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Abstract

This paper overviews the background, goals, past
achievements and future directions of our research that
aims to build a multivariate conditional anomaly detec-
tion framework for the clinical application.

Background and Goals
We humans are prone to error. Despite startling advances
in medicine, the occurrence of medical errors remains a
persistent and critical problem. Although various computer-
aided monitoring devices support medical practices to pre-
vent errors, because those tools are primarily knowledge-
based built by clinical experts, they are expensive and their
clinical coverage is incomplete.

We develop a new detection framework that identifies sta-
tistically anomalous patient care patterns based on past clin-
ical information stored in an electronic health record (EHR)
systems. Our hypothesis is that the detection of anomalies
in patient care patterns corresponds to identifying cases that
need medical attention for reconsideration. Typical anomaly
detection methods, however, simply attempt to identify un-
usual data instances that do not conform with the majority of
examples in the dataset, and are not suitable in the clinical
context. This is because clinical decisions on patient care are
strongly based on the condition of the patient (Hauskrecht et
al. 2013). In addition, patient care generally consists of mul-
tiple clinical actions which often show correlations between
the individual actions (e.g., a set of medications that are usu-
ally ordered together). However, such correlations have not
been vigorously exploited in the context of anomaly detec-
tion. Our framework aims to improve the anomaly detection
performance by identifying multivariate conditional anoma-
lies where we are interested in the patterns exhibit depen-
dencies among individual clinical actions conditioned on the
patient condition.

Approaches
Our approach to identify multivariate conditional anoma-
lies consists of the following two phases: (1) We first
build a predictive probabilistic model from EHRs using the
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multi-dimensional learning methods. Then, (2) we apply the
model to estimate an anomaly score that measures how un-
likely a care pattern for the patient is. Below we further de-
scribe each of these phases.

Multi-dimensional Modeling of Clinical Data
Multi-dimensional classification (MDC) (Zhang and Zhou
2013) has received much attention in recent years, due to its
wide applications. For example, an image can be annotated
with multiple tags (Boutell et al. 2004); and a patient may
be diagnosed with multiple diseases (Pestian et al. 2007).

We formulate the modeling of EHRs in the MDC frame-
work by assuming each patient is associated with d discrete-
valued class variables that represent patient care patterns.
The objective is to learn a function that assigns to each pa-
tient, represented by its feature vector x = {x1, ..., xm},
the most probable assignment of the clinical actions y =
{y1, ..., yd}. One approach to this task is to model the con-
ditional joint distribution P (Y|X). Assuming the 0-1 loss
function, the optimal classifier h∗ assigns to an instance the
maximum a posteriori (MAP) assignment of class variables:

h∗(x) = argmax
y

P (Y = y|X = x) (1)

= argmax
y1,...,yd

P (Y1 = y1, ..., Yd = yd|X = x) (2)

A challenge in modeling P (Y|X) is that the number of
all possible class assignments is exponential in d. One may
tackle the issue by assuming all class variables are condi-
tionally independent of each other and learn d models for
each class variable separately (Boutell et al. 2004). However,
this approach often fails because it does not take advantage
of the multivariate dependencies among the class variables,
which is the key to facilitate the learning of MDC.

Our goal in the first phase is therefore to develop efficient
multi-dimensional patient care models and methods that
overcome the above mentioned difficulties. We start from the
decomposition assumption has been introduced with Classi-
fier Chains (Read et al. 2009). The method directly models
the class posterior distribution P (Y|X) by decomposing the
relations among class variables using the chain rule:

P (Y1, ..., Yd|X) =
d∏

i=1

P (Yi|X, Y1, ..., Yi−1), (3)
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where each factor P (Yi|X, Y1, ..., Yi−1) in the chain is a
classifier that is learned separately by incorporating the pre-
dictions of preceding classifiers as additional features.

In (Batal, Hong, and Hauskrecht 2013), we have pro-
posed to restrict the dependency structure to a tree in-
stead of a chain. By having the tree-structure assumption,
we presented an efficient structure learning method that
finds the optimal dependency relations among class vari-
ables, and a linear-time exact MAP inference algorithm
based on belief propagation (Koller and Friedman 2009).
Later, we extended the tree-structured model and developed
statistically sound multi-dimensional ensemble frameworks
(Hong, Batal, and Hauskrecht 2014; 2015). Compared to ex-
isting multi-dimensional ensemble approaches (Read et al.
2009), our methods learn models from data in more princi-
pled ways and produce more accurate and consistent results.

Multivariate Conditional Anomaly Detection
An important advantage of our multi-dimensional model-
ing approach compared to other MDC methods is that it
gives a well-defined model of posterior class probability.
That is, our model lets us estimate P (y|x) for any (x,y)
input-output pair. In addition, by exploiting the decompos-
able structure of the model (Equation 3), we can easily es-
timate the likelihood of each individual decision made on a
patient P (yi|x) – which in turn indicates how unlikely the
decision is based on the observation.

Based on this probabilistic measure, we use multiple ap-
proaches to estimate an anomaly score, which allows rank-
ordering of anomaly candidates. In our preliminary study on
multivariate conditional anomaly detection, we showed the
validity of the approach using a Mahalanobis distance-based
anomaly detection method (Rousseeuw and Zomeren 1990)
on the posterior class probability P (y|x) to identify anoma-
lous clinical decisions. We currently investigate on more
robust approaches to estimate the anomaly score that well
reflects the conditional dependencies among clinical deci-
sions. We also study on how to pinpoint the cause of anoma-
lies to provide more informative feedback.

Experimental Results
To validate our approach and demonstrate its effectiveness,
we present experimental results on a clinical dataset ob-
tained from Cincinnati Childrens Hospital Medical Cen-
ter (Pestian et al. 2007). The dataset has 978 instances;
each consists of 1,449 features (x) extracted from clinical
progress notes and 45 binary class variables (y) representing
the diseases diagnosed. We compared two of our chain varia-
tions – chain.mod1 (Batal, Hong, and Hauskrecht 2013) and
chain.mod2 (Hong and Hauskrecht 2015) – with the binary
relevance (BR) model (Boutell et al. 2004), which ignores
the relationships between individual clinical decisions. We
performed 10-fold cross validation with 3 repeats. On each
round, we perturbed 15% of test data by randomly flipping
1 to 5 class variables, and see whether the methods can cor-
rectly identify the anomalies. The anomaly score is evalu-
ated by the Mahalanobis distance on the posterior class prob-
ability P (y|x).

Figure 1: Performance comparison in AUC.

Figure 1 shows the results in terms of the area under re-
ceiver operating characteristic (AUC). We can clearly see
that the anomaly detection performance has been consis-
tently improved when the dependencies among clinical ac-
tions conditioned on patient condition are considered.
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