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Abstract

Predicting the affective valence of unknown multi-word
expressions is key for concept-level sentiment analy-
sis. AffectiveSpace 2 is a vector space model, built
by means of random projection, that allows for reason-
ing by analogy on natural language concepts. By re-
ducing the dimensionality of affective common-sense
knowledge, the model allows semantic features associ-
ated with concepts to be generalized and, hence, allows
concepts to be intuitively clustered according to their
semantic and affective relatedness. Such an affective
intuition (so called because it does not rely on explicit
features, but rather on implicit analogies) enables the
inference of emotions and polarity conveyed by multi-
word expressions, thus achieving efficient concept-level
sentiment analysis.

Introduction
Concept-level sentiment analysis focuses on a semantic
analysis of text through the use of web ontologies or seman-
tic networks, which allow the aggregation of conceptual and
affective information associated with natural language opin-
ions. By relying on large semantic knowledge bases, such
approaches step away from blind use of keywords and word
co-occurrence count, but rather rely on the implicit features
associated with natural language concepts.

Unlike purely syntactical techniques, concept-based
approaches are able to detect also sentiments that are
expressed in a subtle manner, e.g., through the analysis of
concepts that do not explicitly convey any emotion, but
which are implicitly linked to other concepts that do so. The
bag-of-concepts model can represent semantics associated
with natural language much better than bags of words. In
the bag-of-words model, in fact, a concept such as cloud
computing would be split into two separate words,
disrupting the semantics of the input sentence (in which, for
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example, the word cloud could wrongly activate concepts
related to weather).

The analysis at concept-level allows for the inference
of semantic and affective information associated with nat-
ural language opinions and, hence, enables a compara-
tive fine-grained feature-based sentiment analysis. Rather
than gathering isolated opinions about a whole item (e.g.,
iPhone6), users are generally more interested in comparing
different products according to their specific features (e.g.,
iPhone6’s vs GalaxyS6’s touchscreen), or even sub-features
(e.g., fragility of iPhone6’s vs GalaxyS6’s touchscreen).

In this context, common-sense knowledge is key for prop-
erly deconstructing natural language text into sentiments –
for example, to appraise the concept small room as neg-
ative for a hotel review and small queue as positive in
a patient opinion, or the concept go read the book
as positive for a book review but negative for a movie re-
view. The inference of emotions and polarity from natu-
ral language concepts, however, is a formidable task as it
requires advanced reasoning capabilities such as common-
sense, analogical, and affective reasoning.

In this work, we present AffectiveSpace 2, a novel vector
space model for concept-level sentiment analysis that allows
for reasoning by analogy on natural language concepts, even
when these are represented by highly dimensional semantic
features. In this sense, AffectiveSpace 2 can be seen as a
powerful tool to address the emerging issue of “Big Dimen-
sionality” (Zhai, Ong, and Tsang 2014) in the context of nat-
ural language processing (NLP) and sentiment analysis. The
proposed model, however, should not be considered solely
as a NLP tool, but rather as a framework for analogical rea-
soning that can be embedded in potentially any cognitive
system dealing with real-world semantics, e.g., concepts as-
sociated with images (Cambria and Hussain 2012a), audio
(Principi et al. 2015), handwriting (Wang et al. 2013), and
multimodal data (Poria et al. 2015).

The rest of the paper is organized as follows: the first sec-
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tion presents related work in the field of concept-level senti-
ment analysis; the following two sections describe in detail
how AffectiveSpace 2 is built and clustered, respectively;
an evaluation section proposes experimental results for an
opinion mining task; finally, the last section provides some
concluding remarks.

Related Work
Concept-level sentiment analysis is a NLP task that has re-
cently raised growing interest both within the scientific com-
munity, leading to many exciting open challenges, as well as
in the business world, due to the remarkable benefits to be
had from marketing and financial market prediction.

The potential applications of concept-level sentiment
analysis, in fact, are countless and span interdisciplinary ar-
eas such as stock market prediction, political forecasting,
social network analysis, social stream mining, and human-
robot interaction.

For example, Li et al. (Li et al. 2014) implemented a
generic stock price prediction framework and plugged in
six different models with different analyzing approaches.
They used Harvard psychological dictionary and Loughran-
McDonald financial sentiment dictionary to construct a sen-
timent space. Textual news articles were then quantitatively
measured and projected onto such a sentiment space. The
models’ prediction accuracy was evaluated on five years his-
torical Hong Kong Stock Exchange prices and news articles
and their performance was compared empirically at different
market classification levels.

