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Abstract 
Learning mutually-grounded vision-language knowledge is 
a foundational task for cognitive systems and human-level 
artificial intelligence. Most of knowledge-learning 
techniques are focused on single modal representations in a 
static environment with a fixed set of data. Here, we explore 
an ecologically more-plausible setting by using a stream of 
cartoon videos to build vision-language concept hierarchies 
continuously. This approach is motivated by the literature 
on cognitive development in early childhood. We present 
the model of deep concept hierarchy (DCH) that enables the 
progressive abstraction of concept knowledge in multiple 
levels. We develop a stochastic method for graph 
construction, i.e. a graph Monte Carlo algorithm, to search 
efficiently the huge compositional space of the vision-
language concepts. The concept hierarchies are built 
incrementally and can handle concept drift, allowing for 
being deployed in lifelong learning environments. Using a 
series of approximately 200 episodes of educational cartoon 
videos we demonstrate the emergence and evolution of the 
concept hierarchies as the video stories unfold. We also 
present the application of the deep concept hierarchies for 
context-dependent translation between vision and language, 
i.e. the transcription of a visual scene into text and the 
generation of visual imagery from text.   

 

 Introduction   
Recent explosion of data enhances the importance of 
automatic knowledge acquisition and representation from 
big data. Linguistically-oriented representation formalisms 
such as semantic networks (Steyvers and Tenenbaum 2005) 
and WordNet (Fellbaum 2010) are popular and extremely 
useful. However, mutually-grounded vision-language 
concepts are more foundational for cognitive systems that 
work in perception-action cycles. Existing text-oriented 
representations are inefficient for learning multimodal 
concepts from large-scale data, such as videos. Continuous 
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knowledge construction from multimodal data streams is 
essential for achieving human-level artificial intelligence 
based on lifelong learning (Muggleton 2014, Zhang 2013).  

The task of vision-language learning is to automatically 
build the relationships between vision and language from 
multimodal sources of data. Previous works on multimodal 
learning have focused on either cognitive theory or 
practical applications. On the practical side, the latent 
Dirichlet allocation (LDA) models were applied to image 
annotation (Blei and Jordan 2003) and video object 
detection (Zhao et al. 2013). Recently, deep learning 
models were also used for image annotation (Srivastava 
and Salakutdinov 2012) and descriptive sentence 
generation (Kiros et al. 2014). However, they mainly 
focused on automatic annotation rather than constructing 
semantic knowledge at a higher level. Furthermore, the 
techniques mostly have concentrated on efficient learning 
from a static large-scale dataset (Ordornez et al. 2011, 
Deng et al. 2009) but seldom considered the dynamic 
change of the contents, i.e. concept drift. Some recent 
proposals have addressed hierarchical representations (Jia 
et al. 2013, Lewis and Frank 2013, Abbott et al. 2012), but 
they are biased to one modality or a static database.  

Here we propose a hierarchical model of automatically 
constructing visual-linguistic knowledge by dynamically 
learning concepts represented with vision and language 
from videos, i.e., a deep concept hierarchy (DCH). DCH 
consists of two or more concept layers and one layer of 
multiple modalities. The concepts at the higher levels 
represent more abstract concepts than at the lower layers. 
The modality layer contains the populations of many 
microcodes encoding the higher-order relationships among 
two or more visual and textual variables (Zhang et al. 
2012). Each concept layer is represented by a hypergraph 
(Zhou et al. 2007). This structure coincides with the 
grounded theory of the human cognition system where a 
concept is grounded in the modality-specific regions 
(Kiefer and Barsalou 2013). The structure enables the 
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multiple levels of concepts to be represented by the 
probability distribution of the visual-textual variables. 

