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Abstract

Sparse learning has been proven to be a powerful tech-
nique in supervised feature selection, which allows to
embed feature selection into the classification (or re-
gression) problem. In recent years, increasing attention
has been on applying spare learning in unsupervised
feature selection. Due to the lack of label information,
the vast majority of these algorithms usually generate
cluster labels via clustering algorithms and then formu-
late unsupervised feature selection as sparse learning
based supervised feature selection with these generated
cluster labels. In this paper, we propose a novel unsuper-
vised feature selection algorithm EUFS, which directly
embeds feature selection into a clustering algorithm via
sparse learning without the transformation. The Alter-
nating Direction Method of Multipliers is used to ad-
dress the optimization problem of EUFS. Experimental
results on various benchmark datasets demonstrate the
effectiveness of the proposed framework EUFS.

Introduction
In many real-world applications such as data mining and
machine learning, one is often faced with high-dimensional
data (Jain and Zongker 1997; Guyon and Elisseeff 2003).
Data with high dimensionality not only significantly in-
creases the time and memory requirements of the algo-
rithms, but also degenerates many algorithms’ performance
due to the curse of dimensionality and the existence of ir-
relevant, redundant and noisy dimensions(Liu and Motoda
2007). Feature selection, which reduces the dimensional-
ity by selecting a subset of most relevant features, has been
proven to be an effective and efficient way to handle high-
dimensional data (John et al. 1994; Liu and Motoda 2007).

In terms of the label availability, feature selection methods
can be broadly classified into supervised methods and unsu-
pervised methods. The availability of the class label allows
supervised feature selection algorithms (Duda et al. 2001;
Nie et al. 2008; Zhao et al. 2010; Tang et al. 2014) to ef-
fectively select discriminative features to distinguish sam-
ples from different classes. Sparse learning has been proven
to be a powerful technique in supervised feature selection
(Nie et al. 2010; Gu and Han 2011; Tang and Liu 2012a),
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which enables feature selection to be embedded in the clas-
sification (or regression) problem. As most data is unla-
beled and it is very expensive to label the data, unsuper-
vised feature selection attracts more and more attentions
in recent years (Wolf and Shashua 2005; He et al. 2005;
Boutsidis et al. 2009; Yang et al. 2011; Qian and Zhai 2013;
Alelyani et al. 2013).

Without label information to define feature relevance, a
number of alternative criteria have been proposed for un-
supervised feature selection. One commonly used criterion
is to select features that can preserve the data similarity or
manifold structure constructed from the whole feature space
(He et al. 2005; Zhao and Liu 2007). In recent years, apply-
ing sparse learning in unsupervised feature selection has at-
tracted increasing attention. These methods usually generate
cluster labels via clustering algorithms and then transform
unsupervised feature selection into sparse learning based su-
pervised feature selection with these generated cluster la-
bels such as Multi-cluster feature selection (MCFS) (Cai
et al. 2010), Nonnegative Discriminative Feature Selection
(NDFS) (Li et al. 2012), and Robust Unsupervised Feature
Selection (RUFS) (Qian and Zhai 2013).

In this paper, we propose a novel unsupervised feature
selection algorithm, i.e., Embedded Unsupervised Feature
Selection (EUFS). Unlike existing unsupervised feature se-
lection methods such as MCFS, NDFS or RUFS, which
transform unsupervised feature selection into sparse learn-
ing based supervised feature selection with cluster labels
generated by clustering algorithms, we directly embed fea-
ture selection into a clustering algorithm via sparse learning
without the transformation (see Figure 1). This work theoret-
ically extends the current state-of-the-art unsupervised fea-
ture selection, algorithmically expands the capability of un-
supervised feature selection, and empirically demonstrates
the efficacy of the new algorithm. The major contributions
of this paper are summarized next.

