otherwise, S would
have an incentive to deviate and work on its own.

It is well known that the core can be empty; even when
it is nonempty, we might like to select its “most” stable ele-
ments. The least core is an attempt to address all this.
Definition 1 (Least Core (Maschler, Peleg, and Shapley
1979)). Let the ε-core be {x | x(N) = v(N) and x(S) ≥
v(S)−ε for all ∅ ( S ( N}. The least core is the nonempty

1The approach is analogous to that used to justify voting rules
as maximum likelihood estimators of the “correct” outcome, which
we will discuss in the related research section.
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ε-core with the minimum ε (which can be positive or nonpos-
itive, depending on whether the core is empty or not).

That is, solutions in the least core satisfy the core con-
straints by as large a margin as possible (possibly a negative
margin if the core is empty). It is possible to take this rea-
soning a step further: sometimes, within the least core, it is
possible to satisfy the constraints for some coalitions by a
larger margin (without increasing ε). Taking this reasoning
to its extreme leads to the definition of the nucleolus.
Definition 2 (Nucleolus (Schmeidler 1969)). The excess
vector of a payment vector x consists of the following 2n−2
numbers in nonincreasing order: (v(S)−x(S))∅(S(N . The
nucleolus is the (unique) payment vector x that lexicograph-
ically minimizes the excess vector.

In an intuitive sense, when the core is nonempty, the least
core can be seen as an attempt to make the solution more
robust, and the nucleolus as an attempt to make it even more
robust. But from the perspective of cooperative games with-
out any uncertainty, it is hard to make this intuition precise,
because it implies 0% chance of a deviation from any solu-
tion in the core, and 100% chance of a deviation from any
solution outside of the core. Because our goal is to formally
justify these and related notions in this paper, we will need
to consider cooperative games with uncertainty.

Cooperative Games with Uncertainty
To model cooperative games with uncertainty, a natural ap-
proach is to specify that there is a random state of the world
ω ∈ Ω that affects the values of coalitions (see, e.g., Ieong
and Shoham (2008)). Let P be the probability measure that
assigns a probability P(A) ∈ [0, 1] to each event A ⊆ Ω.

Holding (Ω,P) fixed, a cooperative game with uncertainty
is specified by a pair (N,V ) where N is the set of agents as
before, and V : 2N × Ω → R is a stochastic characteristic
function. That is, V (S, ω) is the value of subset S in real-
ized world ω. (We use V instead of v now to indicate that
each V (S) is a random variable whose value depends on
ω.) In most of our paper, we will not make the state space
Ω explicit but rather work directly with distributions of the
random variables V (S).

Payment vectors X : N × Ω → R can now in principle
also become random. (Again, for S ⊆ N , let X(S, ω) =∑
i∈S X(i, ω) denote the total payment to S.) However,

this paper mostly focuses on cases where both X and the
grand coalition value V (N) are deterministic: X(i, ω1) =
X(i, ω2) = x(i) and V (N,ω1) = V (N,ω2) = v(N) for
any i ∈ N and ω1, ω2 ∈ Ω. These assumptions are natural,
for example, in the context where there is a well-established
group of agents with a clear, cleanly worked out, and well-
rehearsed plan of how to proceed (so that there is effec-
tively no uncertainty about the grand coalition’s value), but
it is much less clear how subsets of agents would do if they
would break off and “go into the wild” on their own (see the
examples in the following subsection).

Stability
In this paper, we focus on ex-post stability (Ieong and
Shoham 2008), i.e., stability when the realized world ω

is revealed. Given a payment rule X and a game (N,V ),
let X ≥ V denote the set of stable worlds {ω | ∀S ⊆
N, X(S, ω) ≥ V (S, ω)}. Our objective is then finding X
(usually, a deterministic payment vector x) that maximizes
P(X ≥ V ), the probability of ex-post stability. There are at
least two interpretations of this objective.

The first one is motivated by games where the state of the
world is learned over time after the contract (payment rule
X) has been established. For example, consider an enter-
prise that hires a team of new employees for a new project
under contract X (typically, this would be a deterministic
contract x). At the point of establishing the contract, the
team members may not know each other, and as a result
do not know the value V (S) that each subcoalition would
generate in any single month. Over many months of cooper-
ation, however, they will get to know each other well enough
to accurately assess this value, and at that point they may de-
cide to stay in the big enterprise (the grand coalition being
stable) or a subteam may resign to open a new company.

