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Abstract

In this paper, we study protocols that allow to discern con-
scious and unconscious decisions of human beings; i.e., pro-
tocols that measure awareness. Consciousness is a central
research theme in Neuroscience and AI, which remains, to
date, an obscure phenomenon of human brains. Our starting
point is a recent experiment, called Post Decision Wagering
(PDW) (Persaud, McLeod, and Cowey 2007), that attempts
to align experimenters’ and subjects’ objectives by leverag-
ing financial incentives. We note a similarity with mechanism
design, a research area which aims at the design of protocols
that reconcile often divergent objectives through incentive-
compatibility. We look at the issue of measuring awareness
from this perspective. We abstract the setting underlying the
PDW experiment and identify three factors that could make
it ineffective: rationality, risk attitude and bias of subjects.
Using mechanism design tools, we study the barrier between
possibility and impossibility of incentive compatibility with
respect to the aforementioned characteristics of subjects. We
complete this study by showing how to use our mechanisms
to potentially get a better understanding of consciousness.

Introduction
Can machines “feel” just like human beings do? This is
a fundamental question in AI, which has attracted a num-
ber of contributions with often divergent answers, see, e.g.,
(Hofstadter 1979; Searle and others 1980). It is, however,
a question that could be considered ill-posed since it is not
exactly understood how humans “feel”: it is, for example,
not even clear how to establish whether decisions are taken
consciously or not. To find an answer, a group of neuroscien-
tists (Persaud, McLeod, and Cowey 2007) have recently in-
troduced a protocol, named Post-Decision Wagering (PDW),
as a means to “directly measure awareness”. They consider
three scenarios to motivate the effectiveness of PDW: an ex-
periment run on a blindsight subject1, artificial grammar task
and Iowa gambling task. Due to the page limit, we next give
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1Brain lesions may lead to blindness on a portion of the visual
field. Blindsight is the ability to respond to visual stimuli in the
blind fields even in absence of perception, cf. (Celesia 2010).

only a succinct description of these scenarios, starting with
the blindsight experiment. Before the experiment, the sub-
ject is instructed that in each trial either a visual stimulus
would be presented in her blind field or no stimulus would
be shown. After each possible exposure to the stimulus, the
subject firstly has to make a decision on its absence/presence
and then either wager high or low on the correctness of the
decision. The other two experiments follow a similar pat-
tern: an initial training phase in which subjects gain some
“knowledge”, a successive exposition to some sort of posi-
tive/negative signal and finally the subject’s decision (with
wagering on the correctness) about the “sign” of the signal.
The positive (negative, resp.) signal corresponds to a string
that follows (does not follow, resp.) a previously learned pat-
tern in the artificial grammar task, and a pack of cards with
positive (negative, resp.) expected gain in the Iowa gambling
task. In all scenarios, the amount wagered is gained if the de-
cision is correct and lost otherwise. The process is repeated,
but the subject receives feedback on the accuracy of the de-
cisions and the amount won/lost only after the last trial.

According to its designers, PDW is successful because
participants with some awareness that their decision is cor-
rect will wager high. Then a failure to maximize cash re-
wards (i.e., correct answers do not always correspond to a
high wager) would signal that some of the correct decisions
were made unconsciously. However, some criticism on the
effectiveness of PDW has been moved (see below).

This work stems from the observation that PDW connects
very neatly to mechanism design. We want here to theoret-
ically analyze the claim of (Persaud, McLeod, and Cowey
2007) and investigate the relation between mechanism de-
sign and awareness.

Our Contribution. PDW is designed to align the exper-
imenter’s objective of measuring awareness with the sub-
ject’s (induced) objective of maximizing her financial gains.
This very same approach is used in mechanism design. By
using a game-theoretic terminology, we can call the informa-
tion regarding the subject’s awareness/unawareness of the
stimulus as the type of the subject. The experimenter wants
to design a mechanism that incentivizes the subject to reveal
her type truthfully. The incentives correspond to the maxi-
mization of a utility function for money, with the type deter-
mining the expected outcome of the wagering lottery.
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This parallel seems to suggest that rationality is a fun-
damental assumption behind PDW just as it is for mecha-
nism design. We then revisit the claim in (Persaud, McLeod,
and Cowey 2007) and note that rationality might not be the
only factor that influences the decision of the subject. We
in fact identify other two factors of equal importance: risk
attitude (how subjects evaluate probabilistic outcomes) and
bias (external factors may induce the subjects to develop an
expectation on the positivity/negativity of the signal in the
next trial). Risk attitude and bias are these subjective fea-
tures that have been often highlighted by psychologists and
neuroscientists as unavoidable elements of the decision pro-
cess (Green and Swets 1966). In particular, we prove that
“PDW directly measures awareness” if and only if the sub-
ject is rational, risk-neutral (see below for a definition) and
has no bias, thus formalizing the claim of (Persaud, McLeod,
and Cowey 2007).

