Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

A Faster Core Constraint Generation Algorithm for Combinatorial Auctions

Benedikt Biinz
Department of Computer Science
Stanford University
buenz@cs.stanford.edu

Abstract

Computing prices in core-selecting combinatorial auc-
tions is a computationally hard problem. Auctions with
many bids can only be solved using a recently proposed
core constraint generation (CCG) algorithm, which may
still take days on hard instances. In this paper, we
present a new algorithm that significantly outperforms
the current state of the art. Towards this end, we first
provide an alternative definition of the set of core con-
straints, where each constraint is weakly stronger, and
prove that together these constraints define the iden-
tical polytope to the previous definition. Using these
new theoretical insights we develop two new algorith-
mic techniques which generate additional constraints in
each iteration of the CCG algorithm by 1) exploiting
separability in allocative conflicts between participants
in the auction, and 2) by leveraging non-optimal solu-
tions. We show experimentally that our new algorithm
leads to significant speed-ups on a variety of large com-
binatorial auction problems. Our work provides new in-
sights into the structure of core constraints and advances
the state of the art in fast algorithms for computing core
prices in large combinatorial auctions.

1 Introduction

Combinatorial auctions (CAs) have found application in
many real-world domains, including procurement auctions
(Sandholm 2007), TV advertising auctions (Goetzendorff et
al. 2014) and government spectrum auctions (Cramton 2013;
Ausubel and Baranov 2014). CAs are attractive, as they can
produce efficient outcomes even when bidders have complex
preferences on bundles of heterogeneous items. However,
the construction of such auctions requires myriad design de-
cisions, even if we limit the scope to sealed bid mechanisms.
First, a potential design must include a reasonable bidding
language for participants to use; many have been proposed
in the literature, e.g., XOR, OR*, etc. (Nisan 2006). Next, a
means for solving the NP-hard winner-determination prob-
lem must be obtained (Sandholm 2002). Finally, the de-
sign must specify a payment mechanism. The classic answer
to this latter question is the well-known VCG mechanism,
where agents pay the externality they impose on all other
agents (Vickrey 1961; Clarke 1971; Groves 1973).

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sven Seuken
Department of Informatics
University of Zurich
seuken @ifi.uzh.ch

827

Benjamin Lubin
Information Systems Department
Boston University School of Management
blubin@bu.edu

However, as has been pointed out in the literature
(Ausubel and Milgrom 2006), there are numerous issues
with VCG, most notably that it may result in arbitrarily low
revenue to the seller. This not only creates a strong disin-
centive for sellers to use VCG, but also opens the possibility
that collusive collections of bidders may be able to come to-
gether with an outside offer that is more attractive than that
in VCG, undermining the VCG-based regime. This observa-
tion has led to considerable interest in core-selecting com-
binatorial auctions (Ausubel and Milgrom 2002; Milgrom
2007; Day and Milgrom 2008), which offer a principled way
to ensure that revenue in the auction is guaranteed to be high
enough to avoid such incentives towards collusion.

However, solving this economic problem has created a
computational one, as the naive formulation of the pricing
problem requires computing the optimal allocation for all 2"
coalitions to describe the core polytope. The state-of-the art
approach is to use constraint generation to consider only the
most valuable coalitions, which leads to a moderate num-
ber of constraints in expectation (Day and Raghavan 2007).
Nevertheless, run-time is still a limiting factor in practice.

1.1 Overview of Results

In this paper, we propose several novel methods for speed-

ing up the core pricing algorithm by reducing the number

of CCQG iterations in the algorithm, and thus the number of

NP-hard problems that need to be solved. We offer:

1. Limits on the effectiveness of an existing heuristic.

2. Theoretical results that enable stronger and more precise
core constraints.

3. Two algorithmic ideas that generate additional constraints
in each CCG iteration by exploiting separability in alloca-
tive conflicts between participants and by leveraging non-
optimal solutions.

4. Experimental results, showing that our main algorithm
significantly outperforms the current state of the art.

1.2 Related Work

This paper directly extends the earlier work of Day and
Raghavan (2007), where they propose to use constraint gen-
eration to concisely codify the pricing problem in core-
selecting CAs. We also include more recent advances, pro-
posed by Day and Cramton (2012), where core prices are
chosen that minimize the Lo metric to VCG.

The constraint generation method dates back to the 50s,
as a way to solve math programs that contain too many con-
straints to capture directly (Dantzig, Fulkerson, and Johnson
1954; Balinski 1965). Instead of solving the full program at
once, the primary problem is solved with only a subset of its
constraints yielding a provisional solution. Then a secondary
problem is formulated using this provisional solution, the re-
sult of which yields either a new constraint for the primary,
or a proof that the primary is already correct. The algorithm
iterates between the two problems, until such a proof is ob-
tained (Nemhauser and Wolsey 1988). Such methods have
found wide applicability in the operations literature in areas
such as airline scheduling (Hoffman and Padberg 1993) and
portfolio optimization (Kiinzi-Bay and Mayer 2006).