The other interpretation concerns games where the differ-
ent (subsets of) agents simply have different perceptions of
their values, and the randomness derives from uncertainty
about how agents perceive their values. In this case, V (S)
represents the value that coalition S perceives itself as be-
ing able to obtain on its own. Let us suppose that there is no
uncertainty about V (N) = v(N) and that we must have a
deterministic payment vector x (as we do in most of this pa-
per). From the perspective of the party tasked with determin-
ing x, V (S) is a random variable, over which it has a sub-
jective distribution. Then, if it turns out that x(S) < V (S),
S will deviate (regardless of whether S’s perception of its
own value was in fact correct). In this context, it is natural
for the party tasked with determining the payment rule to try
to maximize P(x ≥ V ), the probability that no coalition will
deviate, with respect to its own subjective probability distri-
bution. This appears to match well with the fact that in the
real world, we will probably never be completely sure about
what is going on in the minds of a particular coalition and,
hence, about whether it will decide to deviate.

Noise
We assume that a point estimate (N, v) (a game without un-
certainty) is known at the point where we determine pay-
ments. The true game differs from this point estimate by ran-
dom noiseD, whereD = v−V , or equivalently, V = v−D.
Hence, the true game is a game with uncertainty, which is
obtained by subtracting the noise from the estimate.

Given the point estimate (N, v), we can use traditional
solution concepts for games without uncertainty (e.g., the
least core or the nucleolus) to compute a solution x. In this
paper, we study whether there is a distribution of the noise
such that this solution x is optimal for the true game (N,V )
in terms of ex-post stability. More precisely, what conditions
on the distribution of D guarantee that x maximizes P(x ≥
V ) among all possible solutions x?

We make the following assumptions on the distribution of
D throughout this paper (except where otherwise specified).

Assumption 1. As mentioned and justified in the previous
two subsections, we assume D(N) = 0, so that the grand
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coalition’s value V (N) = v(N) is fixed. Hence, we can de-
termine whether a deterministic payoff vector x is feasible.

Assumption 2. For any ∅ ( S1, S2 ( N , the random
variables D(S1) and D(S2) follow the same distribution F .
This simplifies our specification to only one distribution F ,
rather than 2n − 2 distributions FS . (Of course, the fact that
we can justify the least core and the nucleolus even under
this restriction makes the result stronger rather than weaker,
because it immediately implies that they can be justified in
the unrestricted case too, whereas the opposite is not nece-
sarily the case.) One may well argue that this assumption
is unrealistic, as one would expect a subset with higher es-
timated value v(S) to also have higher expected absolute
noise E[|D(S)|]. We will revisit this in the section on multi-
plicative noise.

It bears emphasizing that the second assumption does not
imply that D(S1) and D(S2) are identical—they are just
identically distributed. Neither does this assumption say that
D(S1) andD(S2) are independent. On the other hand, iden-
tical / i.i.d. random variables D(S1), D(S2) constitute two
special cases that satisfy this assumption. We will use them
to generate the least core and the nucleolus, respectively.

Related Research
There are various previous axiomatizations of cooperative
game-theoretic solution concepts (Peleg 1985; Potters 1991;
Snijders 1995; Orshan 1993; Sudhölter 1997). The axioms
(such as the reduced game property) are often quite com-
plicated, arguably more complicated than the definition of
the solution concept itself. In this paper, rather than charac-
terizing the concepts axiomatically, we characterize them as
solving an optimization problem. Similar approaches have
been used in social choice to characterize voting rules, no-
tably the distance rationalizability framework (Meskanen
and Nurmi 2008; Elkind, Faliszewski, and Slinko 2009) and
the maximum likelihood framework (Young 1988; 1995;
Drissi-Bakhkhat and Truchon 2004; Conitzer and Sandholm
2005; Xia and Conitzer 2011; Pivato 2013). Our work par-
ticularly resembles the latter line of work due to its focus on
noisy observations of an unobserved truth.