Given the limited scope of PDW’s success, we then con-
tinue this study by investigating the existence of mecha-
nisms with better properties. Towards this end, we consider
direct revelation truthful mechanisms and therefore concen-
trate on mechanisms in which we have to incentivize the
subject to report her true type. These declarations could be
done through verbal reports (Cleeremans, Destrebecqz, and
Boyer 1998; Shanks and St John 1994) or numerical confi-
dence ratings (Dienes and Scott 2005). However, our inter-
est is mainly theoretical and we do not imagine/propose to
run these mechanisms in a real experimental setting. It is,
however, worthwhile to study direct revelation mechanisms.
Firstly, a good theory of mechanism design for awareness
should provide fundamental insights into what can and can-
not be done; by the revelation principle, this study can be
restricted to direct mechanisms without loss of generality.
Secondly, our results could serve as a natural starting point
for the design of more practical protocols: the existence of a
direct mechanism with the desired properties can foster neu-
roscience and AI experimenters to design new mechanisms
with the same properties that only require indirect declara-
tion of types and, thus, turn out to be more practical.

We begin by proving that there exists a truthful risk-
independent mechanism, i.e., a mechanism which remains
truthful for any possible risk attitude of the subject. As ob-
served in (Clifford, Arabzadeh, and Harris 2008), truthful-
ness might be too weak a requirement in this context as
the subject could make a declaration independent from the
awareness itself that guarantees the same utility as the truth-
ful declaration. We then look at the existence of strictly
truthful mechanisms in which the utility is strictly maxi-
mized by truth-telling. We prove that there exists a strictly
truthful mechanism which works under the assumption that
the subject’s risk attitude is known. We complement this
positive result by showing that it is impossible to design
a strictly truthful risk-independent mechanism. Our results
highlight a trade-off between risk-independence and truth-
fulness, suggesting the use of one mechanism or the other
depending on the priority between these requirements.

We then focus on the case in which the subject develops
a bias during the several trials of the experiment. We prove
that it is possible to induce the subject to truthfully report the

presence/absence of bias. This can be useful for “filtering”
experiments: only if the subject declares no bias, then we
can adopt the above mechanisms to successfully measure the
awareness. We also describe a realistic setting in which the
rate of “no bias” reports can be carefully controlled.

Finally, we show how to use our results in the tentative to
get a better grasp of how awareness arises.

Due to page limit, some proofs are omitted.

Related Works. Much of the related work in cognitive sci-
ences criticizes PDW; these observations inform our work as
we discuss below. Seth (2008) affirms that there is a funda-
mental flaw in the approach since “absence of evidence is
not evidence of absence”; our mathematical model includes
Seth’s remark as a special case. Clifford, Arabzadeh, and
Harris (2008) observe that for PDW “always bet high” maxi-
mizes the expected financial reward of the subject. They then
note that PDW cannot measure awareness since this strat-
egy is independent from the awareness. However, this is not
entirely correct since “always bet high” is not the unique
reward-maximizing strategy: “bet high when aware and
low otherwise” achieves the same expected utility. Which
reward-maximizing strategy will subjects play? This is de-
batable and motivates our quest for mechanisms with unique
reward-maximizing strategies (i.e., strictly truthful mecha-
nisms). According to (Schurger and Sher 2008), people ex-
hibit loss aversion which could let them to wager low even
when they are aware. This remark motivates our study of
mechanisms that work for different levels of the subjects’
risk attitude.

Related research topics include prediction markets and
(market) scoring rules. While a similarity can be drawn with
prediction markets (monetary value is given in both cases
to private information/beliefs), the known manipulability of
(market) scoring rules (Conitzer 2009) remains a fundamen-
tal difference. Proper scoring rules are instead quite simi-
lar to our truthful mechanisms. However, the main reason
for which they do not correctly fit our setting is that they
assume that the subject can always correctly describe the
probability that the observed signal is positive. In our set-
ting, instead, we consider also the case in which the granu-
larity with which the subject describes her awareness is very
gross-grained. With classical proper scoring rules, such as
the spherical or Brier rule, it is not possible to incentivize
subjects giving only gross-grained awareness descriptions to
make the desired declarations. On the contrary, our payment
rules can be seen as a proper scoring rule with the additional
feature of working as desired also in this gross-grained set-
ting.