Rill et al. (Rill et al. 2014) proposed a system designed
to detect emerging political topics in Twitter sooner than
other standard information channels. For the analysis, au-
thors collected about 4 million tweets before and during the
parliamentary election 2013 in Germany, from April until
September 2013. It was found that new topics appearing in
Twitter can be detected right after their occurrence. More-
over, authors compared their results to Google Trends, ob-
serving that the topics emerged earlier in Twitter than in
Google Trends.

Jung and Segev (Jung and Segev 2014) analyzed how
communities change over time in the citation network graph
without additional external information and based on node
and link prediction and community detection. The identified
communities were classified using key term labeling. Exper-
iments showed that the proposed methods can identify the
changes in citation communities multiple years in the future
with performance differing according to the analyzed time
span.

Montejo-Raez et al. (Montejo-Raez et al. 2014) intro-
duced an approach for sentiment analysis in social media en-
vironments. Similar to explicit semantic analysis, microblog
posts were indexed by a predefined collection of documents.
In the proposed approach, performed by means of latent se-
mantic analysis, these documents were built up from com-
mon emotional expressions in social streams.

Bell et al. (Bell et al. 2014) proposed a novel approach to
social data analysis, exploring the use of microblogging to
manage interaction between humans and robots, and eval-

uating an architecture that extends the use of social net-
works to connect humans and devices. The approach used
NLP techniques to extract features of interest from textual
data retrieved from a microblogging platform in real-time
and, hence, to generate appropriate executable code for the
robot. The simple rule-based solution exploited some of the
‘natural’ constraints imposed by microblogging platforms to
manage the potential complexity of the interactions and to
create bi-directional communication.

Building AffectiveSpace 2
The best way to solve a problem is to already know a so-
lution for it. But, if we have to face a problem we have
never met before, we need to use our intuition. Intuition can
be explained as the process of making analogies between the
current problem and the ones solved in the past to find a suit-
able solution. This kind of thinking is maybe the essence of
human intelligence since in everyday life no two situations
are ever the same and we have to continuously perform ana-
logical reasoning for problem solving and decision making.

The human mind constructs intelligible meanings by con-
tinuously compressing over vital relations (Fauconnier and
Turner 2003). The compression principles aim to transform
diffuse and distended conceptual structures to more focused
versions so as to become more congenial for human under-
standing. In order to emulate such a process, principal com-
ponent analysis (PCA) was previously applied on the matrix
representation of AffectNet (Cambria and Hussain 2012b),
a semantic network in which common-sense concepts were
linked to semantic and affective features (Table 1). The re-
sult was AffectiveSpace.

PCA is most widely used as a data-aware method of di-
mensionality reduction (Jolliffe 2005). PCA is closely re-
lated to the low-rank approximation method, singular value
decomposition (SVD), in the sense that PCA works on a
transformed version of the data matrix (Menon and Elkan
2011). SVD seeks to decompose the AffectNet matrix A ∈
Rn×d into three components,

A = USV T , (1)
where U and V are unitary matrices, and S is an rectan-

gular diagonal matrix with nonnegative real numbers on the
diagonal.

SVD has been proved to be optimal in preserving any uni-
tarily invariant norm1‖ · ‖M (Menon and Elkan 2011):

‖ A−Ak ‖M= min
rank(B)=k

‖ A− B ‖M, (2)

where Ak, i.e., AffectiveSpace, is formed by only con-
taining the top k singular values in S. Hence, in AffectiveS-
pace, common-sense concepts and emotions are represented
by vectors of k coordinates. These coordinates can be seen
as describing concepts in terms of ‘eigenmoods’ that form
the axes of AffectiveSpace, i.e., the basis e0,...,ek−1 of the
vector space. For example, the most significant eigenmood,
e0, represents concepts with positive affective valence. That

1A norm ‖·‖M is unitarily invariant if ‖UAV ‖M = ‖A‖M for
all A and all unitary U, V.
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Table 1: A snippet of the AffectNet matrix

AffectNet IsA-pet KindOf-food Arises-joy ...
dog 0.981 0 0.789 ...
cupcake 0 0.922 0.910 ...
songbird 0.672 0 0.862 ...
gift 0 0 0.899 ...
sandwich 0 0.853 0.768 ...
rotten fish 0 0.459 0 ...
win lottery 0 0 0.991 ...
bunny 0.611 0.892 0.594 ...
police man 0 0 0 ...
cat 0.913 0 0.699 ...
rattlesnake 0.432 0.235 0 ...
... ... ... ... ...

is, the larger a concept’s component in the e0 direction is,
the more affectively positive it is likely to be. Concepts with
negative e0 components, then, are likely to have negative af-
fective valence.