Stochastic cooperative games were first introduced in the
1970s (Charnes and Granot 1976; 1977), and received sig-
nificantly more attention in recent work (Suijs et al. 1999;
Suijs and Borm 1999; Chalkiadakis and Boutilier 2004;
Chalkiadakis, Markakis, and Boutilier 2007). Much of their
effort was spent on dealing with stochastic payment rulesX .
In contrast, our paper mostly focuses on deterministic pay-
ment rules x (so that we can analyze standard solution con-
cepts in cooperative game theory), though we will briefly
mention that the multiplicative least core (to be introduced
later) can be characterized as the optimal stochastic payment
rule X when only V (N) is uncertain.

The multiplicative least core is similar to the weak least
core (Shapley and Shubik 1966; Bejan and Gómez 2009;
Meir, Rosenschein, and Malizia 2011) in the sense that
larger coalitions are allowed to have larger excess. The dif-
ference is that the multiplicative least core compares the ex-
cess to v(S), while the weak least core compares it to |S|.
We argue that, at least in some cases, the former makes more

sense. For example, a single-agent coalition with a value of
1 billion may easily accept an excess of 100 and not devi-
ate, while a single-agent (or even multiagent) coalition with
a value of 100 and an excess of 100 would feel strongly in-
clined to deviate, thereby doubling its payment.

Finally, our notation is compatible with the partition and
type models that have been predominantly used in previ-
ous work on cooperative games with uncertainty. Agent
world partitions (see, e.g., Ieong and Shoham (2008)) and
agent types (see, e.g., Myerson (2007) and Chalkiadakis and
Boutilier (2007) both represent the private information that
agents possess (in addition to the common prior). However,
we focus on stability ex post rather than ex interim (or ex
ante, as studied by Bachrach et al. (2012)), so agents’ pri-
vate information does not play any significant role here.

Characterizing the Least Core
In this section, we show that under certain assumptions on
the noise D, payments are optimal if and only if they are
in the least core. The key assumption is that the noise is
identical for all coalitions (e.g., if one coalition’s realized
value is 10 above its estimate, the same will be true for all
other coalitions). The proof is quite straightforward, which
arguably indicates that the solution concept is justified by
our approach in a natural manner. On the other hand, one
may well take issue with the key assumption—for exam-
ple, we would expect coalitions with large values to also
experience larger noise. We will revisit this in the section
on multiplicative noise, leading to our definition of the mul-
tiplicative least core. This illustrates how our approach can
do more than justify an existing solution concept; it can also
naturally lead us to an improvement of it.

Theorem 1. When the noise of any two subsets ∅ (
S1, S2 ( N is identical (D(S1) = D(S2)), and its distribu-
tion has full support (the cumulative density function (CDF)
is strictly increasing everywhere—e.g., a normal distribu-
tion), then a payment x maximizes stability (P(x ≥ V ) =
P(x ≥ v − D)) if and only if it is in the least core. (More-
over, even when the distribution does not have full support,
any x in the least core maximizes stability.)

Proof. (“If” direction.) Let x∗ be an element in the least
core. If x∗ were not optimal, then there must be another x
such that P(x ≥ v−D) > P(x∗ ≥ v−D). That requires at
least one world ω ∈ Ω in which x∗(S′) < v(S′)−D(S′, ω)
for some ∅ ( S′ ( N while x(S) ≥ v(S)−D(S, ω) holds
for all ∅ ( S ( N . Because D(S) is identical for all S, let
D(S, ω) = ε. Then x is in the ε-core while x∗ is not in it.
This violates the definition of the least core.

(“Only if” direction.) Let ε(x) denote max∅(S(N v(S)−
x(S). Then P(x ≥ v−D) = P(D ≥ ε(x)). SinceD has full
support, x must minimize ε to maximize the stability.

Characterizing the Nucleolus
In this section, we consider whether it is possible to char-
acterize the nucleolus with assumptions on the noise D. It
turns out that we can, if we move to a richer model where we
consider what happens in the limit for a sequence of noise
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distributions. Naturally, one may be somewhat dissatisfied
with this, preferring instead to characterize the concept with
a single distribution. Unfortunately, as we will show, this
is impossible (under i.i.d. noise), necessitating the move to
a richer model. In a sense, the result involving a sequence
of distributions shows that we can come arbitrarily close to
justifying the nucleolus with a single distribution, but due to
its lexicographic nature we will always be slightly off.

The assumption that we made on the noise to character-
ize the least core is on the extreme end where the D(S)
are perfectly correlated (identical). In this section, we go to
the other extreme where the D(S) are independent. Hence,
the 2n − 2 random variables D(S) are i.i.d. (due to our
Assumption 2). To make the notation more compact, let
F (δ) = P(D(S) ≥ δ). This results in the following lemma.