Preliminaries
Let us start by abstracting the setting underlying the PDW
experiments, in order to theoretically analyze the proper-
ties of PDW and of the other mechanisms developed in this
work. The setting involves two entities, an experimenter E
and a subject S. After a suitable learning phase, the exper-
imenter sends a binary signal to the subject. Here, we as-
sume that s = 1 corresponds to a positive signal (presence
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of visual stimulus, a string following a pattern, a deck with
positive gain) and s = 0 corresponds to a negative signal.
Upon the dispatch, and the possible reception, of the sig-
nal s, the subject develops a conscious awareness about the
value of received signal, that we call awareness level of S
and denote with αs. What values can αs take? The litera-
ture in neuroscience suggests the existence of three states:
the subject can be “sure that the signal is 1”, “sure that the
signal is 0”, or “have no clue”. We then reserve three dif-
ferent values of αs for these states: 0 for awareness of sig-
nal 0, 1/2 for unawareness, and 1 for awareness of signal 1.
Other choices would be feasible (e.g., we can use −1, 0, 1).
However, our choice can be easily extended in order to mea-
sure “strength of awareness”, that is, to allow different and
more fine-grained awareness levels, such as being “almost
sure that the signal is 1”. We indeed let αs ∈ [0, 1], with the
rationale that the closer to 0 (1, respectively) the awareness
level is the more confident the subject is that the signal was
negative (positive, respectively). We remark that the results
in this paper hold whichever the granularity of the awareness
level is.

We note that the awareness level depends on the received
signal. This property allows us to meet the aforementioned
Seth’s critique (Seth 2008) that a subject cannot be aware
of a negative signal (s = 0). This is in fact a special case
of our model, wherein α0 = 1/2. Note also that we do not
make any assumptions on how the awareness level is gener-
ated in the subject brain (i.e., how it depends on the signal).
This process is actually unknown and its understanding rep-
resents the ultimate goal of this line of research.

Mechanism Design. The goal of PDW and of the other
protocols developed in this work is to “measure” the aware-
ness level. In other words, we want to design a mechanism
M that allows to measure αs, also called the subject’s type
in this context. For example, we might simply want to know
whether αs 6= 1/2 (i.e., there is some awareness of the
signal) or aim to a much more granular knowledge and re-
quest to know the exact value of αs. The information that
a mechanism wants to compute is modeled via a choice
function that maps types into outcomes, more specifically,
f : [0, 1] → X , X denoting the set of allowed outcomes.
For example, in the case in which we are only interested in
distinguishing whether αs = 1/2 or not, X might simply
be {0, 1} and the choice function be f(1/2) = 0, f(y) = 1
for y ∈ [0, 1/2) ∪ (1/2, 1]. Note that the outcome set X can
contain monetary transfers (e.g., the wagers of PDW). More-
over, f might be a probabilistic function defining a probabil-
ity distribution over X .

A subject of type t ∈ [0, 1] evaluates an outcome x ∈ X
an amount ut(x) called utility (or valuation). Since there is
no intrinsic utility in being aware or unaware, when X is a
set of monetary transfers, the utility of a subject does not
depend on her type, i.e., ut(x) = x for all x ∈ X . In other
words, the subject evaluates an outcome exactly the amount
of money she receives or loses.

A mechanism M defines a set of strategies A for the sub-
ject and an output function g : A→ X specifying the output

for each possible action chosen by the subject (as f , g might
be a probabilistic function). A mechanism is said to imple-
ment in dominant strategies the choice function f if there
exists a ∈ A, termed dominant strategy, s. t. (i) ut(g(a)) ≥
ut(g(a′)) for all a′ ∈ A and (ii) g(a) = f(t), t being the
type of the subject. Additionally, a mechanism is said to
strictly implement in dominant strategies the choice func-
tion f if a is the unique dominant strategy. (In case of prob-
abilistic functions, the requirement (i) must naturally hold in
expectation over the random coin tosses of g.) By the reve-
lation principle (Nisan et al. 2007), we can restrict our at-
tention w.l.o.g. to the class of direct revelation mechanisms
in which the domain A of the output function is exactly the
type domain [0, 1]. (Mechanisms for which A 6= [0, 1] are
instead called indirect.) In a direct mechanism, subjects can
only declare types and strategizing equates to misreporting
their true type. Therefore, the implementation concept of in-
terest here is truthfulness, i.e., we are interested in mecha-
nisms for which truth-telling is a dominant strategy. In the
case in which truth-telling is the only dominant strategy, we
say that the mechanism is strictly truthful.

We identify three factors that can influence the subject’s
utility and then fundamentally change her strategic behavior.