The concept construction of DCH from videos involves 
two technical issues. One is to search a huge space of DCH
represented by hypergraphs. The other is to deal with 
concept drift contained in the video data. For handling 
these two issues, DCH uses a method based on a Monte 
Carlo simulation for efficiently exploring the search space, 
i.e., a graph Monte Carlo (graph MC). The graph MC is a 
stochastic method for efficiently finding desired graph 
structures by the repetition of probabilistically generating 
connections among nodes using observed data instead of 
sampling. The model structure flexibly grows and shrinks
by the graph MC, in contrast to other deep learning models.
DCH incrementally learns the concepts by the graph MC 
and the weight update process while observing new videos, 
thus robustly tracing concept drift and continuously 
accumulating new conceptual knowledge. This process is 
formalized as a sequential Bayesian inference. The
learning mechanism is inspired by the cognitive 
developmental process of children constructing the visually 
grounded concepts from multimodal stimuli (Meltzoff 
1990). 

For evaluation, we used the collection of cartoon videos
for children, entitled “Pororo”, consisting of 183 episodes 
with 1,232 minutes of playing time. Experimental results 
show DCH faithfully captures visual-linguistic concepts at 
multiple abstraction levels, reflecting the concept drift in 
the progress of the stories. Technically, we investigate the 
effective combinations of hierarchy architectures and graph 
MC variants to construct the DCH fast, flexibly, and 
robustly based on sequentially observed data over an 
extended period of time. We also present the application of 
the concept hierarchies for story- and context-aware 
conversion between the video scenes and the text subtitles.

Visual-Linguistic Concept Representation
To be concrete, we start with the video data from which we 

extract the vision-language concepts. The whole data set 
consists of episodes, which are preprocessed into 
sequences of sentence-image pairs by capturing a scene 
whenever a subtitle appears. This data generation imitates 
the process of how a child remembers what the characters 
say in a scene while observing videos. The vocabulary for 
the visual words is defined by the set of patches extracted 
by maximally stable external regions (MSER). Each patch 
is represented by the vector of SIFT and RGB features. If
we represent a textual word as wi and a visual word as ri, 
the utterance-scene is represented as a vector of the form:

( ) ( ) ( )
1 1( , ) ( ,..., , ,..., )t t t

M Nw w r rx w r ,       (1)
( ) ( ){( , ) | 1,..., }t t

ND t Tw r ,                       (2)
where M and N are the sizes of the textual and visual 
vocabularies.

Figure 1 shows three instances of the concepts learned 
from utterance-scene pairs. The objective is to construct a 
knowledge representation from the data that keeps main 
conceptual information. 
Sparse Population Coding
Sparse population coding (SPC) is a principle to encode 
data of n variables compactly using multiple subsets of size 
k. The subset is called a microcode and, typically, its size is 
small, i.e. k << n, and thus sparse. The population of 
microcodes characterizes the empirical distribution of the 
data in the form of a finite mixture. Previous work shows 
that SPC is useful for dynamically learning concepts from 
video data by defining a microcode as a subset of image 
patches and textual words (Zhang et al. 2012). Formally, 
the empirical distribution of the observed video data
consisting of continuous T scene-utterance pairs can be 
represented by the population code:

( ) ( ) ( )

11 1
( | ) ( | ) ( , | )

T T M
t t t

i i i
it t

P D P f ex w r .   (3)

where ei and i denote a microcode and its weight, and 
( | )i if ex is a density function. Also, i is a nonnegative 

value less than 1, summed to be 1. In above equation, a
model parameter is defined as = ( , e), where e and 

Figure 1: Visual-linguistic representation and development of three character concepts of video contents. A scene-utterance pair is 
represented by the sets of image patches and words and the concepts of the video stories are represented by these patches and words. 
Tongtong is not seen in episodes 1~13 and appears in episode 56 for the first time.  