Lemma 1. Let ξ(S) = v(S)− x(S) be the excess of coali-
tion S ⊂ N . Let ~δ = (δ1, δ2, . . . , δ2n−2) denote the excess
vector (sorted from large to small). If the 2n − 2 random
variables {D(S)|∅ ( S ( N} are i.i.d. with P(D(S) ≥
δ) = F (δ), then the probability of stability is

P(x ≥ v −D) =
∏

∅(S(N

P(D(S) ≥ ξ(S)) =
2n−2∏
i=1

F (δi)

Proof. Subset S’s stability x(S) ≥ V (S) is equivalent to
v(S)−V (S) ≥ v(S)−x(S), and thus equivalent toD(S) ≥
ξ(S). Hence, the probability of S’s stability is F (ξ(S)). The
lemma follows because the {D(S)} are independent.

Does the nucleolus necessarily maximize the expression
in Lemma 1? No. For example, consider the game where
N = {a, b}, v(N) = 2, and v({a}) = v({b}) = v(∅) = 0.
The nucleolus gives x(a) = x(b) = 1, resulting in ex-
cess vector ~δ = (−1,−1). Alternatively, we could set
x′(a) = 2, x′(b) = 0 to obtain excess vector ~δ′ = (0,−2).
Now suppose D(S) follows a distribution with F (−2) =

1, F (−1) = 0.7 and F (0) = 0.5. Then, ~δ′ has a higher prob-
ability of stability, namely F (0)F (−2) = 0.5 > F (−1)2 =
0.49. But this only proves that one particular distribution F
will not work to characterize the nucleolus. What about oth-
ers? Unfortunately, the following proposition proves that no
reasonable distribution will work. (We omit a number of
the proofs in this paper due to the space constraint; they are
available in the full version.)

Proposition 1. For any fixed distribution F , if there exists
a point q ∈ R such that F ′(q) 6= 0 (so that the probabil-
ity density function (PDF) is defined and nonzero at q), then
there exists a 3-player cooperative game whose nucleolus
does not maximize stability. Hence, no fixed noise distribu-
tion with nonzero derivative at some point can guarantee the
nucleolus’ optimality.

It follows that our characterization of the nucleolus will
not be as clean as the one we obtained for the least core.
The intuition for the way in which we characterize the nu-
cleolus is as follows. The nucleolus corresponds to worrying
more about large excesses than about small excesses, but to
still worry about small excesses as a secondary objective.

To some extent, it turns out we can achieve this by choos-
ing a noise distribution where decreasing a large excess has
a much greater impact on the probability of stability than
decreasing a small excess. But this will at best result in an
approximation of the nucleolus, because the (exact) nucleo-
lus would require the former impact to be infinitely greater,
which is impossible if decreasing a small excess is still to
have some impact (which is also necessary for the nucleo-
lus). Nevertheless, we can create a sequence of noise dis-
tributions that correspond to ever better approximations, so
that any other payment vector becomes less stable than the
nucleolus after some point in the sequence. We can addition-
ally require that the distributions in this sequence become
ever more concentrated around our original estimate of the
value function. Thus, in a sense the nucleolus corresponds to
what we do in the limit as we become more and more con-
fident in our estimate. The following definition makes this
precise.

Definition 3. Let {Fc} be a sequence of distributions in-
dexed by c ∈ {0, 1, 2, . . .} (the confidence). LetDc be drawn
according to Fc. We require that the larger confidence c is,
the less noisy Fc is: for any c1 < c2 and ε > 0, we have
P(Dc1(S) > ε) ≥ P(Dc2(S) > ε) and P(Dc1(S) < −ε) ≥
P(Dc2(S) < −ε). We say a payment x∗ is strictly better
than x under confidence (with respect to {Fc}) if there ex-
ists some confidence threshold C above which x∗ is always
strictly better than x: (∀c ≥ C), P(x∗ ≥ v−Dc) > P(x ≥
v − Dc). We say x∗ is uniquely optimal under confidence
(with respect to {Fc}) if for any other payment x 6= x∗, x∗
is strictly better than x under confidence.