• Providing a way to directly embed unsupervised feature
selection algorithm into a clustering algorithm via sparse
learning instead of transforming it into sparse learning
based supervised feature selection with cluster labels;

• Proposing an embedded feature selection framework
EUFS, which selects features in unsupervised scenarios
with sparse learning; and
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(a) Existing sparse learning based unsupervised feature selec-
tion method

(b) Embedded unsupervised feature selection

Figure 1: Differences between the existing sparse learning
based unsupervesd feature selection methods and the pro-
posed embedded unsupervised feature selection

• Conducting experiments on various datasets to demon-
strate the effectiveness of the proposed framework EUFS.

The rest of this paper is organized as follows. In Section
2, we give details about the embedded unsupervised feature
selection framework EUFS. In Section 3, we introduce a
method to solve the optimization problem of the proposed
framework. In Section 4, we show empirical evaluation with
discussion. In section 5, we present the conclusion with fu-
ture work.

Embedded Unsupervised Feature Selection
Throughout this paper, matrices are written as boldface cap-
ital letters and vectors are denoted as boldface lowercase let-
ters. For an arbitrary matrix M ∈ Rm×n, Mij denotes the
(i, j)-th entry of M while mi and mj mean the i-th row
and j-th column of M respectively. ||M||F is the Frobenius
norm of M and Tr(M) is the trace of M if M is square.
〈A,B〉 equals Tr(ATB), which is the standard inner prod-
uct between two matrices. I is the identity matrix and 1 is a
vector whose elements are all 1. The l2,1-norm is defined as

||M||2,1 =
∑m
i=1 ||mi|| =

∑m
i=1

√∑n
j=1 M

2
ij).

Let X ∈ RN×d be the data matrix with each row xi ∈
R1×d being a data instance. We use F = {f1, . . . , fd} to
denote the d features and f1, . . . , fd are the corresponding
feature vectors. Assume that each feature has been normal-
ized, i.e., ||fj ||2 = 1 for j = 1, . . . , d. Suppose that we want
to cluster X into k clusters (C1, C2, . . . , Ck) under the ma-
trix factorization framework as:

min
U,V

||X−UVT ||2F

s.t.U ∈ {0, 1}N×k,UT1 = 1
(1)

where U ∈ RN×k is the cluster indicator and V ∈ Rd×k is
the latent feature matrix. The problem in Eq.(1) is difficult
to solve due to the constraint on U. Following the common
relaxation for label indicator matrix (Von Luxburg 2007;

Tang and Liu 2012b), the constraint on U is relaxed to or-
thogonality, i.e., UTU = I, U ≥ 0. After the relaxation,
Eq.(1) can be rewritten as:

min
U,V

||X−UVT ||2F

s.t.UTU = I,U ≥ 0
(2)

Another significance of the orthogonality constraint on U
is to allow us to perform feature selection via V, which can
be stated by the follow theorem:
Theorem 1. Let X = [f1, f2, . . . , fd], and ||fi|| = 1 for i =
1, . . . , d. We use UVT to reconstruct X, i.e., X̂ = UVT . If
U is orthogonal, then we can perform feature selection via
V.
Proof. Since X̂ = UVT , we have f̂i = UvTi . Then

||f̂i||2 = ||UvTi ||2 =
(
viU

TUvi
)1/2

= ||vi||2 (3)

Consider the case that ||vi||2 is close to 0, which indicates
that the reconstructed feature representation ||f̂i||2 is close
to 0. ||fi|| = 1 means fi is not well reconstructed via f̂i,
which suggests that this corresponding feature could be not
representative and we should exclude such features to have a
better reconstruction. One way to do this is to add a selection
matrix diag(p) to X and V as,

||Xdiag(p)−U(diag(p)V)T ||2F (4)

where p = {0, 1}d with pi = 1 if the i-th feature is selected
and otherwise pi = 0, which completes the proof.

With Theorem 1, if we want to select m features for the
clustering algorithm in Eq.(2), we can rewrite it as:

min
U,V

||Xdiag(p)−U(diag(p)V)T ||2F

s.t.UTU = I,U ≥ 0

p ∈ {0, 1}d,pT1 = m

(5)

The constraint on p makes Eq.(5) mixed integer program-
ming (Boyd and Vandenberghe 2004), which is difficult to
solve. We relax the problem in the following way. First, the
following theorem suggests that we can ignore the selection
matrix on X as

min
U,V

||X−U(diag(p)V)T ||2F

s.t.UTU = I,U ≥ 0

p ∈ {0, 1}d,pT1 = m

(6)

Theorem 2. The optimization problems in Eq.(5) and Eq.(6)
are equivalent.