1~13 episodes (1 DVD) 1~183 episodes (14 DVDs)

Concepts Visual nodes # of nodes 
(V/L) Top 15 linguistic nodes Visual nodes # of nodes 

(V/L) Top 15 linguistic nodes

Pororo 986/230
crong, you, clean, over, draw, 
huh, to, it, I, up, said, the, 
moving, is, pororo

12870/1031
crong, you, snowboarding, transforming, 
rescuing, pororo, the, lamp, seven, are, 
quack, yellow, not, lollipop, cake,

Eddy 644/198
I, ear, art, midget, game, nothing, 
say, early, diving, lost, middle, 
lesson, case, because, snowballs 

9008/860
transforming, I, hand, careful, throw, art, 
suit, midget, farted, reverse, stage, 
luggage, gorilla, pole, cannon

Tongtong - 0/0 - 1812/429
kurikuri, doodle, doo, avoid, airplane, 
crystal, puts, branch, bland, finding, pine,
circle, kurikuritongtong, bees, talent 
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are the sets of M microcodes and their weights.
Deep Concept Hierarchies
SPC can be considered as a hypergraph, where the 
hyperedges represent the microcodes. An equivalent 
representation is a two-layer network where the upper-
layer nodes indicate microcodes (hyperedges) and the 
lower-layer nodes indicate the data variables. Though the 
representation power is large, the number of upper-layer 
nodes may grow fast with the growing number of input 
units, i.e. the visual and textual vocabulary sizes in our 
video data. To resolve this problem, we introduce 
additional layers, resulting in a deep concept hierarchy 
(DCH) shown in Figure 2. A DCH model has explicit 
concept layers for representing abstract concepts. The 
connections between layers are sparse, which is contrasted 
to the deep neural networks that have full connectivity 
between layers. Also, the number of nodes in each layer 
flexibly changes for dynamically constructing knowledge 
as the learning proceeds, which is also contrasted to other 
deep learning models. This sparse and hierarchical 
structure reduces the model complexity and DCH pursues a 
parse modular hierarchical structure, as found in human 
brains (Quiroga 2012).

Mathematically, DCH represents the empirical 
distribution of data using a multiple layers of microcodes 
or concepts. Consider a DCH model with two concept
layers in this study.  Assume that a node of the top concept
layer denotes a character appearing in the video. Let 

1 1 1
1 1

=( ,..., )Kc cc and 2 2 2
1 2

=( ,..., )Kc cc denote the binary 
vectors representing the presence of concrete and abstract 
concepts, where K1 and K2 are the sizes of the two vectors. 
In addition, the sizes of the observable variables, which are 
M and N in (1), increase whenever observing new words
and patches. The probability density of a scene-text pair (r, 
w) for a given h=(e, ), c1, and c2 can be formulated as 

1 2 1 2 1 2( , | , ) ( , | , , ) ( | , )P P Phr w c c r w h c c h c c ,       (4)

where e and denote the population of microcodes and 
their weights. Each microcode e is defined as two sparse 

binary vectors whose size is M and N at the time when the 
scene is observed, respectively. Therefore, DCH can model 
the concepts as probabilistic associations among words and 
images. Figure 2 (b) shows an instance of DCH with two 
concept layers learning concepts from videos. 

DCH is basically a hierarchy of hypergraphs. That is, 
each layer of DCH can be equivalently transformed into a 
hypergraph by denoting a variable value and a higher-order 
association as a vertex and a hyperedge, as shown in 
Figure 2 (c). Now the problem is, the number of possible 
hyperedges exponentially increases proportional to the 
number of vertices in a hypergraph. For a k-hypergraph, a 
hypergraph consisting of hyperedges with k vertices (k-
hyperedge) only, the number of possible hypergraphs are 

( , )| | 2C n k , where n = |V| and C(n, k) denote the number 
of cases to choose k items from a set with n
denoted as the set of all the hypergraphs. Therefore, the 
problem space of a DCH model represented by (0, n)-
hypergraphs becomes 

| |2| | 2
x

, where |x| denotes the size 
of the observable variable set. It is infeasible to explore 
this huge combinatorial search space with an exhaustive 
approach. 

