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Abstract

Today’s data centers are designed with multi-core CPUs
where multiple virtual machines (VMs) can be co-
located into one physical machine or distribute multiple
computing tasks onto one physical machine. The result
is co-tenancy, resource sharing and competition. Mod-
eling and predicting such co-run interference becomes
crucial for job scheduling and Quality of Service as-
surance. Co-locating interference can be characterized
into two components, sensitivity and pressure, where
sensitivity characterizes how an application’s own per-
formance is affected by a co-run application, and pres-
sure characterizes how much contentiousness an appli-
cation exerts/brings onto the memory subsystem. Pre-
vious studies show that with simple models, sensitivity
and pressure can be accurately characterized for a sin-
gle machine. We extend the models to consider cross-
architecture sensitivity (across different machines).

Introduction

Each year more computation moves to data centers deploy-
ing thousands of heterogeneous, modern machines to pro-
vide customers with computing and storage services. Most
modern machines have multiple cores on a single chip; thus,
multiple tasks/applications can be executed simultaneously
so that resource utilization can be optimized. Though each
CPU core can have a dedicated task, co-locating does re-
quire resource sharing, such as last level cache and memory
bandwidth. The diversity of application behavior will have
some programs be more aggressive towards the shared re-
sources resulting in interference. Co-locating interference
can be characterized into two components, sensitivity and
pressure, where sensitivity characterizes how an applica-
tion’s own performance is affected by a co-run application,
and pressure characterizes how much contentiousness an ap-
plication exerts/brings to the system. Currently, the focus is
on the shared memory subsystem, but other shared resources
can be considered such as memory bandwidth and network
I/0. Without modeling and predicting this interference, the
data center scheduler may have to dedicate a whole multi-
core machine to a single time sensitive application, leaving
some cores idle, in order to guarantee Quality of Service.
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Previous studies have shown that an application’s sensi-
tivity and pressure can be obtained by profiling; an appli-
cation is co-run with a carefully designed probe program to
generate both metrics (Mars et al. 2011; Yang et al. 2013).
The performance degradation due to co-run interference can
be predicted with relative low error. However, this method
has two limitations: the sensitivity curve is interpolated from
the profiling results rather than fit to a model and the predic-
tion from the sensitivity and pressure is only for the machine
on which the profiling was run. Collaborative filtering was
used to predict interference of programs on machines with
different hardware configurations, yet the latent model needs
to be further explored (Delimitrou and Kozyrakis 2013).

Our motivation is to develop a method to accurately char-
acterize the sensitivity curves for different applications via a
general, mathematical model, and also ensure that the mod-
els continue be effective from architecture to architecture.
The process will be initiated with initial offline profiling and
training of the model, yet it must be able to evolve or adapt
for new architectures becoming available; employing ideas
from transfer learning (Pan and Yang 2010).

Preliminary Results

The sensitivity curve of an application on a specific machine
is found by using the “Bubble-up” methodology (Mars et al.
2011). A program called bubble is co-run with a target appli-
cation on the machine. The bubble is a simple program that
can exert different levels of pressure onto the memory sub-
system. By careful design, the bubble can take up increasing
levels (MBs) of cache space, thus making the co-run appli-
cation slow down (degraded performance). The target appli-
cation’s performance, often referred to as normalized execu-
tion time, is recorded at different level of bubble pressure.
From a collection of bubble size versus performance degra-
dation value pairs, a model can be fit (e.g., polynomial or
logistic function). In a pending submission, we collect the
sensitivity curves of several sets of benchmarks including
SPEC CPU2006 integer and floating point programs and a
subset of Parsec 3.0 and CloudSuite 2.0 programs. We found
that a logistic function achieves the lowest generalizable er-
ror in modeling such sensitivity curves.

The profiling process of each individual program was re-
peated on machines with different hardware. Hence, each
application has multiple sensitivity curves corresponding to
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Figure 1: Framework for cross-architecture prediction

different hardware configurations. The program pressure
was also profiled across machines. By observing the col-
lected data, we found that both sensitivity curve and pressure
of a program will behave differently on different machines.
Therefore, we cannot predict performance interference for a
specific machine from the model generated by another ma-
chine with dissimilar hardware.

Nevertheless, we found that sensitivity curve and pressure
of applications can be estimated on a new machine without
extensive profiling and training. A relationship between the
parameters of the sensitivity curves was estimated. There-
fore, the framework of our co-run performance prediction
system is as follows (see Fig. 1). With a base hardware con-
figuration, and an abundance of benchmark programs rep-
resenting different types of applications, we could do ex-
haustive off-line profiling and training. Whenever a new
hardware configuration is added, we only do profiling for
a small subset of benchmark programs and find the cross-
architecture relations between parameters. Thus, any appli-
cation’s sensitivity curve can be recovered through the pa-
rameters of function obtained from the baseline machine.
The same design is followed to find relations of pressure.

We test this approach with SPEC CPU2006 benchmarks
as the training set, and Parsec 3.0 and CloudSuite 2.0 as the
test set with a Core2 Duo as the base hardware and Intel i5 as
the new machine. The predicted co-run performance degra-
dation using the cross-architecture functions for sensitivity
curves and pressure has a mean relative error of <2%.

Current Focus

The preliminary work piloted the idea of co-run sensitivity
learning across architectures, yet generalizations and exten-
sions to this idea need exploration. For example, the cross-
architecture relationship between sensitivity curves can be
learned for specific machines, but is not a general model
that is based on hardware configuration information, e.g.,
last level cache size, L2 cache, etc. Additionally, an appli-
cation’s pressure will change between different machines. A
uniform model (polynomial, logistic) may not closely char-
acterize these variations. What other features may be incor-
porated into the models to explain these variations?
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Our group has done significant preliminary work on local-
ity modeling, cache partitioning, memory management, mi-
gration and remote memory in the system side. We also have
extensive experience in machine learning. This thesis work
examines the use and design of machine learning methods
to the systems domain to predict memory resource demand
and cache pressure. In particular, for the cross-architecture
prediction problems, transfer learning is examined.

Two initial frameworks for the problem are to be explored.
For the first, detailed source domain(s) data will be available,
that is extensive profiling will be collected on older hardware
configurations. The focus is to improve prediction accuracy
and require limited profiling of applications on any new tar-
get architectures added to the data center. For this frame-
work, initial inductive transfer learning methods that employ
a parameter-transfer approach will be considered. The sec-
ond framework will consider an active, or lifelong learning
design, so that new applications and/or architectures will be
continually added to the system (Eaton and Ruvolo 2013).

Both frameworks will make use of an extensive library of
profiled benchmarks on different machine architectures. The
estimated generalization performance of the models will be
confirmed with tests on a realistic environment in a data cen-
ter. The models will be incorporated into the Xen virtual ma-
chine hypervisors and a comprehensive set of benchmarks
will be co-run to validate the results and refine our models.

Conclusion

We describe a method to help a data center assign tasks with
high utilization while maintain QoS requirements. Based on
our experimental results, an application’s sensitivity curve
can be characterized by a logistic function. Furthermore,
the parameters of the sensitivity functions for different ma-
chines are related. Transfer learning will be explored to help
shorten both profiling and training time and online model
updating examined as there will always be new applications
and architectures arriving in a data center.
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