Thus, by exploiting the information sharing property of
SVD, concepts with the same affective valence are likely
to have similar features – that is, concepts conveying the
same emotion tend to fall near each other in AffectiveSpace.
Concept similarity does not depend on their absolute posi-
tions in the vector space, but rather on the angle they make
with the origin. For example, concepts such as beautiful
day, birthday party, and make someone happy
are found very close in direction in the vector space, while
concepts like feel guilty, be laid off, and shed
tear are found in a completely different direction (nearly
opposite with respect to the centre of the space).

The problem with this kind of representation is that it is
not scalable: when the number of concepts and of seman-
tic features grows, the AffectNet matrix becomes too high-
dimensional and too sparse for SVD to be computed (Bal-
duzzi 2013). Although there has been a body of research
on seeking for fast approximations of the SVD, the approxi-
mate methods are at most ≈ 5 times faster than the standard
one (Menon and Elkan 2011), making it not attractive for
real-world big data applications.

It has been conjectured that there might be simple
but powerful meta-algorithms underlying neuronal learning
(Lee et al. 2011). These meta-algorithms should be fast,
scalable, effective, with few-to-no specific assumptions, and
biologically plausible (Balduzzi 2013). Optimizing all the
≈ 1015connections through the last few million years’ evo-
lution is very unlikely (Balduzzi 2013). Alternatively, na-
ture probably only optimizes the global connectivity (mainly
the white matter), but leaves the other details to randomness
(Balduzzi 2013). In order to cope with the ever-growing
number of concepts and semantic features, thus, we replace
SVD with random projection (RP) (Bingham and Mannila
2001), a data-oblivious method, to map the original high-
dimensional data-set into a much lower-dimensional sub-
space by using a Gaussian N(0, 1) matrix, while preserving
the pair-wise distances with high probability. This theoreti-
cally solid and empirically verified statement follows John-
son and Lindenstrauss’s (JL) Lemma (Balduzzi 2013). The

JL Lemma states that with high probability, for all pairs of
points x, y ∈ X simultaneously,

√
m

d
‖ x− y ‖2 (1− ε) ≤‖ Φx− Φy ‖2≤ (3)

≤
√
m

d
‖ x− y ‖2 (1 + ε), (4)

where X is a set of vectors in Euclidean space, d is the
original dimension of this Euclidean space, m is the dimen-
sion of the space we wish to reduce the data points to, ε is
a tolerance parameter measuring to what extent is the maxi-
mum allowed distortion rate of the metric space, and Φ is a
random matrix.

Structured random projection for making matrix mul-
tiplication much faster was introduced in (Sarlos 2006).
Achlioptas (Achlioptas 2003) proposed sparse random pro-
jection to replace the Gaussian matrix with i.i.d. entries in

φji =
√
s


1 with prob. 1

2s

0 with prob.1− 1
s

−1 with prob. 1
2s

, (5)

where one can achieve a ×3 speedup by setting s = 3,
since only 1

3 of the data need to be processed. However,
since our input matrix is already too sparse, we avoid using
sparse random projection.

When the number of features is much larger than the num-
ber of training samples (d � n), subsampled randomized
Hadamard transform (SRHT) is preferred, as it behaves very
much like Gaussian random matrices but accelerates the pro-
cess from O(nd) to O(n log d) time (Lu et al. 2013). Fol-
lowing (Tropp 2011) (Lu et al. 2013), for d = 2p where p is
any positive integer, a SRHT can be defined as:

Φ =

√
d

m
RHD (6)

where
• m is the number we want to subsample from d features

randomly.
• R is a random m × d matrix. The rows of R are m

uniform samples (without replacement) from the standard
basis of Rd.
• H∈ Rd×d is a normalized Walsh-Hadamard matrix,

which is defined recursively: Hd =

[
Hd/2 Hd/2

Hd/2 Hd/2

]
with

H2 =

[
+1 +1
+1 −1

]
.