Learning of Deep Concept Hierarchies

Graph Monte Carlo
We propose a method for efficiently constructing 
hypergraphs incrementally from incoming data. The idea is 
to use Monte Carlo search on the hypergraph space. The 
resulting graph Monte Carlo method (graph MC) assumes 
two conditions:

i) The graph structure in the t-th iteration is determined 
by that of the t-1 the iteration. 

ii) Estimating the empirical distribution asymptotically 
converges to exploring all theoretical spaces when 
data are large enough. 

Formally, for a given dataset D, an optimal hypergraph 

Figure 2: Examples of deep concept hierarchies. (a) presents an architecture of deep concept hierarchy and (b) is an instance of a DCH 
model with two concept layers learning concepts from Pororo. (c) is the hypergraph representation of (b). Gray boxes in (b) denote 
observable variables.

r r r r w w w w w
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(a) Architecture of deep concept hierarchy
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(c) Hypergraph representation of (b)
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G* corresponding to a model is formulated with Bayes rule:
1* arg max ( | ) arg max ( | ) ( )

t t

t t t
G G

G P G D P D G P G ,    (5)

where Gt is a k-hypergraph in the t-th time step. G is 
constructed to maximize P(Gt|D) by the repetition of 
replacing hyperedges whenever observing the data: 

1
{ } and ( )

k

m
G G e e v x ,              (6)

( ) ( ( ))
v e

P e P v x ,                          (7)

where G is a new hyperedge set, and e and v(x) denote a 
generated hyperedge and the vertex corresponding to a 
variable x. Both the initial values of G and e are empty. 
P(e) denotes the probability with which e is generated. 
P(v(x)) denotes the probability of which vertices are 
connected as hyperedges. The graph MC is addressed in 
terms of the Metropolis-Hastings algorithm under two 
conditions:

i) A hypergraph G is factorized by its hyperedges to
represent a probability distribution (Besag 1974). 

ii) G is generated to equivalently represent a sampling 
instance x.

Then, G* representing the empirical distribution of the 
observed data can be constructed by the graph MC. P(v(x))
in (7) determines the property of the constructed graph 
structures, thus playing a role of the learning strategy of 
the graph MC. Note that P(v(x)) is computed from the 
currently observed data instance according to assumption 
ii). We define P(v(x)) based on three different approaches.  
Uniform Graph Monte Carlo
Uniform graph Monte Carlo (UGMC) uses the same 
probability as P(v(x)) for all the variables with the positive 
value of the data. Then, the probability is defined as 
follows:

1( )( ( )) { | }nP v x x x x and ( ) 1( ) ( ,| |)nP e C k x ,   (8)

where ( )nx denotes the set of variables with the positive 
value of the n-th data instance. Then, all the possible 
hyperedges for a given instance are generated with the 
same probability. 
Poorer-Richer Graph Monte Carlo
The P(e) of each possible hyperedge for a given instance is 
different from each other in poorer-richer graph Monte
Carlo (PRGMC). In PRGMC, a vertex more included in a 
hypergraph has higher probability. The P(v(x)) of PRGMC 
is defined as follows:

( ( ))
( ( )) , ( ( ))= ( ( ), )

i t

i i
e G

R d v x
P v x d v x h v x e

x
, (9)

where R+(.) is a rank function in ascending order, d(v) is 
the degree of vertex of v, and h(v, e) denotes an indicator 
function which are 1 when e includes v. For enabling new 
variables not existing in Gt-1 to be selected, their d(v) is set 

to a small value. This approach makes a hypergraph 
contain the patterns which frequently appear in the training 
data. Therefore, PRGMC constructs a smaller and denser 
hypergraph, compared to that built by UGMC. 
Fair Graph Monte Carlo
Fair graph Monte Carlo (FGMC) prefers the subpatterns 
less frequently appearing in the training data, contrary to 
PRGMC. The P(v(x)) is defined as:

( ( )) ( ( ))P v x R d v x x ,                            (10)
where R-(.) is a rank function in descending order. 
Therefore, a larger and sparser graph is constructed by 
FGMC and the concepts are represented with much more 
diverse words and patches. 

