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Abstract

For my dissertation I am focusing on non-classical plan-
ning for robotic applications. Much classical planning
research relies on assumptions that do not hold in real
world robotics applications. In many cases the entire
world state is not known in advance and the events that
occur in the future can not be known with certainty.
Robots operating in the real world also need to be re-
sponsive and react to dynamic obstacles and events.

I am currently a sixth year PhD student at the University of
New Hampshire. I am focusing my research on non-classical
planning for robotics applications. A lot of my research has
been driven from the applications side of things and high-
lighted some of the shortcomings of traditional planning
techniques. Specifically there many assumption of classical
planning do not hold when performing planning for robotics.
Very rarely is the initial state fully specified or known with
much certainty. Events very often do happen outside of the
control of the planning agent. Actions can fail and do not al-
ways take the same amount of time for repeated execution.

Robots that take long periods to plan an entire solution
on the order of minutes are much less practical in an envi-
ronment with dynamic obstacles. Traditionally planning al-
gorithms find a full solution from the current state all the
way to the goal, but in many cases this can take too long.
Real-Time Search is a promising area that aims to limit the
amount of planning that is done before actions are executed.
By doing this, obstacles that are moving toward the agent
can be avoided.

Lastly, providing heuristics to guide task and motion plan-
ning is another area that I am doing research in to help speed
up solving times and improve the overall quality of solu-
tions.

This summary is criminally scarce on citations and I apol-
ogize. I hope that it is okay to refer the reader to my cited
works for related work.

Open Worlds and Temporal Uncertainty
In this portion of my dissertation I have investigated two in-
teresting classes of problems. The first revolves around the
idea of Open World Planning. This is a type of planning
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where the entire world state is not known a priori, but instead
is slowly discovered over time. As the agent moves around
the world and interacts with it through its sensor data it is
able to develop a more accurate picture of the world state.

In the 2013 ICAPS PlanRob paper (Kiesel et al. 2013),
we examined a few domains that exhibit open worlds, but
the most significant was the Search and Rescue domain. In
this domain, a robot is tasked with finding injured victims
inside of a building. To make this more difficult, the robot
does not know the layout of the building and it also does not
know the locations of any victims.

The robot must balance exploration of the building and
discovery of victims against an approaching temporal dead-
line to return to its home base. In this work we wanted to
show that while overly complicated techniques are the norm,
simpler techniques also can perform quite well.

We implemented a form of Hindsight Optimization for
our robot to use to search the building looking for victims.
In our implementation of Hindsight Optimization, we would
generate possible worlds that could exist given our current
knowledge of the world. For example, we would have some
concrete knowledge of the building layout given the history
of our sensor data and given a very rough idea of what any
building might look like we could generate random topolog-
ical building layouts. Inside that topological building layout
we would randomly distribute victims, or if an expected dis-
tribution was known, we would bias toward that.

Given these possible worlds, we then used a very simple
domain specific solver to try to maximize reward in each
world. From that, we could then rank the next action the
robot could execute based on the expectation of reward that
would follow. The action would then be executed, new sen-
sor data would arrive, new world samples would be gener-
ated, planning would happen again and finally a new next
action would be selected.

To show how versatile this approach is, in the 2014
ICAPS PlanRob paper (Kiesel and Ruml 2014), we shifted
the focus from Open Worlds to Temporal Uncertainty. In this
work we considered a simple robot assistant which could be
given a variety of pick and place tasks around the house.
The difficulty in this problem, was however, that there was
uncertainty in the objects’ locations, the duration of each
action executed, the success of an action execution and also
exogenous events that occurred at uncertain time points.
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Again, for this problem we were able to generate a set of
world samples that matched our current world knowledge,
maximize reward in those samples using a simple domain
specific solver and then finally choose actions based on ex-
pected reward from executing each action.