2 Preliminaries

In a combinatorial auction (CA), there is a set G of m dis-
tinct, indivisible items, and a set N of n bidders. Each bidder
1 has a valuation function v; which, for every bundle of items
S C @G, defines bidder ¢’s value v;(S) € R, i.e., the maxi-
mum amount that bidder ¢ would be willing to pay for S. To
simplify notation, we assume that the seller has zero value
for the items. However, all of our results also hold for set-
tings where the seller has non-zero value for the items (see
Day and Cramton (2012) for a discussion on how to handle
reserve prices in core-selecting payment rules).

We let p; € p denote bidder i’s payment, and we as-
sume that bidders have quasi-linear utility functions, i.e.,
u;(S,p;) = v;(S) — p;. Bidders may make a non-truthful
report about their value function to the mechanism. How-
ever, in this paper we do not study the incentive properties
of the payment rule, and thus we do not need to distinguish
between the agents’ true value and their value report. To sim-
plify notion, we use v; to denote an agent’s report, as this
is what the mechanism gets as input. Additionally, we will
assume in our notation that bidders use the XOR bidding
language, but all of our theoretical results in Section 4 will
apply to any bidding langue.

We define an allocation X = (X1,...,X,) C G™ as
a vector of bundles, with X; C G being the bundle that ¢
gets allocated. An allocation X is feasible if X; N X; =
(0 Vi, € N,i # j. We let X denote the set of feasible
allocations. With each allocation X we associate a coalition
C(X) = {ili € N,X; # 0}, ie., those agents that get
allocated under X. We define the total value of allocation
X to agents C as Vo (X) = > ;.o vi(X5). If we omit the
subscript C' we assume it to be N, i.e., V(X) = Vn(X).

A mechanism’s allocation rule maps the bidders’ reports
to an allocation. We consider rules that maximize social wel-
fare, which can be formalized as an integer program (IP) ac-
cording to the details of the bidding language. We denote
the solution to this as wd(N) = argmaxy V(X), subject
to X € X, when the bids of all bidders are considered in the
maximization. When only the bids of the coalition C' shall
be considered, we write wd(C') = arg max y Vo (X).

A mechanism specifies an allocation rule, defining who
gets which goods, and a payment rule, defining prices. To-
gether, these define the auction’s outcome, denoted O.

828

2.1 Core-selecting Combinatorial Auctions

With this background, we are ready to consider appropri-
ate payment rules for CAs. The famous VCG mechanism
(Vickrey 1961; Clarke 1971; Groves 1973) is an appeal-
ing candidate because it is strategyproof (i.e., no individ-
ual bidder can benefit from misreporting his value). Unfor-
tunately, in CAs where some items are complements, us-
ing VCG may result in an outcome outside of the core.
Informally, this means that a coalition of bidders is will-
ing to pay more in total than what the seller receives from
the current winners. To avoid such undesirable outcomes,
recent auction designs have employed payment rules that
restrict prices to be in the core (Day and Milgrom 2008;
Day and Raghavan 2007).

Formally, given outcome O, we let the coalition Co de-
note the set of bidders who are allocated under outcome O.

Definition 1 (Blocking Coalition). An outcome O is
blocked, if (a) it is not individually rational, or (b) there
exists another outcome O which generates strictly higher
revenue for the seller and for which every bidder in the cor-
responding coalition Co weakly prefers O over outcome O.
The coalition Cop is called a blocking coalition.

Definition 2 (Core). An outcome that is not blocked by any
coalition is called a core outcome.

We can restrict our attention to allocation rules that are
efficient because all inefficient outcomes are not in the core.
Thus, it suffices to think about the payments, and the re-
maining challenge is to find payments that lie in the core.
Intuitively, the payments for the winners must be sufficiently
large, such that there exists no coalition that is willing to pay
more to the seller than the current winners are paying.

Formally, we let W denote the set of winners. Given W
and p, the opportunity cost of already-winning members of
the coalition C'is Vo (wd(N)) — >, c o pi- Thus, the condi-
tion that p lies in the core can be expressed as follows (Day
and Raghavan 2007):

> pi = V(wd(C)) = Ve(wd(N)) +> p; YVCCN (1)

ieW ieC
This means that the core polytope can be defined by having
one constraint for each possible coalition C' C N. The left-
hand side (LHS) of each constraint is the sum of the win-
ning payments; the right-hand side (RHS) is the value of the
agents in coalition C for the allocation chosen if only their
bids are considered, i.e., V (wd(C)), minus the opportunity
cost of already-winning members of the coalition. Because
pi = 1 € W N C appears on both sides, and because p; = 0
for ¢ & W, the core constraints can be simplified to:

3" pi 2 V(wd(C)) — Ve(wd(N)) VYC C N
iEW\C

Note that the core is defined in terms of bidders’ true val-
ues. However, given that no strategyproof core-selecting CA
exists, we must expect that bidders will be non-truthful. Go-
eree and Lien (2014) have recently shown via a Bayes-Nash
equilibrium analysis that the outcome of a core-selecting CA
can be outside the true core. Thus, core-selecting CAs only
guarantee to produce outcomes in the revealed core, i.e., in

the core with respect to reported values.