Rationality. A basic assumption in mechanism design
and, more generally, social choice theory is that the subjects
are rational, that is, they aim at their personal best outcome.
By modeling personal preferences by means of money, this
results in rational subjects being utility maximizers. When
randomization is involved in the outcomes computation, it is
usual to assume that subjects are expected utility maximizers.

Risk Attitude. The behavior of a subject can strongly de-
viate from the expected one when probabilistic outcomes
(a.k.a., lotteries) are involved. In these cases, a fundamen-
tal role is played by the subject’s risk attitude.

Two main definitions are known in economics literature
to model people’s attitude towards lotteries: expected utility
theory, see, e.g., (Mas-Colell, Whinston, and Green 1995),
and prospect theory (Kahneman and Tversky 1979). The for-
mer considers the subject’s attitude to accept a bargain with
uncertain reward rather than one with a certain, but possibly
lower reward. It requires the existence of a utility function
for money whose graph’s curvature measures the risk atti-
tude of the subject (wherein, concavity models risk aversion
whilst convexity encodes risk seeking behavior). Prospect
theory is, instead, a behavioral economic theory that states
that people’s risk attitude is based on the potential value of
“losses” and “gains” rather than the final outcome.

Our definition of risk attitude is inspired by prospect the-
ory and mainly motivated by the simplicity of the mecha-
nisms considered in this work. A subject weights gains (e.g.,
a won PDW wager) with a factor ρw ≥ 0 and losses (e.g.,
a lost PDW wager) with a factor ρl > 0. So, if the sub-
ject can obtain a reward R with probability p and a loss L
with the remaining probability 1− p then her utility will be
ρw · p · R − ρl · (1 − p) · L. To simplify algebraic manip-
ulations, we rewrite the utility as ρ · p · R − (1 − p) · L,
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where ρ = ρw/ρl. We call ρ the risk attitude of the subject.
A mechanism is risk-independent if it is independent from
the value of ρ (i.e., mechanism does not use the actual value
of ρ). Typically, three different risk attitudes are considered.
When an individual tends to avoid losses, i.e., ρ < 1, then
we say she is risk-averse (or risk-avoiding). When the indi-
vidual has ρ = 1, then we say she is risk-neutral. Finally, we
say an individual is risk-prone (or risk-seeking) when ρ > 1.

Repeated Experiments and Bias. It should be noticed
that the setting described above models only a single trial
of a PDW experiment. This might look inadequate since the
experiments use many trials. However, the utility of a sub-
ject for the whole experiment can be safely assumed to be
the sum of the utility obtained at every single trial. (Note
that we do not need a discount factor, since typically all the
trials happen at around the same time.) Therefore, for our
objectives it is enough to consider mechanisms for a sole
trial.

Nevertheless, the fact that the trials are repeated adds
some externalities we need to take into consideration. In-
deed, a subject can use her knowledge of the previous trials
to form a bias about the possible outcome, and, in turns, this
bias can influence her decision. Note that, since no feedback
and no money is given at any trial, there is no way for the
subject to develop confidence or bias about (the correctness
of) her awareness. Hence, we only consider bias as an ex-
pectation about the outcome of the next trial.

Different models, named bias influence rules, describe
how the bias affects the subject’s decision, e.g., (Chater and
Oaksford 2008; Gal and Pfeffer 2008). Here, we assume a
very general model: if outcome x has unbiased probability
π of arising, then a subject with bias β will assign to x prob-
ability pβ(π).

Mechanisms that Measure Awareness
We begin by formally defining the choice function that we
want to implement. Our aim is to distinguish whether the
signal has been perceived with some awareness or not, i.e.
αs 6= 1

2 or αs = 1
2 . For this reason, we need that f(x) 6=

f(1/2) for any x 6= 1
2 . Note that this defines an infinite fam-

ily of functions, that we denote as binary choice functions.

Post-Decision Wagering. We now cast the PDW protocol
in the mechanism design framework. The set of allowed out-
comes is X = {−H,−L,L,H} with L < H . We can in-
terpret X as possible amount of money received (when pos-
itive) or to pay (when negative). The utility that a subject of
type t associates to an outcome x ∈ X is simply ut(x) = x
and is therefore independent from t.

PDW is an indirect mechanism with strategy set {(b, w) |
b ∈ {0, 1} ∧ w ∈ {L,H}}. Recall that in PDW if the ex-
perimenter’s signal is s, then for an input action (b, w), the
wagerw is won if b = s and lost otherwise, i.e., g(b, w) = w
if b = s and g(b, w) = −w otherwise. Therefore, PDW has a
probabilistic output function g that on input the action (b, w)
returns a lottery λ; λ assumes value w with the probability

of the event “b = s” and value −w with the probability of
the event “b 6= s”.