Using this simple approach we were able to demonstrate
an agent with very interesting behavior. The agent was able
to serialize goals based on expectation about temporal infor-
mation, choose different actions based on their expectation
to fail and even meet at rendezvous points with exogenous
agents with uncertain arrival times.

Real-Time Search
In this portion of my dissertation I examined some new tech-
niques in the area of Real-Time Heuristc Seach. Real-Time
Search is an area that is motivated by the goal of agents that
are able to react and interact in real world situations. Tradi-
tional planning algorithms search for a complete path from
the current state to the goal. In many cases this can take a
very long time to find and in a real world application, the
result is a very expensive robot that looks like it is “frozen”
or not doing anything.

An alternative to this would be Real-Time Search, which
guarantees that at least one new action to execute will be
provided every t time units. The most important thing to
note about this is that as a result, Real-Time Search algo-
rithms are not typically capable of finding full solutions for
the common values of t (which is usually on the order of
fractions of a second).

These searches are usually doing some sort of bounded
computation version of the A* search algorithm. A* exam-
ines nodes in increasing f order, where f is simply the sum
of the “cost so far” and the estimated “cost to go”. To guaran-
tee completeness, when there are no dead-ends, algorithms
also employ a basic learning technique to update the “cost to
go” estimates based on what the agent has seen so far. Sev-
eral proofs exist to show that this learning can converge to
the true “cost to go” values given enough trials (having the
agent move from the start to the goal, then teleporting them
back to the start and having them go again).

In the 2013 SoCS paper (Burns, Kiesel, and Ruml 2013)
we argue that in real world applications and video games,
the metric that really matters is how quickly the agent can
get from their starting location to the goal location, a metric
we called Goal Achievement Time. With this in mind we
adopted a technique from the Suboptimal Heuristic Search
literature where the error in the estimate of the “cost to go”
is learned and corrected online during search.

We also make the observation that the main motivation
behind Real-Time Search is to provide responsive agents.
Traditionally, a search algorithm will do a bounded amount
of computation, emit a series of actions for execution, and
then do another bounded amount of computation and emit
more actions. What we point out and leverage to great ben-
efit is that by emitting a series of actions, an algorithm actu-
ally allocates itself extra planning time. Consider a real-time
bound of 1 millisecond. If 10 actions are emitted after the
first iteration, technically, the planner has 10 milliseconds to

plan instead of just 1 millisecond. Using this idea, we cre-
ate dynamic time bounds online based on how long until the
next deadline and greatly improve the performance of our
algorithms.

Research that has not yet been done but is planned for
this area of my dissertation is to combine these ideas with
a previous Real-Time algorithm called Partitioned Learning
Real-Time A* (PLRTA*). The motivation behind PLRTA*
was to be an online real-time algorithm that was able
to avoid dynamic obstacles which other previous algo-
rithms had trouble doing in many situations. Combining
our dynamic bounding and online heuristic correction with
PLRTA* would provide a very powerful algorithm that was
capable of using its time effectively, operating in dynamic
environments and minimizing goal achievement time.

Heuristics For Motion Planning
The last portion of my dissertation is on heuristics for mo-
tion planning. Motion planning finds itself as a module in
almost every robotic system. As such, it is important that
motion planners are able to spend their time focusing on
the important pieces of the search space expected to contain
good solutions.

In the 2012 SoCS extended abstract (Kiesel, Burns, and
Ruml 2012) I used Heuristic Search as an abstraction to bias
sampling based motion planners’ exploration. By identify-
ing large areas of the search space to focus sampling and
other areas to (mostly) ignore, we were able to get much
better performance compared to uniform random sampling
and existing simple sampling biases such as goal biasing.

There is interesting research to be done in this area fo-
cused on combining other Heuristic Search techniques with
sampling based motion planning. Some areas of promise are
using learning techniques from Real-Time Search to help
update edge costs in the abstract space. Also, using Anytime
Heuristic Search to focus the initial search effort on finding
a solution path very quickly and then refining it over time to
approach the optimal solution.
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