(@)

2.2 Core-constraint Generation (CCG)

Because the number of core constraints is exponential in n,
it is impossible to enumerate them for even medium-sized
CAs; fortunately we can often consider only a small fraction
of them by using the method of constraint generation as de-
scribed by Day and Raghavan (2007). This iterative method
applies the following two steps in each round ¢:

1. find a candidate payment vector p’ given all core con-
straints generated so far

2. find the most blocking coalition (if any), given the current
candidate payment vector pt

The algorithm is initialized using the VCG payments p"V©C
as the first payment vector. Step (2) then requires solving the
following IP:

2(p") = max 3 57 wi(S)yf — 3 (viwd(N) — ph)yi 3)

ieN SCG iew

subject to Z ny <1 Vjed 4)
S2{j}ieN
>yl <1 Vie N\W)
SCaG
Syi <y view ©)
SCG
v €{0,1},y7 €{0,1} VieN,SCG (1)

In this IP, we have two kinds of decision variables. First,
for all bidders 1, ~; is equal to 1 if bidder ¢ is part of the most
blocking coalition. Second, for all ¢, and all bundles of goods
S Cd@, yf is equal to 1 if bidder 7 is part of the most block-
ing coalition and is allocated bundle S. Note that v; (wd(N))
denotes bidder i’s value for the efficient allocation.

This IP essentially solves the winner determination prob-
lem, but where winning bids are reduced by their oppor-
tunity cost. The objective z(p') represents the coalitional
value of the most blocking coalition, i.e., the maximum total
payment which the coalition would be willing to offer the
seller. If this amount is equal to the current sum of the win-
ners’ payments (i.e., if z(p") = >, p!), then no blocking
coalition exists, and the overall algorithm terminates. Other-
wise we can utilize the constraint set (2) to create the con-
straint } ey or Pi = 2(P7) = Yiewner Pi . where C7
denotes the coalition identified in round 7 of the algorithm.
This is then added to the following LP, which is solved to
find the candidate price vector for the next iteration:

p' = arg min Z Di ®)
iew
subject to Z pi > z2(p") — Z p; Vr<t (9
iEW\C™ iewncT
P < pi < vi(wd(N)) VieW. (10)

This LP will find a new candidate price vector, where
each p; is lower bounded by i’s VCG payment and upper-
bounded by #’s bid. Additionally, the prices will obey all

829

core constraints (9) that have been added in any prior it-
eration. Here, the objective of the LP is to minimize to-
tal bidder payments, which Day and Raghavan (2007) ar-
gue reduces the total potential gains from deviating from
truth-telling. However, this does not result in a unique price
vector. Parkes, Kalagnanam, and Eso (2001) originally in-
troduced the idea of finding payments that minimize some
distance metric to VCG payments. Following this idea, Day
and Cramton (2012) propose to minimize the L, norm to
VCG by solving a Quadratic Program (QP), which produces
a unique price vector in every iteration of the algorithm. This
is also the approach taken in practice for the most recent
spectrum auctions in the UK, the Netherlands, and Switzer-
land. For this reason, we also adopt the Lo norm for our
experiments in Section 6.

3 The Max-Traitor Heuristic

In running CCG, it is often the case that multiple blocking
coalitions have the same coalitional value, and thus we have
a choice over which specific core constraint to add in a par-
ticular iteration. Day and Cramton (2012) briefly mention in
their appendix that it might be helpful to minimize the car-
dinality of W \ C as a secondary objective when searching
for the most blocking coalition. This is equivalent to max-
imizing W N C, i.e., the number of winners in C, which
we henceforth call traitors. We use the term Max-Traitor
heuristic to refer to the algorithm that generates constraints
with a maximal number of traitors (given the same coali-
tional value).

One intuition as to why this heuristic may be helpful is
that it will decrease the number of variables in a gener-
ated constraint, thereby strengthening it. We will build upon
this intuition to strengthen the core constraints themselves
in Section 4. The following example demonstrates why the
Max-Traitor heuristic can be useful:

Bidder 1: {A}=10 Bidder 3: {C}=10
Bidder 2: {B}=10 Bidder 4: {A,B}=6

Bidders 1, 2 and 3 form the winning coalition with a total
value of 30. Two different coalitions with coalitional value
6 are available: {4} and {3, 4}. The former coalition, which
contains no traitors, induces the constraint:

p1+p2+p3>6 (11)

resulting in provisional payments of (2,2,2,0) when first
minimizing the sum of all payments, and then minimizing
the Lo metric to VCG. The coalition {3, 4}, which contains
a traitor (Bidder 3), induces the constraint:

p1+p2>6 (12)

This constraint is stronger, as it contains fewer variables, and
immediately leads to the final core payments of (3,3,0,0).