Next theorem shows mathematically when the “informal”
claim of (Persaud, McLeod, and Cowey 2007) is true.

Theorem 1. PDW implements a binary choice function if
and only if the subject is rational, risk neutral and has no
bias on the outcomes.

Proof. Let us start by proving the “if” direction. Specif-
ically, we prove that PDW implements the following spe-
cific binary choice function: f(y) = D−(y) if y ∈ [0, 1/2),
f(y) = U if y = 1/2, and f(y) = D+(y) if y ∈ (1/2, 1],
where D+(y) (D−(y), respectively) is a distribution which
returns H with probability y (1 − y, respectively) and −H
with probability 1 − y (y, respectively); U is, instead, the
uniform distribution over {L,−L}.

Let us describe the expected utility of the subject for
the PDW mechanism. By definition of PDW, we have
uαs(g(b, w)) = (−1)1−b · w · αs + (−1)b · w · (1 − αs),
where we have used the assumptions that the subject is risk
neutral and has no bias. Indeed, the subject’s perceived prob-
ability that s = 1 is exactly αs. Thus declaring (1, w) gives a
reward of w with such a probability and a loss of w with the
remaining probability, whereas declaring 0 just inverts re-
wards with losses. Note that, by rationality, the subject aims
to maximize uαs(g(b, w)). It is not hard to check that (1, H)
is a dominant strategy and g((1, H)) = f(αs) if αs > 1

2 ;
(0, H) is a dominant strategy and g((0, H)) = f(αs) if
αs < 1

2 ; and, finally, (0, L) is a dominant strategy for
αs = 1

2 with g((0, L)) = f(1/2).
As for the “only if” direction, we first observe that if the

subject is not rational, then PDW has no way to distinguish
if the action played falls in the rational responses or the ir-
rational ones. Hence, if, for example, the subject bets low,
then for the experimenter it is impossible to distinguish if
this behavior derives from the unawareness of the signal or
from the inability to maximize utility.

If the subject has a bias β on the possible signal s, then her
utility will differ. In details, now uαs(g(b, w)) = (−1)1−b ·
w ·pβ(αs)+(−1)r ·b·(1−pβ(αs)), where pβ(αs) represents
the probability according to which the subject expects that
s = 1 as function of bias and awareness. Thus, the subject
will answer according to this updated utility function. How-
ever, PDW has no way to learn αs from pβ(αs) and, hence,
it is not possible to distinguish if a low bet corresponds to
αs = 1/2 or to pβ(αs) = 1/2 but αs 6= 1/2.

If the subject is risk-averse, that is ρl > ρw, then there
is no outcome that turns out to be “reserved” to αs = 1

2 .
Indeed, subject’s utility is now uαs(g(b, w)) = (−1)1−b ·
w ·αs · (ρw/ρl)b− (−1)b ·w · (1−αs) · (ρw/ρl)1−b

. Thus,
if αs ≤ ρw

ρw+ρl
, then uαs is maximized by declaring (0, H),

whereas for ρw
ρw+ρl

< αs <
1
2 , the utility is maximized by

declaring (0, L). Symmetrically, if αs ≥ ρl
ρw+ρl

, then uαs
is maximized by declaring (1, H), whereas for 1

2 < αs <
ρl

ρw+ρl
, the utility is maximized by declaring (1, L).

Finally, if the subject is risk-seeking, i.e., ρl < ρw, then
there is no outcome that is “reserved” to the case αs 6= 1

2 .
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Indeed, the subject’s utility for αs = 1
2 is uαs(g(b, w)) =

1
2 · w · (ρ− 1) , which is maximized by declaring (1, H) or
(0, H). However, (1, H) is also the dominant strategy when
αs = 1 and (0, H) is dominant when αs = 0.

A Risk-Independent Truthful Mechanism. Let us now
consider direct revelation mechanisms and therefore fo-
cus on truthful implementations of choice functions. These
mechanisms allow to implement a choice function that is
more fine-grained than that of Theorem 1, as we will be able
to “measure” all the possible values of awareness level and
not just distinguish awareness from unawareness.

Let us now define the mechanism. For a number x ∈
[0, 1], we let Ix be 1 if x ≥ 1/2 and 0 otherwise. Our mech-
anism requires the subject to report a number x ∈ [0, 1]. The
desideratum is that x is exactly the subject’s awareness level.
To this aim, the mechanism does the following: If Ix = s
then the subject wins W otherwise she pays W , where W is
any positive value. We call the mechanism D-PDW.