Proof. One way to prove Theorem 2 is to show that the ob-
jective functions in Eq.(5) and Eq.(6) are equivalent. For
Eq.(5), we have

||Xdiag(p)−U(diag(p)V)T ||2F

=
d∑
i=1

||pifi − piUvTi ||2F

=
∑
i:pi=1

||fi −UvTi ||2F

(7)
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And for Eq.(6), we have

||X−U(diag(p)V)T ||2F

=
d∑
i=1

||fi − piUvTi ||2F

=
∑
i:pi=1

||fi −UvTi ||2F + (N −m)

(8)

which complete the proof.

We observe that diag(p) and V is as the form of diag(p)V
in Eq.(6). Since p is a binary vector and N −m rows of the
diag(p) are all zeros, diag(p)V is a matrix where elements
of many rows are all zeros. This motivates us to absorb the
diag(p) into V, i.e., V = diag(p)V, and add l2,1 norm on V
to achieve feature selection as

argmin
U,V
||X−UVT ||2F + α||V||2,1

s.t.UTU = I,U ≥ 0
(9)

Since we forces some rows of V close to 0, U and V may
poorly reconstruct some data instances. Reconstructing er-
rors from these instances may easily dominate the objective
function because of the squared errors. To make the model
robust to these instances, we adopt robust analysis, i.e., re-
place the loss function by l2,1-norm, as follows

argmin
U,V
||X−UVT ||2,1 + α||V||2,1

s.t.UTU = I,U ≥ 0
(10)

To take advantage of information from attribute-value
part, i.e, X, similar data instances should have similar la-
bels, according to the spectral analysis (Von Luxburg 2007),
we further add the following term to force similar instances
with similar labels as:

minTr(UTLU) (11)

where L = D− S is the Laplacian matrix and D is a diag-
onal matrix with its elements defined as Dii =

∑n
j=1 Sij .

S ∈ RN×N denotes the similarity matrix based on X, which
is obtained through RBF kernel as

Sij = e−
||xi−xj ||

2

σ2 (12)

Putting Eq.(10) and Eq.(11) together, the proposed frame-
work EUFS is to solve the following optimization problem:

argmin
U,V
||X−UVT ||2,1 + α||V||2,1 + βTr(UTLU)

s.t.UTU = I,U ≥ 0
(13)

Optimization Algorithm
The objective function in Eq.(13) is not convex in both U
and V but is convex if we update the two variables alter-
natively. Following (Huang et al. 2014), we use Alternating
Direction Method of Multiplier (ADMM) (Boyd et al. 2011)

to optimize the objective function. By introducing two aux-
iliary variables E = X−UVT and Z = U, we can convert
Eq.(13) into the following equivalent problem,

arg min
U,V,E,Z

||E||2,1 + α||V||2,1 + βTr(ZTLU)

s.t. E = X−UVT ,Z = U,UTU = I,Z ≥ 0
(14)

which can be solved by the following ADMM problem

min
U,V,E,Z,Y1,Y2,µ

||E||2,1 + α||V||2,1 + βTr(ZTLU)

+ 〈Y1,Z−U〉+
〈
Y2,X−UVT −E

〉
+
µ

2
(||Z−U||2F + ||X−UVT −E||2F )

s.t. UTU = I,Z ≥ 0
(15)

where Y1,Y2 are two Lagrangian multipliers and µ is a
scalar to control the penalty for the violation of equality con-
straints E = X−UVT and Z = U.