Day and Cramton (2012) state in their appendix that
among their test cases, maximizing the set of traitors never
led to constraints that were non-binding at termination of the
algorithm. However, we have been able to identify exam-
ples where the heuristic produces non-binding constraints.
We now provide a representative example of how this occurs.

Bidder 1: {A}=10
Bidder 2: {B}=10
Bidder 3: {C}=10
Bidder 4: {D}=10

Bidder 5: {A,B,C,D,E}=12
Bidder 6: {A,B,E}=8
Bidder 7: {C,D.,E}=8

Bids {1,2,3,4} form the winning allocation with a value of
40. The VCG payments in this example are O for all bidders.
The unique most blocking coalition consists of Bidder 5 and
has a coalitional value of 12, which is higher than the current
total payments of 0. Thus, the generated constraint is:

p1+p2 +p3+ps > 12, (13)

This leads to the payment vector (3,3,3,3,0,0,0). Next, the
algorithm finds the blocking coalition consisting of {1,2,7}
with a coalitional value of 14, which is higher than the cur-
rent total payments of 12. The generated constraint is:

p3+ps =8 (14)

This leads to the payment vector (2,2,4,4,0,0,0).

Next, the blocking coalition {3, 4, 6} with coalitional
value 16 is selected, again with value greater than the cur-
rent payments of 12, and leading to the constraint:

p1+p2 > 8 (15)

This produces the final payment vector (4,4,4,4,0,0,0).
There does not exist a blocking coalition at this payment
vector, so the algorithm terminates. However, the constraint
(13) ends up being non-binding, even though we employed
the Max-Traitor heuristic. Note that this is a representative
example which does not exploit any particular corner case
of the bidding structure. This example not withstanding, the
Max-Traitor heuristic is often effective at reducing the run-
time of the CCG algorithm, yet, our algorithm dominates it
(see Sections 5 and 6).

4 Theoretical Results
4.1 Core of Non-Blocking Allocations

The core of an auction is generally defined in terms of coali-
tions. We now extend this definition to allocations. First, re-
member the definition we provided in Section 2.1:

C1: Y p; = V(wd(C)) — Ve(wd(N)) VC C N (16)
jew\c
‘We now formulate this constraint set in terms of allocations.

Y P 2 V(X) = Ve (wd(N))
JEMNC(X)

(C2): VX € X (17)

We will call any allocation X for which this constraint is
violated a blocking allocation. Proposition 1 shows that the
constraint set (C2) describes the same core prices as (C1),
even if it contains weakly more constraints.

Proposition 1 (Core of Non-Blocking Allocations). The
two sets of constraints (C1) and (C2) describe the same core.

Proof. We will show that for each constraint in one set there
exists a constraint in the other set that implies it. The two
constraint sets, therefore, must describe the same polytope.

830

“(C2) = (C1)”: Every constraint in (C1) corresponds
to a coalition C'. For every such C. there exists an allocation
X such that X = wd(C'). Thus every constraint in (C'1)
also exists in (C2).

“(C1) = (C2)”: Every constraint in (C2) corresponds
to an allocation X which in turn corresponds to a coali-
tion C(X). Because (C'1) contains one constraint for every
coalition. it also contains one for the coalition C'(X). Be-
cause the winner determination algorithm selects the value-
maximizing allocation for a given coalition. we know that
Vexy(wd(C(X))) > V(X). Thus, the constraint corre-
sponding to coalition C'(X) in (C1) is weakly stronger than
the corresponding constraint in (C2). O

Remark 1. The existence of a blocking allocation implies
the existence of a blocking coalition.

4.2 Core Conflicts

Let us now re-consider the first example from Section 3, and
the constraint (11) that was generated through the coalition
{4}. The constraint implicitly assumes that the coalition. i.e.
Bidder 4 cares about the Bidder 3’s payment, even though
the allocations from Bidder 3 and Bidder 4 are not in con-
flict. Bidder 4 in fact has 0 value for good C and Bidder 3
is single minded on good C. Thus, Bidder 4 should be indif-
ferent to Bidder 3’s payment. We will now show that we can
formalize this intuition and thereby generate a more power-
ful set of core constraints

We say that an allocation X! is in conflict with an allo-
cation X? if it is not feasible to simultaneously realize the
two allocations X' and X2. Analogously, a set of winners
W’ C W is not in conflict with an allocation X if there ex-
ists a feasible allocation X’ = X U wd(W"), where we let
“U” denote the natural combination of two allocations. Ob-
serve that in the example discussed above, winners 1 and 2
are in conflict with the allocation corresponding to coalition
{Bidder 4} but winner 3 is not, i.e. 1 and 2 receive goods
that bidder 4 wants.