The utility that a subject of type t and risk attitude ρ at-
taches to the output of D-PDW, in input a declaration x, is
then

ut(x) = (−1)1−Ix ·W ·ρIx · t+(−1)Ix ·W ·ρ1−Ix · (1− t).

We want to prove that this mechanism gives the right incen-
tives to the subject, that is, her utility is maximized when
declaring her true type. Formally, we want to satisfy the
following inequalities: ut(t) ≥ ut(x) for all t, x ∈ [0, 1].
To prove this, we adopt the well-known cycle-monotonicity
technique (Rochet 1987). We set up a weighted graph, called
the declaration graph, associated to the algorithm above,
with a vertex for each possible declaration, i.e., for each
x ∈ [0, 1] and an arc between vertices x and y with weight
δ(x, y) = ux(x) − ux(y), encoding the loss that a bidder
whose type is x incurs into by declaring y. The following
result relates the existence of negative edges in the declara-
tion graph to the truthfulness of the algorithm.

Theorem 2. (Rochet 1987) If the declaration graph associ-
ated to the algorithm does not have negative-weight edges
then the algorithm is truthful. If the graph has only positive-
weight edges then the algorithm is strictly truthful.

By using this result, we can prove that D-PDW is truthful,
regardless of the risk attitude of the subject.

Theorem 3. D-PDW is a risk-independent truthful mecha-
nism if the subject is rational and has no bias.

Proof. Each edge of the graph associated to D-PDW has
a non-negative weight. Indeed, for each t ≤ 1

2 , δ(t, x) =

(ρW (1− t)−Wt)− (ρW (1− t)−Wt) = 0 if x ≤ 1
2 and

δ(t, x) = (ρW (1− t)−Wt) − (ρWt−W (1− t)) ≥ 0,
otherwise. The case for t > 1/2 is symmetric and hence
omitted. The theorem then follows from Theorem 2.

Strictly Incentivizing Truth-telling. PDW and D-PDW
are not strictly truthful, a requirement that appears to be use-
ful in this context. We build upon D-PDW in order to guar-
antee this property at the cost of losing risk-independence.

The new mechanism also requires, as D-PDW, the sub-
ject to report a number x ∈ [0, 1]; we let Ix denote the
closest integer to x as above. Differently from D-PDW, re-
wards and losses here depend on the declaration. Specif-
ically, the mechanism, that we call S-PDW, runs as fol-
lows: If Ix = s, then the subject wins W (x), otherwise
she pays L(x), where W (x) = 3

2x
2 − x3 if x ≥ 1

2 and
W (x) = 3

2 (1 − x)2 − (1 − x)3, otherwise, and L(x) = x3

if x ≥ 1
2 and L(x) = (1− x)3, otherwise.

The utility that a risk-neutral subject of type t attaches to
the output of the algorithm above, in input a declaration x,
is then ut(x) = W (x) · t − L(x) · (1 − t) if x ≥ 1/2, and
ut(x) = W (x) · (1− t)− L(x) · t, otherwise.

Theorem 4. If the subject is rational, risk neutral and has
no bias then S-PDW is strictly truthful. Additionally, the sub-
ject never experiences negative utility by truth-telling.

Proof. Fix t ≥ 1
2 . By looking at its prime derivative, ut(x)

is increasing for x ∈ [1/2, t] and decreasing for x ∈ [t, 1].
Hence, for any x ≥ 1/2, with x 6= t, we have δ(t, x) =
ut(t) − ut(x) > 0. Similarly, it turns out that ut(x) is in-
creasing for x ∈ [0, 1/2]. Hence, for x < 1/2, δ(t, x) =

ut(t) − ut(x) > ut(t) − ut(1/2) = t3

2 −
3t
8 + 1

8 ≥ 0. The
case for t < 1

2 is symmetric and hence omitted.
Strict truthfulness then follows from Theorem 2 and the

assumptions of rationality, risk neutrality and no bias.
The non-negativity of truth-telling subjects’ utility fol-

lows from ut(t) ≥ max{t3,(1−t)3}
2 ≥ 0 for any t ∈

[0, 1].

Note that the values of functions W and L given above
are only illustrative. There are indeed many other choices
for these functions guaranteeing strict truthfulness.

The above mechanism works also in presence of a known
risk attitude ρ by simply dividing the function W defined
above by ρ. However, we might wonder if there is a mech-
anism that is able to strictly distinguish unawareness, i.e.
αs = 1

2 , from awareness, i.e. αs 6= 1
2 , regardless of the

specific value of ρ. Formally, we consider the question of
whether it is possible to design a risk-independent mecha-
nism that strictly implements a binary choice function. Next
theorem shows that this is impossible.