Update E
To update E, we fix the other variables except E and remove
terms that are irrelevant to E. Then Eq.(15) becomes

min
E

1

2
||E− (X−UVT +

1

µ
Y2)||2F +

1

µ
||E||2,1 (16)

The equation has a closed form solution by the following
Lemma (Liu et al. 2009)
Lemma 3. Let Q = [q1;q2; ...;qm] be a given matrix and
λ a positive scalar. If the the optimal solution of

min
W

1

2
||W −Q||2F + λ||W||2,1 (17)

is W∗, then the i-th row of W∗ is

w∗i =

{
(1− λ

||qi|| )qi, if ||qi|| > λ

0, otherwise
(18)

Apparently, if we let Q = X−UVT + 1
µY2, then using

Lemma 3, E can be updated as

ei =

{
(1− 1

µ||qi|| )qi, if ||qi|| > 1
µ

0, otherwise
(19)

Update V
To update V, we fix the other variables except V and remove
terms that are irrelevant to V, then Eq.(15) becomes

min
V,UTU=I

µ

2
||X−UVT −E+

1

µ
Y2||2F + α||V||2,1 (20)

Using the fact that UTU = I, we can reformulate Eq.(20)
as

min
V

1

2
||V − (X−E+

1

µ
Y2)

TU||2F +
α

µ
||V||2,1 (21)

Again, the above equation has a closed form solution ac-
cording to Lemma 3. Let K = (X−E+ 1

µY2)
TU, then

vi =

{
(1− α

µ||ki|| )ki, if ||ki|| > α
µ

0, otherwise
(22)
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Update Z
Similarly, to update Z, we fix U,V,E,Y1,Y2, µ and re-
move terms irrelevant to Z, then Eq.(15) becomes

min
Z≥0

µ

2
||Z−U||2F + βTr(ZTLU) + 〈Y1,Z−U〉 (23)

We can rewrite Eq.(23) by putting the second and third terms
to the quadratic term and get a compact form

min
Z≥0
||Z−T||2F (24)

where T is defined as

T = (U− 1

µ
Y1 −

β

µ
LU) (25)

Eq.(24) can be further decomposed to element-wise opti-
mization problems as

min
Zij≥0

(Zij − Tij)2 (26)

Clearly, the optimal solution of the above problem is

Zij = max(Tij , 0) (27)

Update U
Optimizing Eq.(15) with respect to U yields the equation

min
UTU=I

〈Y1,Z−U〉+
〈
Y2,X−UVT −E

〉
+
µ

2
(||Z−U||2F + ||X−UVT −E||2F ) + βTr(ZTLU)

(28)
By expanding Eq.(28) and dropping terms that are indepen-
dent of U, we arrive at

min
UTU=I

µ

2
||U||2F − µ 〈N,U〉 (29)

where N is defined as

N =
1

µ
Y1 + Z− βLZ+ (X−E+

1

µ
Y2)V (30)

We can further write the above equation into a more compact
form as

min
UTU=I

||U−N||2F (31)

And now we have converted the objective function of up-
dating U to the classical Orthogonal Procrutes problem
(Schönemann 1966) and can be solved using the following
lemma (Huang et al. 2014)

Lemma 4. Given the objective in Eq.(31), the optimal U is
defined as

U = PQT (32)

where P and Q are the left and right singular vectors of the
economic singular value decomposition (SVD) of N.

Update Y1, Y2 and µ
After updating the variables, we now need to update the
ADMM parameters. According to (Boyd et al. 2011), they
are updated as follows

Y1 = Y1 + µ(Z−U) (33)

Y2 = Y2 + µ(X−UVT −E) (34)

µ = max(ρµ, µmax) (35)

Here, ρ > 1 is a parameter to control the convergence speed
and µmax is a larger number to prevent µ becomes too large.

With these updating rules, EUFS algorithm is summarized
in Algorithm 1.