As we have seen, some blocking allocations are not in
conflict with all winners W. Let Wx C W denote the set of
winners who are in conflict with an allocation X. By drop-
ping the non-conflicted winners from the left side of equa-
tion (C2), we get the following set of weakly stronger con-

straints:
>

(C3): pi = V(X)=Vox) (wd(N))
1EWX\C(X)

VX CX (18)

The following theorem shows that (C3) still describes the
same core polytope as (C1) and (C2). In Section 5, we will
show that this insight is valuable because it enables us to
generate, for any blocking allocation, a weakly stronger core
constraint while preserving the core polytope.

Theorem 1 (Weakly Stronger Core Constraints). The two
sets of constraints (C2) and (C3) describe the same core.

Proof. We follow the same structure as the previous proof:

“(C3) = (C2)”: For each constraint in (C2) there is a
corresponding constraint in (C3) defined on the same allo-
cation X. If all winners in W \ C(X) are in conflict with

X, then the two constraints are the same. If there exists a
winner in W\ C'(X) that is not in conflict with X, then we
have strictly fewer variables on the LHS of the constraint
in (C3) but the same (constant) terms on the RHS. Because
payments are positive and additive, we see that the constraint
in (C3) is strictly stronger. In both cases, the constraint in
(C3) implies the constraint in (C'2).

“(C2) = (C3)”: Each constraint in (C'3) corresponds to

some allocation X, and we let Wx denote the correspond-
ing set of winners that are in conflict with X. Let us call

the subset of wd(N) that allocates goods to W \ Wx, X.
We consider the constraint in (C2) that corresponds to the

allocation X U X. This allocation needs to be feasible be-
cause X and X are not in conflict. We can, therefore, infer
the following:

V(XUX)=V(X)+V(X) = V(X) + Vir\wywd(N) (19)
Since C(X U X) = C(X) U (W \ Wx) we can infer the
following on the opportunity value of C'(X U X)

Vexux)(wd(N)) < Vox)(wd(N)) 4+ Vipnwy, wd(N) - (20)

We can also infer that

WA\C(XUX)=W\(W\Wx)\C(X)=Wx\C @)
If we plug this into the constraint set (C2). we get:

Yoom= > p by 1) (22)
I€EWx\C(X) iEW\C(XUX)

> V(X UX) = Voxux) (wd(N)) by (C2) (23)

> V(X)) + Viwr\wy wd(N)— by (19) (24)

(Voo (wd(N)) + Virywy (wd(N))) by (20) (25)

= V(X) = Vex) (wd(N)) (26)

The constraint corresponding to X U X in (C2), therefore,
implies the constraint corresponding to X in (C3). O

The theorem as well as the constructive nature of the proof
indicates that for any constraint from constraint set (C2)
there exists a weakly stronger constraint in set (C3) that
can directly be constructed. ”Small” allocations that are in
conflict with only few winners are especially strengthened
through (C3).

4.3 Splitting up allocations

Our next results shows that we can split up allocations in the
constraint generation process under certain conditions.
Proposition 2. Consider an allocation X that consists of
two separable sub-allocations X1 and Xo such that X =
X1 U XQ and O(Xl) n O(XQ) - @ IfVVX1 n WX2 - @,
then the constraints corresponding to X1 and Xs imply the
constraint corresponding to X.

Proof. The constraint generated by X7 is:

> 2 V(X)) =V, (wd(N) (27)
iEWXl \C(Xl)
The constraint generated by X is:
Y. pi2 V(X)) - Vx(wd(N)) (28)

i€EWx,\C(Xa)

831

Bid 5
Value =4
Goods {A,B}

Winner 2
Value =10
Goods {B}

Winner 3

Bid 6 Bid7
Value =4 Value =4
Goods {C,E} Goods {D,F}
Winner 4
Value =10 Value =10
Goods {C,D} Goods {E,F}

Winner 1
Value =10
Goods {A}

Figure 1: Conflict Graph for “Separability Example.”

Because Wx, N1Wx, = 0 and C(X;)NC(X2) = 0. we can
add (27) and (28). leading to the constraint for X:

>

iE(WXl UWXQ)\C(X)

pi 2 V(X) = Vx(wd(N)). (29

O

We can use this proposition to speed our constraint gener-
ation algorithm, as we describe next.

5 Algorithmic Ideas

Based on the theoretical results derived in the previous sec-
tion, we now present two algorithmic ideas that improve
upon the standard CCG algorithm. The goal of both ideas
is to reduce the number of iterations of the CCG algorithm,
whilst not increasing the complexity of each iteration.

5.1 Exploiting “Separability”

Our first idea exploits certain structure in the conflicts be-
tween the winners and losers to split up core constraints,
which we can formally capture via a conflict graph (see Fig-
ure 1). The conflict graph for a blocking allocation X, given
a set of winners W, is a bipartite graph G = (C(X)UW, E)
with (i,j) € E if and only if j is in conflict with i’s allo-
cation. If the conflict graph is separable into disconnected
components (as in Figure 1, described next), then the corre-
sponding allocation can be split up, and multiple constraints
can be generated in one step (as described below).