Learning of Concept Layers
To learning the concept layers we should address three 
issues: i) determining the number of the nodes of the 
concrete concept layer c1 (c1-nodes), ii) associating
between c1-nodes and modality layer h, and iii) associating
between c1-nodes and the abstract concept nodes (c2-nodes). 
The idea is to split the hyperedge set in h into multiple 
subgraph clusters, which correspond to the nodes of the c1

layer.  The number of the c1-nodes are determined based on 
the distribution of the mean similarities among the 
hyperedges of a subgraph on all the clusters:

( ) ( ) | |m m mSim Disth h h ,                         (11)
where hm denotes the subgraph associated with the m-th c1-
node and Dist(hm) is the sum of the distance between all 
the hyperedges of hm. Then, the distance is estimated by 
converting the words into the real-value vectors by 
word2vec (Mikolov et al. 2013). Considering the story-
specific semantics of words, we used the corpus of cartoon 
video subtitles instead of conventional text corpora. If 
Sim(hm) > max, hm is split into two subgraphs and a new c1-
node is added into the c1 layer and associated with one of 
the split subgraph. On the other hand, if all the mean 
similarities are smaller than min, the number is reduced and 
the associations are conducted again. max and min are 
adaptively determined from the mean and the variance of 
the similarity. c2-nodes are associated with a c1-node when 
the characters corresponding to the c2-nodes appear in the 
hyperedges of the subgraph associated with the c1-node.

Incremental Concept Construction
DCH learns incrementally, i.e. builds the visual-linguistic
concepts dynamically while sequentially observing scene-
text pairs. We use all the scene-text pairs of one episode as 
a mini corpus. On sequential observation of the episodes, 
DCH predicts the concepts from the population and 
updates the population from the observed data and 
characters. Formally, this implements a sequential 
Bayesian estimation:
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1 2

1 2 2 1 1
1

2

( , | , , )

( , | , , ) ( | , ) ( , )
( , , )

t

t

P

P P P
P

h c r w  c

r w h c c c c h h c
r w  c

,      (12)

where Pt is a probability distribution at the t-th episode. 
When observing the t-th episode, the prior distribution 

1( )tP h is updated to the posterior distribution by 
calculating the likelihood and normalizing. Then, the 
posterior is used as the prior for learning from the next 
episode. Note that the P(r,w,c2) is independent on the 
model because (r, w) and c2 are given from the observed 
data. Therefore, (12) is reformulated when the empirical 
distributions are used:

1 2

( ) ( ) 1 2 2 1 1
1

1

( | , , )

( , | ) ( | ) ( | ) ( )
t

t
D

d d
t

d

P

P P P P

h,c r w  c

r w h,c ,c c c c h h
, (13)

The data generation term is divided into textual and visual 
features:

( ) ( ) 2 1

( ) ( )2 1 2 1

1 1

log ( , | , , )

log ( | , , ) log ( | , , )

d d

N Md d
n m

n m

P

P r P w

r w c c h

c c h c c h
. (14)

Then the probability that the m-th element of the word 
vector is 1 is defined as follows:

( ) 2 1

1
( =1| , , )=exp -

d
m m i

i
P w s

c|h |
wc c h , 

1
= i i

i
e

c|e |
w ws , (15)

where sm is the m-th value of s and ec denotes the 
subpopulation of microcodes associated with c1. ei

w

denotes the textual and visual vectors of the i-th microcode. 
The probability of the image patches can be computed by 
the same way. The second term of (13) is related to
predicting the characters from the mixtures of concrete 
concepts. It is defined to prefer more distinct concrete 
concepts for each character variable. The third term reflects 
the similarities of the subpopulation for each concrete 
concept node. The last term is determined from the used 
strategy of the graph MC. The weight of the microcodes is 
defined as a function of how frequently the words and 
patches of the microcode occur in the observed data. 
Whenever observing a new episode, the weight is updated:

1= +(1 )t t
i i i ,                        (16)

where is a constant for moderating the ratio of the new 
observed episode and the previous episodes. In this study, 
we set to 0.9.