In words, a payment x∗ is uniquely optimal under confi-
dence if for any other payment x, x∗ is strictly more stable
than x as long as we are confident enough about our estimate
of the value function (but how much confidence is enough
may depend on x). What conditions do we need on {Fc} for
the nucleolus to be uniquely optimal? The following lemma
gives a sufficient condition.

Lemma 2. If {Fc} satisfies that for any δ ∈ R, ε > 0, and
k ≥ 1, there exists a threshold C such that for all c ≥ C,
we have Fc(δ)k > Fc(δ + ε), then the nucleolus is uniquely
optimal under confidence with respect to {Fc}. The condi-
tion above is also denoted as limc→∞ Fc(δ)

k > Fc(δ + ε)
for convenience.

While the precondition in Lemma 2 is useful, it is difficult
to interpret in terms of becoming ever more confident. The
next two definitions do say something about how quickly we
need to become more confident, and together they imply the
precondition of Lemma 2.

Definition 4 (Overestimate Condition). We say {Fc} sat-
isfies the overestimate condition if for any δ ≥ 0, ε > 0, and
k ≥ 1, there exists a threshold C such that for all c ≥ C,
Fc(δ)

k > Fc(δ + ε).

We call this the overestimate condition because for non-
negative δ, Fc(δ) denotes the probability that we overesti-
mate and the error v(S) − V (S) is at least δ. The overes-
timate condition then indicates that when we are very con-
fident (∀c ≥ C), this probability diminishes to 0 extremely
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fast as δ increases: Fc(δ + ε) is so much closer to 0 than
Fc(δ) that even Fc(δ)k is not as close to 0 as Fc(δ + ε) is.
Definition 5 (Underestimate Condition). LetGc(δ) = 1−
Fc(δ). We say {Fc} satisfies the underestimate condition if
for any δ < 0, ε > 0, and k ≥ 1, there exists a threshold C
such that for all c ≥ C, kGc(δ − ε) < Gc(δ).

Here, for δ < 0, Gc(δ) = 1 − Fc(δ) = P(Dc(S) =
v(S) − V (S) ≤ δ) is the probability that we underestimate
(V (S) > v(S)) and the error V (S)−v(S) is greater than |δ|,
which is why we call it the underestimate condition. Like the
overestimate condition, it indicates that when we are very
confident, the probability Gc(δ) diminishes to 0 very fast as
δ decreases:Gc(δ−ε) is so much closer to 0 thanGc(δ) that
even kGc(δ − ε) is still closer to 0 than Gc(δ) is.2

Lemma 3. If {Fc} satisfies the overestimate condition and
the underestimate condition, then it also satisfies the condi-
tion limc→∞ Fc(δ)

k > Fc(δ + ε) from Lemma 2.

Proof. For δ ≥ 0, the condition limc→∞ Fc(δ)
k > Fc(δ+ε)

immediately follows from the overestimate condition. It re-
mains to show that the underestimate condition implies that
limc→∞ Fc(δ)

k > Fc(δ + ε) for δ < 0. Since Fc is mono-
tone, it is sufficient to prove that the underestimate condition
implies limc→∞ Fc(δ)

k > Fn(δ + ε) for δ < 0 and ε < −δ
(as this will immediately imply the same for larger ε). Let
δ′ = δ+ ε < 0. By the underestimate condition, there exists
a C such that for all c ≥ C, we have kGc(δ′ − ε) < Gc(δ

′).
Then for all c ≥ C, Fc(δ)k = Fc(δ

′ − ε)k = (1 −Gc(δ′ −
ε))k > 1 − kGc(δ′ − ε) > 1 − Gc(δ′) = F (δ + ε), where
the first inequality follows from Bernoulli’s inequality.

Combining all of the preceding lemmas, we obtain the
following theorem about the nucleolus.
Theorem 2. When the noise {D(S)} is drawn i.i.d. across
coalitions ∅ ( S ( N , the nucleolus is uniquely optimal
under confidence for any sequence of distributions {Fc} that
satisfies both the overestimate and underestimate conditions.

Such sequences indeed exist:
Proposition 2. For {Fc(δ) = exp(−ecδ)}, both the overes-
timate and underestimate conditions are satisfied.

The CDF (1− F ) and PDFs (−F ′) corresponding to dis-
tributions in Proposition 2 are plotted in Figure 1. Sequences
where the probability of large noise decreases significantly
more slowly, such as {exp(−ceδ)}, will not suffice, even
though in this sequence the probability of larger noise be-
comes arbitrarily smaller than that of smaller noise.