Consider the example in Figure 1, where the bids of the
blocking coalition are modeled as light (yellow) nodes, the
winning allocations are modeled as dark (blue) nodes, and
conflicts as edges. Assume that the VCG payments lie at
the origin. A straightforward application of CCG would find
bids {5, 6, 7} as the most blocking allocation with a value
of 44444 = 12, which produces the following constraint:

p1 +p2 + ps +pas > 12. (30)

This constraint by itself leads to the payment vector of
(3,3,3,3,0,0,0). We now see that bids {6, 7} are still block-
ing, leading to the following constraint:

p3s +pa > 8. 31

The resulting payment vector is (2,2,4,4,0,0,0), which is also
the final payment vector.

Our first algorithmic idea called Separability exploits the
separability between the bidders. In particular, in our exam-
ple, Bid 5 is only in conflict with the allocations of winners
1 and 2, and bids 6 and 7 are only in conflict with the allo-
cations of winners 3 and 4. If we generate one constraint for
each separated allocation (strengthened via Theorem 1 and

Proposition 1), we get the following two constraints in one
step:

(32)
(33)

p1+p2 >4
p3+ps>8

Based on Proposition 1 we know that the new constraints
are not over-constraining the price vector, and based on
Proposition 2 we know that this split-up of the allocation
implies the original constraint p; + p2 + p3 +p4 > 12 (i.e.,
we are not under-constraining the price vector). Thus, our
algorithm is still guaranteed to terminate with the correct
core price vector. Indeed, the resulting payment vector after
adding these two constraints is (2,2,4,4,0,0,0). Thus, exploit-
ing the separability of the conflict graph, we reach the final
payment vector in just one iteration of the CCG algorithm
instead of two. Whenever the conflict graph is separable in
the way described, we can add multiple constraints in one
step. Note that this does not guarantee that the overall al-
gorithm will necessarily terminate in fewer steps. However,
our expectation is that, on average, this will reduce the num-
ber of CCG iterations, each of which requires the solution of
an NP-hard problem (finding a blocking coalition). We will
show in Section 6 that the Separability idea indeed leads to
a significant speed-up of the CCG algorithm.

5.2 Exploiting “Incumbent Solutions”

Our second algorithmic technique employs previously dis-
carded intermediate solutions to generate additional con-
straints that would otherwise not be included. Remember
that the CCG algorithm solves an IP in every iteration to
find the most blocking coalition, and the optimal solution to
this IP then corresponds to one new core constraint. We note
that every feasible, even non-optimal solution to this IP still
corresponds to a feasible allocation, which by Proposition 1
corresponds to a core constraint. The main idea of “Incum-
bent Solutions” is to collect all (non-optimal) incumbents
that are found while solving one instance of the IP, and to
add all corresponding core constraints at once. The motiva-
tion for adding core constraints based on sub-optimal solu-
tions is that these constraints may have been added in later it-
erations anyway (with some likelihood), and by adding them
earlier we can save the corresponding CCG iterations.
Fortunately, the majority of optimization algorithms for
solving IPs are tree-search algorithms (e.g., using branch-
and-bound). These algorithms automatically encounter in-
termediate solutions while searching for the optimal solu-
tion. In our experiments, we use IBM’s CPLEX to solve the
IPs, and the default branch-and-bound IP-solver automati-
cally collects all incumbent solutions without incurring ex-
tra work. We will show in Section 6 that the Incumbents idea
indeed leads to a significant speed-up of the CCG algorithm.

6 Experiments

To test the ideas proposed in Section 5, we ran experiments
using CATS (Combinatorial Auction Test Suite) (Leyton-
Brown and Shoham 2006). We used each of the standard
CATS distributions, as well as a simple legacy distribution
from the literature (Sandholm 2002) called Decay (aka L4).
We varied the number of goods between 16 and 256, and

832

the number of bids between 500 and 4,000. For each com-
bination of distribution, number of goods and number of
bids, we created 50 random CATS instances. In total we cre-
ated 1,550 instances and ran 9,300 experiments. The experi-
ments were run on a high-performance computer with 24 x
2.2GHZ AMD Opteron cores and 66GB of RAM. All math-
ematical programs were solved using CPLEX 12.6. The total
run-time of all experiments was more than 40 days.

6.1 Experimental Results

We present our primary results in Table 1. Each row repre-
sents a separate distribution, for which we report the number
of goods and bids that were used to generate the particu-
lar instance. As Day and Raghavan (2007) have shown, the
run-time of CCG scales exponentially in the number of bids
and goods. Accordingly, the run-times for smaller CATS in-
stances are often negligible. Therefore, Table 1 only includes
results for the largest instances we could solve. Note that all
problem instances reported in this table are larger than even
the largest instances reported by Day and Cramton (2012).
Our baseline is the standard CCG algorithm, for which we
report the run-time in minutes, averaged over the 50 runs.'
The standard deviation of the run-times per distribution is
provided in parentheses, to give an idea, for each of the dis-
tributions, how homogeneous or heterogeneous the problem
instances are. Next we present the relative run-time (as a
percentage of the baseline run-time) for Max-Traitor, Sep-
arability, Incumbents, and Separability + Incumbents. Note
that all algorithms share the same code-base, and only vary
regarding which particular constraint(s) they add in each it-
eration, making this a fair run-time comparison.