• D is a d× d diagonal matrix and the diagonal elements
are i.i.d. Rademacher random variables.

Our subsequent analysis only relies on the distances and
angles between pairs of vectors (i.e. the Euclidean geometry
information), and it is sufficient to set the projected space
to be logarithmic in the size of the data (Ailon and Chazelle
2010) and apply SRHT. The result is a new vector space
model, AffectiveSpace 2 (Fig. 1), which preserves the se-
mantic and affective relatedness of common-sense concepts
while being highly scalable.
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Figure 1: AffectiveSpace 2

Clustering AffectiveSpace 2
To reason on the disposition of concepts in AffectiveSpace 2,
we use the Hourglass of Emotions (Fig. 2), an affective cate-
gorization model developed starting from Plutchik’s studies
on human emotions (Plutchik 2001). In the model, senti-
ments are re-organized around four independent dimensions
whose different levels of activation make up the total emo-
tional state of the mind. The Hourglass of Emotions, in fact,
is based on the idea that the mind is made of different in-
dependent resources and that emotional states result from
turning some set of these resources on and turning another
set of them off (Minsky 2006).

In the model, affective states are not classified, as of-
ten happens in the field of emotion analysis, into ba-
sic emotional categories, but rather into four concomi-
tant but independent dimensions, characterized by six lev-
els of activation, which determine the intensity of the ex-
pressed/perceived emotion as a float ∈ [-1,+1]. Such levels
are also labeled as a set of 24 basic emotions (six for each of
the affective dimensions) in a way that allows the model to
specify the affective information associated with text both in
a dimensional and in a discrete form.

Such basic emotions are used as initial centroids in Affec-
tiveSpace 2 for clustering the vector space by means of sen-
tic medoids (Cambria et al. 2011). Unlike the k-means algo-
rithm (which does not pose constraints on centroids), sentic
medoids do assume that centroids must coincide with k ob-
served points, which allows to better cluster a vector space
of common-sense knowledge. The sentic medoids approach
is similar to the partitioning around medoids (PAM) algo-
rithm, which determines a medoid for each cluster select-
ing the most centrally located centroid within that cluster.
Unlike other PAM techniques, however, the sentic medoids
algorithm runs similarly to k-means and, hence, requires a
significantly reduced computational time. Generally, the ini-
tialization of clusters for clustering algorithms is a problem-
atic task as the process often risks getting trapped in local
optimum points, depending on the initial choice of centroids.

For this study, however, the set of 24 basic emotions of
the Hourglass model are used as initial centroids. For this
reason, what is usually seen as a limitation of the algo-
rithm can be seen as advantage for this study, since what
is being sought is not the k centroids leading to the best
k clusters, but indeed the k centroids identifying the emo-
tions we are interested in. Therefore, given that the distance
between two points in the space is defined as D(ei, ej) =√∑d′

s=1

(
e
(s)
i − e

(s)
j

)2
, the adopted algorithm can be sum-

marized as follows:

1. Each centroid ēi ∈ Rd′
(i = 1, 2, ..., k) is set as one of the

24 basic emotions of the Hourglass model;

2. Assign each instance ej to a cluster ēi if D(ej , ēi) ≤
D(ej , ēi′) where i(i′) = 1, 2, ..., k;

3. Find a new centroid ēi for each cluster c so that∑
j∈Cluster cD(ej , ēi) ≤

∑
j∈Cluster cD(ej , ēi′);

4. Repeat step 2 and 3 until no changes on centroids are ob-
served.

Experimental Results
In order to evaluate the new analogical reasoning model, a
comparison between AffectiveSpace and AffectiveSpace 2
has been performed both over a benchmark for affective
common-sense knowledge (BACK) (Cambria and Hussain
2012b), for directly testing the affective analogical reason-
ing capabilities of the two models, and over a dataset of
natural language opinions, for comparing how the two dif-
ferent configurations of AffectiveSpace (SVD-built versus
RP-built) perform within the more practical task of concept-
level opinion mining. Both vector space models were built
upon the new 50k×120k AffectNet matrix.