Vision-Language Conversion
The constructed visual-linguistic knowledge is used to
convert scenes to text and vice versa, considering observed 
video stories. We view a vision-language conversion as a 

machine translation problem. Then, when source and target
languages are substituted with scenes and subtitles, the 
vision-language translation is formulated:

* arg max ( | , ) arg max ( | , ) ( )P P P
w w

w w r r w w, , (17)

where w* are the best subtitles generated from the 
constructed concept knowledge, and is a DCH model. r*
can also be defined in the same way. Here w* is aligned to 
be a sentence by concatenating the words based on n-gram
until a period appears and r* is synthesized to be a
combination of the patches. 

Experimental Results

Video Data Description and Parameter Setup
We use cartoon videos, called “Pororo”, of 14 DVD titles 
with 183 episodes and 1,232 minutes of playing time. 
Pororo is a famous cartoon video appearing. By 
preprocessing, each scene is captured whenever a subtitle 
appears, transforming all the videos into the set of 16,000 
scene-subtitle pairs. A scene image is represented by a bag
of image patches extracted by maximally stable external 
regions (MSER), and each patch is defined as a feature 
vector by using SIFT and quantizing RGB pixel values. 

We used a DCH model with two concept layers. A 
microcode consists of two image patches and a phrase with 
three consecutive words. The image patches are selected 
by UGMC and a phrase is selected with the maximum 
value of P(v(x)) of the words in the phrase. The initial 
number of c1-nodes starts at 10 and max and min are 
defined as follows:

10

max min
( ) , 10

, 0
, 10

t t t
t t

t t

t

t
,    (18)

where t and t denote the mean and the standard deviation 
of the subgraph similarities after observing the t-th episode, 
and is a constant for moderating the increasing speed of 
the c1 layer size. In this study, we set it to 0.75. 

Concept Representation and Development
To demonstrate the evolution of concepts in DCH, we have 
examined how the characters, such as “Pororo”, “Eddy”, 
and “Tongtong”, are differently described as the story 
unfolds. Figure 1 compares the descriptions after learning 
up to episode 13 (DVD 1) and 183 (DVD 14). Considering 
the fact that Pororo is a brother of Crong, Tongtong casts 
“Kurikuri” for magic, and Eddy is an engineer, the 
descriptive words for each character are suitable. We 
observe that the number of visual and linguistic nodes 
tends to increase. This is because the concepts 
continuously develop while observing the videos. The 
character concepts can be visualized as a multimodal 
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concept map, which is used for knowledge representation 
as shown in Figure S1 in supplementary material. 
Specifically, we observed that the number of c1-nodes 
increases in early stages and then saturates (Figure 3). This 
indicates that new concrete concepts are learned rather 
earlier and, as time goes on, familiar concepts reappear. 
Figure 3(a) compares the complexity growth curves of 
DCH by three learning methods. FGMC is the most fast-
growing strategy employing more c1-nodes because it tends 
to select diverse words and patches, as compared to 
UGMC and PRGMC. This is verified by Figure 3(b) which 
shows more vertices are included in the models constructed 
by FGMC. To see if DCH correctly learned the 
distinguishable concepts, we have analyzed the c1-nodes by 
PCA. Figure 4 shows that different characters are well 
discriminated by the learned microcodes (the first 
component ratio = 0.70 in (a)).