The results in Table 1 show that Max-Traitor already does
a bit better than standard CCG for most distributions. Next,
we see that Separability is roughly 50% faster on L4, Match-
ing and Paths, while it leads to only modest improvements
on the other three distributions. While Incumbents leads to
similar speed-ups on L4, Matching and Paths as Separabil-
ity, it is also able to significantly reduce the run-time on Ar-
bitrary, Regions, and Scheduling. But most importantly, we
can see (in the last column of Table 1) that “Separability
+ Incumbents” leads to the largest speed-up on four out of
the six distributions and is essentially tied with Incumbents
for the other two. For L4, Matching, and Paths, the com-
bined effect of both ideas is most visible: individually, each
idea leads to a run-time reduction between roughly 50% and
60%, but combining the two ideas we are able to bring this
percentage down to 28%-33%.

"Note that this is the run-time for the core constraint gener-
ation part of the algorithm only, and does not include the initial
run-time for computing VCG prices. We excluded the run-time for
computing VCG for two reasons: first, our ideas only affect the
core constraint generation part, and thus we are only interested in
measuring the resulting speed-up of that part of the algorithm. Sec-
ond, VCG-prices are just one possible reference point that can be
used in core-selecting CAs. Researchers have argued that other ref-
erence points could be used, e.g., the origin or well-chosen reserve
prices (e.g., Erdil and Klemperer 2010), neither of which would
require computing VCG prices.

Distribution | # Goods | # Bids || Standard CCG

| Max-Traitor | Separability | Incumbents | Separability + Incumbents

Arbitrary 128 1000 || 22:37 min (2:34)
Decay (L4) 256 2000 || 8:18 min (0:21)
Matching 256 2000 || 16:57 min (0:59)
Paths 256 4000 || 14:00 min (0:30)
Regions 256 2000 || 45:48 min (11:40)
Scheduling 128 4000 || 178:25 min (38:37)

101%
89%
83%
80%
93%
35%

95% 67% 61%
55% 60% 33%
56% 54% 32%
49% 55% 28%
93% 51% 51%
96% 23% 24%

Table 1: Results for all six distributions. Absolute run-times (in minutes) are provided for standard CCG (=baseline), with
standard error in parentheses. For all other algorithms, the relative run-time to the baseline is provided. All results are averages
over 50 instances. In each row, the algorithm with the lowest average run-time is marked in bold.

This speed-up is largely due to our algorithm reducing
the number of subordinate NP-hard IP problems that are
solved, as illustrated in Table 2. For each of the six distri-
butions, we report the correlation between the run-time of
“Separability + Incumbents” and the number of constraint
generation iterations of the algorithm. As we see, this cor-
relation is extremely high, except for Scheduling.? The last
column of Table 2 provides the worst run-time of “Separa-
bility + Incumbents” relative to standard CCG across all 50
instances. Thus, we observe that our algorithm performs ex-
tremely well, not only on average (as shown in Table 1), but
also in the worst case (somewhat less true for Scheduling).

To get a sense of how these results scale in the size of
the auction, consider Figure 2, where we plot the run-time
of “Separability + Incumbents” relative to standard CCG for
a fixed number of goods (the same as reported in Table 1),
increasing the number of bids on the x-axis. Note that we
exclude those data points were the average run-time for stan-
dard CCG is less than 250ms. Furthermore, each line ends
at the maximum number of bids that we were able to run, as
reported in Table 1. Figure 2 illustrates that the relative per-
formance advantage of our algorithm generally gets larger
as the number of bids is increased for all of the distributions
but Scheduling. In total, our results demonstrate that “Sepa-
rability + Incumbents” leads to a significant speed-up which
is often 50% or even larger, and the performance advantage
can be expected to grow as the number of bids is increased.

“Note that Scheduling has a significantly higher run-time vari-
ance than the other distributions; this occurs not only across the 50
instances (as reported in Table 1), but even across rounds for in-
dividual instances. Thus, all of our results for Scheduling have a
significantly higher margin of error.

C . Run-time & Iteration | Worst Relative
Distribution . .
Correlation Run-time

Arbitrary 0.83 104%
Decay (L4) 0.98 54%
Matching 0.96 61%
Paths 0.99 47%
Regions 0.91 101%
Scheduling 0.36 133%

Table 2: Correlation between run-time and # of CCG itera-
tions, and the worst run-time of “Separability + Incumbents”
relative to standard CCG (=baseline) across all 50 instances.

