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Introduction
Probabilistic planning models and, in particular, Markov
Decision Processes (MDPs), Partially Observable Markov
Decision Processes (POMDPs) and Decentralized Partially
Observable Markov Decision Processes (Dec-POMDPs)
have been extensively used by AI and Decision Theoretic
communities for planning under uncertainty. Typically, the
solvers for probabilistic planning models find policies that
minimize the expected cumulative cost (or, equivalently,
maximize the expected cumulative reward). While such a
policy is good in the expected case, there is a small chance
that it might result in an exorbitantly high cost. Therefore, it
is not suitable in high-stake planning problems, where exor-
bitantly high costs should be avoided.

With this motivation in mind, Yu, Lin, and Yan (1998)
introduced the Risk-Sensitive criterion (RS-criterion) for
MDPs, where the objective is to find a policy π that maxi-
mizes the probability Pr(cT (π)(s0) ≤ θ0), where cT (π)(s0)
is the cumulative cost of the policy and θ0 is the cost thresh-
old. They combine MDPs with the RS-criterion to formalize
Risk-Sensitive MDPs (RS-MDPs) and introduced a Value It-
eration (VI) like algorithm to solve a typical type of RS-
MDPs. Liu and Koenig (2006) generalized RS-MDPs by
mapping the MDP rewards to risk-sensitive utility func-
tions and sought to find policies that maximize the ex-
pected utility—an RS-MDP is a specific case, where the util-
ity function is a step function. They introduced Functional
Value Iteration (FVI), which finds optimal policies for gen-
eral utility functions by approximating it as piecewise linear
(PWL) functions.

Unfortunately, algorithms like VI and FVI cannot scale to
large problems as they need to perform Bellman updates for
all states and all break points of their utility function in each
iteration. As such, more efficient algorithms can be devel-
oped to take advantage of structure in RS-MDPs.

In my work, I introduced various algorithms for RS-
MDPs with different assumptions (e.g., MDPs with dead
ends and MDPs with zero or negative cost cycles). In ad-
dition to RS-MDPs, POMDPs and Dec-POMDP can also
be combined with RS-criterion to formalize Risk-Sensitive
POMDPs (RS-POMDPs) and Risk-Sensitive Dec-POMDPs
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(RS-Dec-POMDPs). Algorithms can also be designed for
RS-POMDPs and RS-Dec-POMDPs with different assump-
tions.

Current Progress
In our recent paper (Hou, Yeoh, and Varakantham 2014),
we formally defined Risk-Sensitive MDPs (RS-MDPs) and
show that the optimal policy for RS-MDPs is not stationary
in the original state space. So an MDP policy π : S → A,
namely a mapping from states to actions, is not always op-
timal. Instead, the execution history can be compctly rep-
resented by a cost threshold value θ = θ0 − cT (π)(s0, t),
namely the amount of unused cost, where θ0 is the initial
cost threshold and cT (π)(s0, t) is the accumulated cost thus
far up to the current time step t. Therefore, instead of an
MDP policy, an RS-MDP policy π : S × Θ → A, which
is a mapping of augmented states (s, θ | s ∈ S, θ ∈ Θ) to
actions a ∈ A, can give an optimal solution to an RS-MDP.

Based on the augmented state (s, θ), we can build a aug-
mented MDP, where the actions and transitions correspond
to their counterpart in the original MDP and the reward func-
tion is 1 for transitions that transition into a goal state and 0
otherwise, which is an important property of MAXPROB
MDPs (Kolobov et al. 2011). Since the cost threshold value
θ could be real number, the number of augmented states
(s, θ) could be infinite and the augmented MDP is actually
an MDP with Continuous State Spaces (Marecki, Koenig,
and Tambe 2007). From a decision-theoretic view, the so-
lution for an RS-MDP can be represented with step utility
functions, which is the mapping from cost threshold value
to the reachable probability, for each state. Each augmented
state actually corresponds to a point in the utility function,
and the number of break points in the utility function is
countable. So, the reachable probability of all break points
together completely describes the entire utility function.

In (Hou, Yeoh, and Varakantham 2014), we show that the
number of the break points of utility function is finite as long
as the cost function does not form negative cycles in the orig-
inal state space. By extracting those augmented states corre-
sponding to break points, they together form the states of
an augmented MDP with a finite state space. Starting from
augmented states with an original goal state, a Dynamic Pro-
gramming (DP) style algorithm, TVI-DP, is introduced to
traverse the augmented state space backwards without gen-
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erating the augmented MDP explicitly. The exploration of
augmented state space can be stopped when a user-defined
initial cost threshold θ0 is reached or the reachable proba-
bility become convergence. Besides TVI-DP, if an RS-MDP
user is only interested in the reachable probability and pol-
icy for a specific initial cost threshold θ0, it is unnecessary to
get the full solution. A Depth-First Search (DFS) style algo-
rithm, TVI-DFS, is provided to traverse the augmented state
space from the initial augmented state (s0, θ0), where s0 is
the initial state in the original MDP. TVI-DFS traverses only
augmented states that are reachable from (s0, θ0). Those
augmented states often correspond to points on segments of
the utility function and, thus, might not correspond to break
points in the utility function. TVI-DFS will stop the explo-
ration when the cost threshold is less than 0. TVI-DFS also
implicitly traverse another subset augmented MDP with fi-
nite states. Both TVI-DP and TVI-DFS use techniques from
the Topological Value Iteration (TVI) (Dai et al. 2011) al-
gorithm to identify and handle zero cost cycles in the state
space.

