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Abstract 

Crowd motion in surveillance videos is comparable to heat 
motion of basic particles. Inspired by that, we introduce 
Boltzmann Entropy to measure crowd motion in optical 
flow field so as to detect abnormal collective behaviors. As 
a result, the collective crowd moving pattern can be repre-
sented as a time series. We found that when most people 
behave anomaly, the entropy value will increase drastically. 
Thus, a threshold can be applied to the time series to identi-
fy abnormal crowd commotion in a simple and efficient 
manner without machine learning. The experimental results 
show promising performance compared with the state of the 
art methods. The system works in real time with high preci-
sion. 

 Introduction   

Crowd commotion can act as signals to warn emergent 
events such as natural disasters or terroristic attacks as 
these should cause people to behave abnormally. Here, the 
key issue for crowd motion monitoring is how to model 
crowd motion to reflect different motion patterns. Tradi-
tional methods treat every person as an individual object to 
perform subsequent analysis. However, object detection 
and tracking is impractical in crowded scenes due to the 
high-density of people. Recently, the trend is shifted to 
model people’s collective motion at particle level, namely, 
pixels, image patches, or local 3D cuboids. The fundamen-
tal to render particle-level analysis is the so-called optical 
flow technique, which results in a motion vector field to 
figure out the moving trend of every particle. Then, peo-
ple’s global motion pattern can be summarized statistically 
from the local movements of particles. The state of the art 
methods fall into 3 categories: property, interaction, and 
trajectory-based approaches. For particle property-based 
approaches, Mahadevan et al. employ a mixture of dynam-
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ic textures to represent jointly the appearance and dynam-
ics of local portions of videos of crowded scenes 
(Mahadevan et al. 2010). This approach performs well at 
the cost of big computational load. For particle interaction-
based approaches, the representative is the Social Force 
Model (SFM) (Mehran, Oyama and Shah 2009), where 
group actions are modeled as interaction forces of subjects 
computed from optical flows. However, the computation of 
interaction forces is in general error-prone. The Particle 
Swarm Optimization (PSO) method (Raghavendra et al. 
2011) is robust in optimizing the interaction forces com-
puted from SFM but is not applicable to online surveil-
lance due to the time-consuming optimization. For particle 
trajectory-based approaches, Wu et al. (Wu, Moore and 
Shah 2010) use chaotic invariants of Lagrangian particle 
trajectories, which are known as maximal Lyapunov expo-
nent and correlation dimension, to detect and localize 
anomalies in crowded scenes. When the object motion is 
spatially constrained such as in corridor or underpass, 
however, the task becomes extremely difficult for such 
methods. 
 Most of the aforementioned methods require a machine 
learning process, which is time-consuming while the per-
formance is subject to training examples. To overcome 
such drawbacks, some learning-free approaches are pro-
posed, for which decision-making is based on watching 
whether the target feature value exceeds a predefined 
threshold. Susan et al. (Susan and Hanmandlu 2013) adopt 
the non-extensive entropy to characterize crowd motion, 
which is a variant of Shannon Entropy (Shannon 1948). 
However, this feature is not reasonable in that it concerns 
only the probability of particle distribution but misses the 
total amount of subjects involved in crowd motion, which 
is subject to local perturbation.  
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The Boltzmann Entropy to Feature Crowd 
Motion for Anomaly Detection 

The present features are not robust enough as they do not 
reflect the physical nature of crowd motion. Intuitively, 
crowd motion in surveillance videos is comparable to heat 
motion of basic particles such as molecules in terms of 
thermodynamics. Inspired by Boltzmann Entropy (Halliday, 
Resnick and Walker 2010), we apply it to measure the spa-
tio-temporal motion of particles following optical flow 
computation. As shown in Figure 1, when abnormal crowd 
movement occurs, Boltzmann Entropy will increase drasti-
cally. Accordingly, anomaly can be alarmed as low-
probability event of rarely appeared big increment of 
Boltzmann Entropy, where we employ Gaussian model for 
decision-making and machine learning is not needed.  