Mood-Tag Evaluation
We compared AffectiveSpace and AffectiveSpace 2 on
BACK, a benchmark for affective common-sense knowl-
edge built by applying concept frequency - inverse opin-
ion frequency (CF-IOF) (Cambria et al. 2010) on a 5,000-
blogpost database extracted from LiveJournal2, a virtual
community of users who keep a blog, journal, or diary.

An interesting feature of this website is that bloggers
are allowed to label their posts with both a category and
a mood tag, by choosing from predefined categories and
mood themes or by creating new ones. Since the indication
of mood tags is optional, posts are likely to reflect the true
mood of the authors.

CF-IOF weighting was exploited to filter out common
concepts in the LiveJournal corpus and detect relevant
mood-dependent semantics for each of the Hourglass sentic
levels. The result was a benchmark of 2,000 affective con-
cepts that were screened by 21 English-speaking students
who were asked to evaluate the level b associated to each
concept b ∈ Θ = {θ ∈ Z | −1 ≤ θ ≤ 1} for each of the
four affective dimensions. BACK’s concepts were compared

2http://livejournal.com
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with the classification results obtained by applying Affec-
tiveSpace and AffectiveSpace 2, showing a consistent boost
in classification performance (Table 2).

Sentic Computing Engine
The sentic computing engine (Cambria and Hussain 2012b)
consists of four main components: a pre-processing mod-
ule, which performs a first skim of text; a semantic parser, to
deconstruct text into concepts; the IsaCore module, for as-
pect extraction; and the AffectiveSpace module, for polarity
detection (Fig. 3).

Although similar in their structure, the last two modules
are intrinsically different for the kind of knowledge they
leverage on and for the task they fulfill. IsaCore (Cambria
et al. 2014) is a semantic network of common knowledge
(vocabulary knowledge collected from the Web), which fo-
cuses on the IsA relationship (e.g., Pablo Picasso-IsA-artist).
AffectiveSpace is a vector space of affective common-sense
knowledge (trivial knowledge that would not normally be
found on the Web) leveraging on multiple relationships (e.g.,
LocatedAt, IsUsedFor, Arises, etc.). Hence, while the for-
mer exploits semantics to perform the task of aspect extrac-
tion, the latter uses sentics (i.e., affective information) to in-
fer the polarity of natural language concepts.

Hourglass
Interval

Sentic
Level

AffSpace
Accuracy

AffSpace 2
Accuracy

[G(1),G(2/3)) ecstasy 77.3% 84.5%
[G(2/3),
G(1/3))

joy 83.9% 90.1%

[G(1/3),G(0)) serenity 68.8% 76.3%
(G(0),

–G(1/3)]
pensive-

ness
74.5% 79.0%

(–G(1/3),
–G(2/3)]

sadness 81.2% 89.6%

(–G(2/3),
–G(1)]

grief 79.5% 87.4%

Table 2: Comparative evaluation of AffectiveSpace and Af-
fectiveSpace 2 over the classification of Pleasantness sentic
levels.

The engine does not aim to deeply understand natural lan-
guage text, but rather to simply infer the denotative and con-
notative information associated with relevant concepts. In
order to infer the polarity of a sentence, in fact, the sentic
computing engine only needs to extract the features or as-
pects of the discussed service or product, e.g., size or weight
of a phone, and the sentiments associated with each of these,
e.g., positive or negative, so that the output of a sentence
such as “I love the phone’s touchscreen but its battery life is
too short” would be something like <touchscreen: +> and
<battery: –>.

The pre-processing module firstly exploits linguistic dic-
tionaries to interpret all the affective valence indicators usu-
ally contained in opinionated text, e.g., special punctuation,
complete upper-case words, cross-linguistic onomatopoeias,
exclamation words, degree adverbs, and emoticons. Sec-
ondly, the module detects negation and spreads it in a way

Figure 2: The Hourglass model

that it can be accordingly associated to concepts during the
parsing phase. Such task is not trivial as not all appear-
ances of explicit negation terms reverse the polarity of the
enclosing sentence and that negation can often be expressed
in rather subtle ways. Lastly, the module converts text to
lower-case and, after lemmatizing it, splits the opinion into
single clauses according to grammatical conjunctions.