Besides research on RS-MDPs, I have also studied an-
other related problem—Uncertain MDPs, which are the
MDPs with uncertainty and instability in their parameters.
In (Hou, Yeoh, and Son 2014), I introduced a general algo-
rithm framework that uses a reactive approach and allows
off-the-shelf MDP algorithms to solve Uncertain MDPs by
planning based on currently available information and re-
plan if and when the problem changes.

Research Plan
The overall scope of my thesis is to develop efficient and
scalable algorithms to optimize the RS-criterion in proba-
bilistic planning problems. I now describe my short- and
long-term plans.

Short-Term Plans
PVI-DP: If the original MDP includes negative cycles
with discounted transition probability in the state space, then
the number of break points of utility functions would be
infinite. TVI-DFS and TVI-DP would suffer from this sit-
uation because the augmented state space that they would
need to traverse would be infinitely large. Therefore, smarter
search strategies are needed to handle the infinite augmented
state space. For example, one possible algorithm is PVI-
DP, which adopts ideas from Prioritized Value Iteration
(PVI) (Wingate and Seppi 2005). Similar to TVI-DP, PVI-
DP traverses the augmented state space backwards from
the goal states. Every time PVI-DP expands a fringe aug-
mented state, it performs value updates for its predecessors,
and pushes them into a priority queue based on the up-
date error. Next, PVI-DP pops the augmented state with the
biggest update error, performs value updates on it, pushes it
back, and expands it if it is fringe node. After repeating the
previous process, the exploration of augmented state space
would stop at the fringe nodes whose update error is suf-
ficiently small, thereby reaching convergence. In addition,
if the original state space can be separated into more than
one Strongly Connected Component (SCC), then the traver-

sal of augmented state space can follow the reverse topolog-
ical order of SCCs in the original state space. Not only can
it perform PVI-DP on the SCCs one by one, but it can also
perform TVI-DP instead of PVI-DP on the SCCs without
negative cycles, which should accelerate the algorithm.

PO-FVI: For RS-POMDPs, we plan to propose a POMDP
style and reduced version of FVI called PO-FVI. The key
idea of PO-FVI is to represent the solution of RS-POMDPs
as a set of vector of utility functions, rather than represent-
ing the value function as a set of vector of numbers (com-
monly referenced to as α-vectors) in the original POMDP.
RS-POMDPs have many interesting properties that are dif-
ferent than those in RS-MDPs, and we have started to de-
velop better algorithms on top of PO-FVI.

Long-Term Plans
Besides the above tasks, I also plan to consider other plan-
ning models related to the RS-criterion. For example, how
to solve RS-Dec-POMDPs; how to solve RS-MDPs when
the underlying MDP model is an MDP with reward discount
factor rather than a Goal-Directed MDP; and how to quickly
solve an RS-criterion problem with satisfaction goals rather
than optimization goals.

References
Dai, P.; Mausam; Weld, D.; and Goldsmith, J. 2011. Topo-
logical value iteration algorithms. Journal of Artificial Intel-
ligence 42(1):181–209.
Hou, P.; Yeoh, W.; and Son, T. C. 2014. Solving uncertain
MDPs by reusing state information and plans. In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI), 2285–2292.
Hou, P.; Yeoh, W.; and Varakantham, P. 2014. Revisit-
ing risk-sensitive MDPs: New algorithms and results. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 136–144.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 130–137.
Liu, Y., and Koenig, S. 2006. Functional value iteration for
decision-theoretic planning with general utility functions. In
Proceedings of the National Conference on Artificial Intelli-
gence (AAAI), 1186–1193.
Marecki, J.; Koenig, S.; and Tambe, M. 2007. A fast analyt-
ical algorithm for solving Markov decision processes with
real-valued resources. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2536–
2541.
Wingate, D., and Seppi, K. D. 2005. Prioritization methods
for accelerating MDP solvers. Journal of Machine Learning
Research 6:851–881.
Yu, S.; Lin, Y.; and Yan, P. 1998. Optimization models
for the first arrival target distribution function in discrete
time. journal of Mathematical Analysis and Applications
225:193–223.

4242