Theorem 5. There is no risk-independent mechanism that
strictly implements a binary choice function.

Proof. By the revelation principle, we can restrict our atten-
tion to direct mechanisms and strict truthfulness. According
to (Blumrosen and Feldman 2006), since we would like to
implement a binary choice function, we can assume that the
subject has a restricted action space consisting only of t=
corresponding to αs = 1

2 and t 6= corresponding to αs 6= 1
2 .

Since we are assuming risk independence, the only free pa-
rameters of the mechanism are the value 0/1 of the signal
and the subject’s declaration. Thus, for any subject’s dec-
laration x ∈ {t=, t6=}, we can have only two possible out-
comes whose realization depend on s. So, let W1(x) and
W0(x) denote the pair of outcomes corresponding to the

890



declaration x. We can assume w.l.o.g. that the subject eval-
uates an outcome o exactly o. Thus, the expected utility of
a subject with type t and risk attitude ρ in declaring x is
ut(x) = W1(x)·ρ·pt+W0(x)·(1−pt), ifW1(x) ≥W0(x),
and ut(x) = W1(x) · pt + W0(x) · ρ · (1 − pt), otherwise,
where pt is the probability that the subject assigns to the sig-
nal being 1, i.e., pt = 1/2 if t = t= and pt 6= 1/2 otherwise.
(We make no assumption on W1(·) and W0(·) and we leave
to the bigger of the two the role of rewards.)

Assume that W1(t=) ≥ W0(t=) and W1(t6=) ≥ W0(t6=).
Then, by strict truthfulness, it must be that W1(t=) · ρ · 1

2 +

W0(t=)· 12 > W1(t6=)·ρ· 12 +W0(t6=)· 12 andW1(t6=)·ρ·pt+
W0(t6=)·(1−pt) > W1(t=)·ρ·pt+W0(t=)·(1−pt). Let us
set ∆1 = W1(t=)−W1(t6=) and ∆0 = W0(t6=)−W0(t=).
Then, we must have ∆1 >

1
ρ∆0 and ∆1 <

1−pt
ρ·pt ∆0. Since,

by risk independence, both ∆1 and ∆0 cannot depend on
ρ, it is impossible to satisfy both these conditions for any
possible value of ρ. E.g., consider ∆0 > 0 and ρ ≥ ρmin,
for some ρmin > 0. The above two inequalities yield ρ−1 <
∆ = ∆1

∆0
< 1−pt

ρ·pt . Now, it is either that ∆ ≥ 1/ρmin (in
which case, the r.h.s. inequality is false for ρ ≥ 1−pt

pt
ρmin)

or ∆ < 1/ρmin (l.h.s. inequality false for ρ = ρmin).
Similar arguments work if we invert the order between

W1(t=) and W0(t=) or between W1(t6=) and W0(t6=).

Dealing with Bias. We start by showing that the same
ideas underlying the mechanisms described above can be
reused for providing us an useful tool for handling bias on
its own.
Lemma 1. There is a truthful mechanism according to
which a rational subject declares exactly her own bias.
Moreover, if the risk attitude of the subject is known, the
mechanism can be made strictly truthful.

Proof. Consider D-PDW where x is the reported bias in-
stead of the reported awareness level. We assume to run the
mechanism before the actual trial (i.e., before that the ex-
perimenter sends the signal to the subject). As mentioned
above, we delay the payment to just after the experiment.
Since the bias is reported before the signal is sent and, hence,
before the awareness level is generated, the subject’s util-
ity depends only on her real bias t, possibly different from
the declared bias x, and not on the awareness level. That is
ut(x) = (−1)1−IxWt + (−1)IxW (1 − t). The result then
follows from Theorem 3. By using S-PDW in place of D-
PDW, Theorem 4 proves strict truthfulness.

For sake of readability let us distinguish the application
of the D-PDW mechanism for the bias from the one for
the awareness level, by naming the former as BD-PDW and
the latter as AD-PDW. It looks then natural to sequentially
compose BD-PDW and AD-PDW to have successful ex-
periments also in presence of bias. Unfortunately, this does
not work without further assumptions. Indeed, as described
above, the utility that the subject attaches to AD-PDW in
presence of bias β, does not depend only on the awareness
level αs, but it is a function pβ(αs) of both the awareness
level and the bias. Thus, when we assume bias is present,

AD-PDW cannot be able to learn the awareness level, but
just the output pβ(αs) of the bias influence rule, from which
it may be not possible to know the awareness level.