Partial Nucleolus
So far, we have used noise models to justify existing solu-
tion concepts. One benefit of doing so is that we can now
investigate whether these noise models are reasonable (in all
circumstances), adjust them when they are not, and perhaps
obtain new solution concepts as a result.

2Note that the overestimate condition requires a faster dimin-
ishing speed than the underestimate condition: in the former, even
exponentiation by k does not change the order, whereas in the lat-
ter, only multiplication by k does not change the order.
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Figure 1: The CDF (1−F ) and PDF (−F ′) of distributions in
{Fc(δ) = P(D(S) ≥ δ) = exp(−ecδ)} which satisfies both
the overestimate condition and the underestimate condition.

For example: in some cases, we might expect that there
is only overestimate error (the noise is nonnegative). For ex-
ample, D(S) = v(S) − V (S) ≥ 0 may correspond to an
unknown cost that S has to pay if S deviates (so the value
that S truly has after deviating is V (S) = v(S) − D(S)).
We introduce the following solution concept:
Definition 6 (Partial Nucleolus). Given payment vector
x, the nonnegative excess vector consists of the following
2n − 2 numbers in non-increasing order: max(0, v(S) −
x(S))∅(S(N . The partial nucleolus is the set of x that lexi-
cographically minimize the nonnegative excess vector.

We can characterize the partial nucleolus as consisting ex-
actly of the optimal payment vectors for certain sequences of
distributions. The (omitted) proof is similar to that given for
the nucleolus above.
Theorem 3. When the noise {D(S)} is drawn i.i.d. across
coalitions ∅ ( S ( N , the partial nucleolus is optimal
(with all payment vectors in the partial nucleolus perform-
ing equally well, and strictly better than any other payment
vector) under confidence with respect to any sequence of dis-
tributions {Fc} that satisfies the overestimate condition and
Fc(0) = 1 (for nonnegativity of the noise).

Multiplicative Noise
In the noise models considered so far, D(S) follows the
same distribution F for all ∅ ( S ( N . One may argue that
this is an unreasonable aspect of these models. For example,
it seems unreasonable to say that the probability that revenue
turns out $1B higher than expected is the same for Google
and Yahoo (because Google’s revenue is much bigger), but it
seems reasonable to to say that the probability that revenue
turns out 2% higher than expected is the same for both. To
address this, we now introduce multiplicative noise, which
makes the noise distribution the same in relative terms.

Throughout this section, we assume that v and V are
nonnegative. We then use a standard trick using logarithms
(which will map these nonnegative numbers to the full set of
real numbers) to adapt our results in the additive model to
the multiplicative model.

Previously, our noise D = v − V was defined in an addi-
tive manner. Now, we define the multiplicative noise D× to
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be log(v/V ) = log v − log V . The multiplicative noise D×
remains unchanged if v and V are both multiplied by the
same amount ρ: D× = log(ρv)− log(ρV ) = log v− log V .
WhenD× = 0, v = V ; asD× moves away from 0, v moves
further away from V ; and when D×(S) follows the same
distribution F for all S, the expected absolute value of (ad-
ditive) noise E(|v − V |) = vE(|1 − e−D× |) grows in pro-
portion with v.

A minor problem for D× is that log(v/V ) is not well de-
fined when either v or V is 0. In this paper, we will be in-
terested in generative models in which we draw a real (but
finite) D×(S) for each coalition S (so 0 < eD

×(S) < ∞).
Therefore, v(S) = 0⇔ V (S) = 0, resulting in log(v/V ) =
log(0/0). This means that when v(S) = V (S) = 0, we will
not be able to recover what exact amount of noise D×(S)
was drawn, but this will not matter for stability because
V (S) = 0 for any D×(S).

We now define the multiplicative excess. The multiplica-
tive excess represents by how great a factor a coalition could
make itself better (or worse) off by deviating. One could ar-
gue that this is intuitively a better measure of how likely a
coalition is to deviate: a coalition that is currently receiving
1 billion will not feel greatly incentivized to deviate to ob-
tain an additional 100, but one that is currently receiving 100
is likely to deviate if doing so means doubling its payoff.
Moreover, it lines up nicely with the notion of multiplica-
tive noise: a coalition will have no incentive to deviate iff its
multiplicative noise is at least its multiplicative excess.