Vision-Language Translation Results
The constructed DCH was evaluated by using it for “story-
aware” vision-language translation. Table 1 shows the 
performance of the sentence generation from the images. 
The test data consist of 183 images from randomly 
selecting one image per episode, and they are not used in 
training the models. The results are averaged over 10
experiments. The performances were estimated by how 
many words in the generated sentences and the original 

subtitles are matched. We examined how the different 
graph MC algorithms effect on the results. The precision of 
PRGMC increases faster in early videos but slower in late 
ones than that of FGMC. PRGMC is good at fast 
memorizing of main information but loses details. On the 
contrary, FGMC requires a more complex structure to 
memorize more information but shows higher accuracy. 
This is consistent with the results in Figure 3. In addition, 
the result shows that the introduction of concept layers 
improves the accuracy of the constructed knowledge. More
examples of generated sentences and scene images are 
provided as supplementary material in Figures S2 and S3. 
It is interesting to note that the recall images are like 
mental imagery as demonstrated in movie recall in humans 
(Nishimoto et al. 2011). Overall, the results in Figure S2
and S3 demonstrate that the more episodes the DCH 
learned, the more diversity are generated in sentences and 
images. It should be noted that this is not for free; 
Observing more episodes requires heavier computational 
costs. The tradeoff should be made by the controlling the 
greediness of the graph MC algorithms as examined above.

Concluding Remarks
We have presented a deep concept hierarchy (DCH) for 
automated knowledge construction by learning visual-
linguistic concepts from cartoon videos. DCH represents 
mutually-grounded vision-language concepts by building 
multiple layers of hypergraph structures. Technically, the 
main difficulty is how to efficiently learn the complex 
hierarchical structures of DCH in online situations like 
videos. Our main idea was to use a Monte Carlo method. 
We have developed a graph MC method that essentially 
searches “stochastically” and “constructively” for a 
hierarchical hypergraph that best matches the empirical 
distribution of the observed data. Unlike other deep 

Figure 3: Changes of model complexity according to the 
learning strategies of the graph MC. In (b), VU, VPR, and VF

denote the vertex sets of the model constructed by UGMC, 
PRGMC, and FGMC. 

Measure PRGMC UGMC FGMC SPC

Ep 1
Precision 0.196 0.077 0.167 0.195 

Recall 0.117 0.285 0.151 0.302 
F-score 0.146 0.122 0.158 0.237 

Ep 
1~9

Precision 0.225 0.221 0.230 0.175 
Recall 0.268 0.283 0.303 0.278 

F-score 0.245 0.248 0.261 0.215 

Ep 
1~18

Precision 0.240 0.247 0.253 0.239 
Recall 0.293 0.293 0.378 0.283 

F-score 0.264 0.268 0.303 0.259 

Ep 
1~36

Precision 0.267 0.251 0.268 0.242 
Recall 0.315 0.284 0.376 0.291 

F-score 0.289 0.266 0.313 0.264 
Table 1: Performance of scene-to-sentence generation as the 
increase of the observed videos.

Figure 4: PCA plot of microcodes associated with the 
concrete concept nodes (c1-nodes) and their centroids of the 
models learned from 183 episodes by UGMC. 
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learning models, the DCH structure can be incrementally 
reorganized. This flexibility enables the model to handle 
concept drifts in stream data, as we have demonstrated in 
the experiments on a series of cartoon videos of 183 
episodes. 
    We have analyzed and compared three strategies for the
graph MC: uniform graph Monte Carlo (UGMC), poorer-
richer graph Monte Carlo (PRGMC), and fair graph Monte 
Carlo (FGMC) depending on the probability of selecting 
vertices. The use of hierarchy improved the generalization 
performance while paying slight prices in computational 
cost. Among the variants of the Monte Carlo algorithms, 
we found that the PRGMC and the FGMC work better in 
earlier and later stages of video observation in the visual-
language translation task. Overall, our experimental results 
demonstrate that DCH combined with the graph MC 
algorithms captures the mixed visual-linguistic concepts at 
multiple abstraction levels by sequentially estimating the 
probability distributions of visual and textual variables 
extracted from the video data. In future work, it would be 
interesting to see how the methods scale up on a much 
larger dataset with more complex story structures than the 
educational cartoon videos for children.
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