833

7 Conclusion

In this paper, we have made several contributions regard-
ing the design of a faster algorithm for core constraint gen-
eration in combinatorial auctions. First, we have character-
ized the limits of the Max-Traitor heuristic. Next, we have
proposed a new formulation of the core in terms of allo-
cations, which enabled us to generate weakly stronger core
constraints. Based on this theory, we have introduced two
algorithmic ideas. The first one takes advantage of struc-
tural separability in allocative conflicts between bidders. The
second one includes previously unused non-optimal solu-
tions that may become binding in later iterations. Both of
these ideas work by generating multiple (strong) constraints
in each iteration of the CCG algorithm to reduce the total
number of NP-hard problems that need to be solved to com-
pute core prices. Our experimental results using CATS have
shown that our main algorithm is significantly faster than the
current state-of-the-art algorithm across all distributions.

In real-world CAs, there is often a time constraint on how
long solving the pricing problem may maximally take. For
this reason, the auctioneer generally restricts the maximal
number of bids per bidder. Having an algorithm that is be-
tween two and four times faster will enable the auctioneer to
allow for additional bids, which will increase efficiency (and
thereby revenue/profits) of the auction. Given that CAs are
used to allocate billions of dollars of resources every year,
we expect our ideas to have a large practical impact.

100% -o-Arbitrary
90% -Decay (L4)
80% Matching
Run-time of 0% ><Paths
"Seperability 60% K \ —#Regions
Incumbents” 50% _/ Scheduling
Relative to 40% o -
Baseline 30% .)
20% V%\
10%
0%
0 500 1000 1500 2000 2500 3000 3500 4000
of Bids

Figure 2: Run-time of “Separability + Incumbents” relative
to standard CCG (=baseline), for a fixed number of goods.

References

Ausubel, L. M., and Baranov, O. V. 2014. A practical guide
to the combinatorial clock auction. Working paper.

Ausubel, L. M., and Milgrom, P. R. 2002. Ascending auc-
tions with package bidding. Frontier of Theoretical Eco-
nomics 1(1):1-42.

Ausubel, L. M., and Milgrom, P. 2006. The lovely but lonely
Vickrey auction. In Cramton, P.; Shoham, Y.; and Steinberg,
R., eds., Combinatorial Auctions. MIT Press. 17—40.

Balinski, M. L. 1965. Integer programming: methods, uses,
computations. Management Science 12(3):253-313.

Clarke, E. H. 1971. Multipart pricing of public goods. Pub-
lic Choice 11(1):17-33.

Cramton, P. 2013. Spectrum auction design. Review of
Industrial Organization 42(2):161-190.

Dantzig, G.; Fulkerson, R.; and Johnson, S. 1954. Solution
of a large-scale traveling-salesman problem. Operations Re-
search 2:393-410.

Day, R., and Cramton, P. 2012. Quadratic core-selecting
payment rules for combinatorial auctions. Operations Re-
search 60(3):588-603.

Day, R., and Milgrom, P. 2008. Core-selecting package
auctions. International Journal of Game Theory 36(3):393—
407.

Day, R., and Raghavan, S. 2007. Fair payments for efficient
allocations in public sector combinatorial auctions. Man-
agement Science 53(9):1389-1406.

Erdil, A., and Klemperer, P. 2010. A new payment rule for
core-selecting package auctions. Journal of the European
Economics Association 8(2-3):537-547.

Goeree, J., and Lien, Y. 2014. On the impossibility of core-
selecting auctions. Theoretical Economics. Forthcoming.

Goetzendorff, A.; Bichler, M.; Day, R.; and Shabalin, P.
2014. Compact bid languages and core-pricing in large
multi-item auctions. Management Science. Forthcoming.

Groves, T. 1973.
41(4):617-631.
Hoffman, K. L., and Padberg, M. 1993. Solving airline

crew scheduling problems by branch-and-cut. Management
Science 39(6):657-682.

Kiinzi-Bay, A., and Mayer, J. 2006. Computational as-
pects of minimizing conditional value-at-risk. Computa-
tional Management Science 3(1):3-27.

Leyton-Brown, K., and Shoham, Y. 2006. A test suite for
combinatorial auctions. In Combinatorial Auctions. MIT
Press.

Incentives in teams. Econometrica

Milgrom, P. 2007. Package auctions and exchanges. Econo-
metrica 75(4):935-965.

Nembhauser, G. L., and Wolsey, L. A. 1988. Inte-
ger and Combinatorial Optimization, volume 18. Wiley-
Interscience.

Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press.

834

Parkes, D. C.; Kalagnanam, J.; and Eso, M. 2001. Achiev-
ing budget-balance with Vickrey-based payment schemes in
exchanges. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI), 1161-1168.

Sandholm, T. 2002. Algorithm for optimal winner deter-
mination in combinatorial auctions. Artificial Intelligence
135(1):1-54.

Sandholm, T. 2007. Expressive commerce and its applica-
tion to sourcing: How we conducted $35 billion of general-
ized combinatorial auctions. Al Magazine 28(3):45-58.

Vickrey, W. 1961. Counterspeculation, auctions, and com-
petitive sealed tenders. The Journal of Finance 16(1):8-37.