For parsing text, the sentic parser is exploited for iden-
tifying concepts without requiring time-consuming phrase
structure analysis. The parser uses knowledge about the lex-
ical items found in text to choose the best possible construc-
tion for each span of text. Specifically, it looks each lex-
ical item up in AffectNet and IsaCore, obtaining informa-
tion about the basic category membership of that word. It
then efficiently compares these potential memberships with
the categories specified for each construction in the corpus,
finding the best matches so that, for example, a concept like
buy christmas present can be extracted from sen-
tences such as “today I bought a lot of very nice Christmas
gifts”. Additionally, the sentic parser provides, for each re-
trieved concept, its relative frequency, valence, and status,
i.e., the concept’s occurrence in the text, its positive or neg-
ative connotation, and the degree of intensity with which the
concept is expressed, respectively.

For each clause, the module outputs a small bag of con-
cepts (SBoC), which is later on analyzed separately by the
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Figure 3: Block diagram of the sentic computing engine

IsaCore and AffectiveSpace modules. While the former ex-
ploits the graph representation of the common and common-
sense knowledge base to detect semantics, the latter exploits
the vector space representation of AffectNet to infer sentics.
In particular, the IsaCore module applies spectral associa-
tion for assigning activation to key nodes of the semantic
network, which are used as seeds or centroids for classifica-
tion. Such seeds can simply be the concepts corresponding
to the class labels of interest or can be found by applying
CF-IOF on a training corpus.

After seed concepts are identified, the module spreads
their values across the IsaCore graph. This operation, an ap-
proximation of many steps of spreading activation, transfers
the most activation to concepts that are connected to the seed
concepts by short paths or many different paths in affective
common-sense knowledge. Therefore, the concepts of each
SBoC provided by the sentic parser are projected on the ma-
trix resulting from spectral association in order to calculate
their semantic relatedness to each seed concept and, hence,
their degree of belonging to each different class. Such clas-
sification measure is directly proportional to the degree of
connectivity between the nodes representing the retrieved
concepts and the seed concepts in the IsaCore graph. The
concepts retrieved by the sentic parser are also given as in-
put to the AffectiveSpace module, which, in turn, exploits
dimensionality reduction to infer the affective information
associated with them. To this end, the concepts of each
SBoC are projected into AffectiveSpace and, according to
their position in the vector space, they are assigned to an af-
fective class specified by the Hourglass model. In order to
test the performance of the proposed model, such an oper-
ation is performed both with the SVD-built AffectiveSpace
and with AffectiveSpace 2.

These are embedded in the sentic computing engine and
evaluated against a dataset obtained from PatientOpinion3, a
social enterprise pioneering an online feedback service for
users of the UK national health service. It is a manually
tagged dataset of 2,000 patient opinions that associates to
each post a category (namely, clinical service, communica-

3http://patientopinion.org.uk

tion, food, parking, staff, and timeliness) and a positive or
negative polarity.

The dataset is hereby used to test the combined detection
of opinion targets and the polarity associated with these. Re-
sults show that AffectiveSpace 2 generally outperforms stan-
dard AffectiveSpace, especially for categories where polar-
ity is more difficult to detect in which affect is usually con-
veyed more implicitly, e.g., ‘communication’ and ‘timeli-
ness’ (Table 3).

AffSpace
Accuracy

AffSpace 2
Accuracy

clinical service 75.2% 80.8%
communication 74.5% 85.1%

food 82.0% 83.7%
parking 74.0% 74.0%

staff 81.1% 83.2%
timeliness 73.4% 84.6%

Table 3: F-measure values relative to PatientOpinion evalu-
ation.

Conclusions and Future Work
In a world in which millions of people express their opinions
about commercial products and services everywhere on the
Web, the distillation of knowledge from this huge amount
of unstructured information is a key factor for tasks such as
social media marketing, product positioning, and financial
market prediction.

Common-sense reasoning is a good solution to the prob-
lem of concept-level sentiment analysis but scalability is a
major factor in jeopardizing the efficiency of analogical rea-
soning in a multi-dimensional vector space of concepts.

In this work, we presented AffectiveSpace 2, a language
visualization and analysis system that allows for reasoning
by analogy on natural language concepts, even when these
are represented by highly dimensional semantic features.

In this sense, AffectiveSpace 2 can be seen as a powerful
tool for tackling the emerging issue of “Big Dimensional-
ity” in the context of NLP, but also as a general framework
for analogical reasoning that can be embedded in potentially
any cognitive system dealing with real-world semantics.
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