For example, if the bias influence rule is given by an av-
erage of awareness level αs and bias β weighted by weights
wαs and wβ , i.e., pβ(αs) =

wαsαs+wββ
wαs+wβ

, then the compo-
sition of the two mechanisms only allows to known β and
wαsαs+wββ
wαs+wβ

. But this is not sufficient to extract αs. How-
ever, if the experimenter knows how the subject mixes her
prior knowledge with the awareness, then we can compose
the mechanisms, and we have the following theorem.
Theorem 6. If the bias influence rule is known, then there
is a truthful mechanism for measuring awareness of ratio-
nal subjects. Moreover, if also the risk attitude is known, the
mechanism can be made strictly truthful.

The theorem above replaces the assumption of no bias
with the knowledge of the bias influence rule. Thus, it is
natural to ask whether we can weaken the latter requirement
or completely remove it.

Our idea is to have some control on the external environ-
ment so to “guide” the subject’s bias towards situations that
we know how to handle. In the following, we give a result
following this line of thought.

Assume that the bias is simply a measure of the unpre-
dictability of the next output. Formally, consider the binary
string representing the values 0/1 of the signal in the previ-
ous trials of the experiment. Then, we assume the bias de-
pends only on some randomness measure of this string (there
are a plenty of them, some of theoretical flavor, such as the
Kolmogorov complexity, and some using statistics, such as
frequency tests). Thus, we expect that no bias exists when
the input string is evaluated as being random, whereas bias
is likely to arise when it appears to follow some pattern, and
thus it is likely for the subject to predict the next output.

However, it is possible to prove that a string taken uni-
formly at random will be evaluated as random regardless of
the randomness measure we are considering. More specifi-
cally, by a simple counting argument, any randomly selected
string of n bit will have Kolmogorov complexity at least
n−c, for some c < n, with probability at most 1−2−c. Since
any randomness measure must be bounded from below by
Kolmogorov complexity (i.e. strings with high Kolmogorov
complexity should be declared random by any randomness
test) then the result can be extended as desired.
Theorem 7. If the experimenter chooses the signal uni-
formly at random and the subject bias depends only on some
randomness measure on the outputs of previous trials, then
there is a truthful mechanism for measuring awareness in a
rational subject that works for almost any experiment with
high probability. If also the risk attitude of the subject is
known, the mechanism can be made strictly truthful.

Learning How the Awareness Arises
Assume there is a discrete probability distribution Ds such
that, ceteris paribus, the awareness level of the subject when
she receives the signal s is α with probability Ds(α). Can
we then learn Ds? That is, can we learn how often (and how
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strongly) the subject is aware of the received signal? And
how many trials do we need in order to be confident that the
computed distribution closely approximates Ds?

Interestingly, a simple application of the Hoeffding bound
shows that with a relatively small number of trials our pro-
posed mechanisms can compute a distribution that is “close”
to Ds.

Theorem 8. If the true awareness can be learned at each
experiment, then, for each ε > 0 we can learn a distribution
D′s that has total variation distance at most ε from Ds, by
repeating the experiment Õ

(
|Supp(Ds)|2/ε2

)
times, where

Supp(Ds) denotes the support of Ds.

Conclusions
We proved that PDW is a good tool to measure awareness,
if and only if the experiment is run on fully rational, risk
neutral subjects who have no bias. Inspired by PDW, we
provide new mechanisms that allow to measure awareness
under different hypotheses on subject’s rationality, risk atti-
tude and bias. These results are proved via a novel connec-
tion between awareness and mechanism design/game theory
(and then, in a larger sense, rationality). Moreover, our study
improves the state of the art in neuroscience by recognizing
and studying factors that can influence the subjects’ wagers.

Our mechanisms require the subject to behave rationally.
While the simplicity of our mechanisms can be advocated
for the validity of such an assumption, this represents a prac-
tical limitation inherited by PDW. For example, when it is
not possible to infer or train people in the lab to be utility
maximizers then PDW and any of our mechanisms become
ineffective. It is an interesting open problem to come up with
ideas of experiments allowing, at the very least, a loose con-
trol on the rationality (and/or risk attitude, bias, etc.) of sub-
jects under experimentation. This will make practically ef-
fective the purely theoretical contribution of our theorems.
Nevertheless, we believe that our theoretical results have
nontrivial implications and can inspire the design of new
protocols fitting real experimental settings.

The general question of interest here seems to be the re-
lation between rationality and consciousness. Where does
rationality stand in the frontier between consciousness and
unconsciousness? Such a question should consider claims
about our unconscious rationality (Beck et al. 2008).
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