 

Figure 1. Time series of entropy values against video clips (Blue 

one: Boltzmann Entropy; Green one: Shannon Entropy). The 

shadows show the lasting time of crowd commotion. The online 

monitoring images attached to the peaks of the corresponding 

curves show that Boltzmann Entropy is more reasonable. 

Experiments 

With UMN data (http://mha.cs.umn.edu/movies/crowd-
activity-all.avi), a comparison of our method with Non-
extensive Entropy (Susan and Hanmandlu 2013), Sparse 
Reconstruction Cost method (Yang, Junsong and Ji 2011), 
Particle Swarm Optimization based Social Force Model 
(PSO-SFM) (Raghavendra et al. 2011), Social Force Mod-
el (Mehran, Oyama and Shah 2009), and Optical Flow 
methods (Andrade, Blunsden and Fisher 2006) is done in 
terms of both the averaged AUC (area under ROC curve) 
and the speed. It is shown in Table 1 that our method out-
performs all the methods except the PSO-SFM but the 
speed of PSO-SFM is much slower than ours. This makes 
PSO-SFM impractical for online monitoring but our meth-
od works.  

Table 2 shows the confusion matrix in identifying nor-
mal and abnormal behaviors on UMN and PETS2009 S3 
dataset (http://www.cvg.rdg.ac.uk/PETS2009). The false 
alarm and missing rate is 6.68% and 5.05%, respectively. 
The performance is high. 

Table 1. Comparison of the proposed method to the baseline 

methods (Entropy: Non-extensive Entropy; Sparse: Sparse Re-

construction Cost: PSO: PSO-SFM; OF: Optical Flow) 

Methods Ours Entropy Sparse PSO SFM OF 

AUC 0.985 0.95 0.978 0.996 0.96 0.84 

Speed (fps) 5 4 <1 <<1 3 5 

 

Table 2. The confusion matrix (%) 

Events Normal Abnormal 

Normal 93.32 6.68 

Abnormal 5.05 94.95 

Conclusion 

We introduce Boltzmann Entropy to capture the chaos de-
gree of crowd behavior for video surveillance. It is extract-
ed from optical flow directly without the need to detect or 
track objects individually. As the crowd motion is repre-
sent as a single time series, only a threshold is needed for 
decision making, which is free of machine learning. Its 
high-speed computation enables real-time monitoring. 

References 

Andrade, E. L., Blunsden, S. and Fisher, R. B. 2006. Modelling 
crowd scenes for event detection. In Proceedings of the Pattern 
Recognition, 2006. ICPR 2006. 18th International Conference on, 
175-178. 

Halliday, D., Resnick, R. and Walker, J. 2010. Fundamentals of 
physics extended 9 edition. Wiley: 550-560 

Mahadevan, V., Weixin, L., Bhalodia, V. and Vasconcelos, N. 
2010. Anomaly detection in crowded scenes. In Proceedings of 
the Computer Vision and Pattern Recognition (CVPR), 2010 
IEEE Conference on, 1975-1981. 

Mehran, R., Oyama, A. and Shah, M. 2009. Abnormal crowd 
behavior detection using social force model. In Proceedings of 
the Computer Vision and Pattern Recognition, 2009. CVPR 2009. 
IEEE Conference on, 935-942. 

Raghavendra, R., Del Bue, A., Cristani, M. and Murino, V. 2011. 
Optimizing interaction force for global anomaly detection in 
crowded scenes. In Proceedings of the Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Conference 
on, 136-143. 

Shannon, C. E. 1948. A mathematical theory of communication. 
Bell System Technical Journal, 27: 379-423.27. 

Susan, S. and Hanmandlu, M. 2013. Unsupervised detection of 
nonlinearity in motion using weighted average of non-extensive 
entropies. Signal, Image and Video Processing: 1-15  

Wu, S., Moore, B. E. and Shah, M. 2010. Chaotic invariants of 
lagrangian particle trajectories for anomaly detection in crowded 
scenes. In Proceedings of the Computer Vision and Pattern 
Recognition (CVPR), 2010 IEEE Conference on, 2054-2060. 

Yang, C., Junsong, Y. and Ji, L. 2011. Sparse reconstruction cost 
for abnormal event detection. In Proceedings of the Computer 
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference 
on, 3449-3456. 

4301