Definition 7 (Multiplicative Excess). The multiplicative
excess of coalition S is defined as ξ×(S) = log v(S) −
log x(S). When v(S) = 0, we define ξ×(S) = −∞ (in-
dicating complete stability). When v(S) > 0 and x(S) = 0,
we define ξ× = +∞ (indicating complete instability).

Based on this, we can define the multiplicative least core.

Definition 8 (Multiplicative Least Core). Let the mul-
tiplicative ε-core be {x|x(N) = v(N) and ξ×(S) ≤
ε for all ∅ ( S ( N} (+∞ and −∞ may appear as we de-
fined for the multiplicative excess). The multiplicative least
core is the nonempty multiplicative ε-core with the mini-
mum ε (which can be positive or nonpositive, depending on
whether the core is empty or not).

We then obtain the following analogue of Theorem 1.

Theorem 4. When the multiplicative noise of any two sub-
sets ∅ ( S1, S2 ( N is identical (D×(S1) = D×(S2)), and
its distribution has full support (the CDF is strictly increas-
ing everywhere—e.g., a normal distribution), then a pay-
ment x maximizes stability (P(x ≥ V ) = P(x ≥ v/eD

×
))

if and only if it is in the multiplicative least core. (Moreover,
even if the distribution does not have full support, any x in
the multiplicative least core maximizes stability.)

In fact, multiplying all subcoalition values v(S) (S ( N )
by a factor ρ = 1/eD

×
(V (S) = ρv(S)) is, in some sense,

equivalent to multiplying (only) the grand coalition’s value
v(N) by the factor’s inverse (V (N) = v(N)/ρ). In the lat-
ter scenario, (only) the grand coalition’s value is not known
at the outset; in such cases, it is natural to restrict attention to

payment rules that give each agent a fixed share of the even-
tually realized value V (N). In this case, the multiplicative
least core consists exactly of the optimal share rules.

We can also define the multiplicative nucleolus and obtain
a result analogous to Theorem 2.

Definition 9 (Multiplicative Nucleolus). The multiplica-
tive excess vector of a payment x consists of the following
2n − 2 numbers in nonincreasing order: (ξ×(S))∅(S(N .
The multiplicative nucleolus consists of the payment vectors
x that lexicographically minimize the excess vector.

Theorem 5. When the multiplicative noise {D×(S)} is
drawn i.i.d. across coalitions ∅ ( S ( N , the multiplicative
nucleolus is optimal (with all payment vectors in the multi-
plicative nucleolus performing equally well, and strictly bet-
ter than any other payment vector) under confidence with
respect to any sequence of distributions {Fc} for the multi-
plicative noise that satisfies both the overestimate condition
and the underestimate condition.3

Using similar techniques as for the regular nucleolus, it
can be shown that the multiplicative nucleolus is unique as
long as there exist n coalitions S with v(S) > 0 that are
linearly independent.4 Very similarly, we can also obtain a
multiplicative version of the partial nucleolus. The details
are in the full version of the paper.

Conclusion
In this paper, we justified the least core and the nucleolus
by proving that they maximize the probability of ex-post
stability under particular noise models. In words, the least
core is uniquely optimal when the noise of each coalition
is perfectly correlated, and the nucleolus is uniquely opti-
mal when the noise is independent and additionally, we are
very confident that the noise is small—intuitively, the prob-
ability of larger noise is infinitesimal compared to the prob-
ability of smaller noise. This appears to nicely reflect the
intuitive sense in which these solutions are “more” stable
than the core. Moreover, by modifying the noise models in
ways that make them arguably more realistic, we obtained
several new solution concepts. For example, when there is
only uncertainty about a nonnegative cost that a coalition
experiences from deviating, the partial nucleolus is optimal;
when the noise D(S) of a coalition’s value scales propor-
tionately with its estimated value v(S) (and the multiplica-
tive noises {D×(S)} are identically distributed), the multi-
plicative least core and nucleolus become optimal.
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3Even though the conditions are identical to those for the addi-
tive nucleolus, they are now applied to the distribution of the multi-
plicative noise, not the distribution of the additive noise. Thus, the
set of distributions over true value V satisfying the conditions is
different. This is why we obtain a different solution concept.

4v(S) = 0 is equivalent to S being “forbidden” in the remark
following the proof of Theorem 2 in Schmeidler (1969).
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