Algorithm 1 Embedded Unsupervised Feature Selection
Input: X ∈ RN×d, α, β, n, latent dimensional k
Output: n features for the dataset

1: Initialize µ = 10−3, ρ = 1.1, µmax = 1010, U =
0,V = 0 (or initialized using K-means)

2: repeat
3: Calculate Q = X−UVT + 1

µY2

4: Update E

ei =

{
(1− 1

µ||qi|| )qi, if ||qi|| > 1
µ

0, otherwise
(36)

5: Calculate K = (X−E+ 1
µY2)

TU

6: Update V

vi =

{
(1− α

µ||ki|| )ki, if ||ki|| > α
µ

0, otherwise
(37)

7: Calculate T using Eq.(25)
8: Update Z using Eq.(27)
9: Calculate N according to Eq.(30)

10: Update U by Lemma 4
11: Update Y1,Y2, µ
12: until convergence
13: Sort each feature of X according to ||vi||2 in descending

order and select the top-n ranked ones

Parameter Initialization
One way to initialize U and V is to simply set them to be 0.
As the algorithm runs, the objective function will gradually
converge to the optimal value. To accelerate the convergence
speed, following the common way of initializing NMF, we
can use k-means to initialize U and V. To be specific, we
apply k-means to cluster rows of X and get the soft cluster
indicator U. V is simply set as XTU. µ is typically set in
the range of 10−6 to 10−3 initially depending on the datasets
and is updated in each iteration. µmax is set to be a large
value such as 1010 to give µ freedom to increase but prevent
it from being too large. ρ is empirically set to 1.1 in our
algorithm. The larger ρ is , the faster µ becomes larger and
the more we penalize the deviation of the equality constraint,
which makes it converges faster. However, we may sacrifice
some precision of the final objective function with large ρ.
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Convergence Analysis
The convergence of our algorithm depends on the conver-
gence of the ADMM. The detailed convergence proof of
ADMM can be found in (Goldstein et al. 2012; Boyd et al.
2011). The convergence criteria can be set as |Jt+1−Jt|

Jt
< ε,

where Jt is the objective function value in Eq.(14) and ε is
some tolerance value. In practice, we can control the num-
ber of iterations by setting a maximum iteration value. Our
experiments find that our algorithm converges within 110 it-
erations for all the datasets we used.

Time Complexity Analysis
The computation cost for E depends on the computation of
Q = X−UVT + 1

µY2 and update of E. Since U is sparse,
i.e., each row of U only has one nonzero element, then the
computation cost is O(Nd) and O(Nd), respectively.

Similarly, the computation cost for V involves the compu-
tation of K = (X−E+ 1

µY2)
TU and update of V, which

is O(Nd) again due to the sparsity of U.
The main computation cost for Z is the computation of

T = (U − 1
µY

T
1 −

β
µLU), which is O(k2) due to the spar-

sity of both U and L.
The main computation cost of U involves the computa-

tion of N and its SVD decomposition, which is O(Ndk) and
O(Nk2). The computational cost for Y1 and Y2 are both
O(Nd). Therefore, the overall time complexity is O(Ndk +
Nk2). Since d � k, the final computation cost if O(Ndk)
for each iteration.

Experimental Analysis
In this section, we conduct experiments to evaluate the ef-
fectiveness of EUFS 1. After introducing datasets and ex-
perimental settings, we compare EUFS with the state-of-the-
art unsupervised feature selection methods. Further experi-
ments are conducted to investigate the effects of important
parameters on EUFS.

Datasets
The experiments are conducted on 6 publicly available
benchmark datasets, including one Mass Spectrometry (MS)
dataset ALLAML (Fodor 1997), two microarray datasets,
i.e., Prostate Cancer gene expression (Prostate-GE) 2 (Singh
et al. 2002) and TOX-171, two face image datasets, i.e.,
PIX10P and PIE10P3 and one object image dataset COIL204

(Nene et al. 1996). The statistics of the datasets used in the
experiments are summarized in Table 1.

1The implementation of EUFS can be found from
http://www.public.asu.edu/ swang187/

2ALLAML and Prostate-GE are publicly available from
https://sites.google.com/site/feipingnie/file

3TOX-171, PIX10P and PIE10P are publicly available from
http://featureselection.asu.edu/datasets.php

4COIL20 is publicly available from
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

Table 1: Statistics of the Dataset
Dataset # of Samples # of Features # of Classes

ALLAML 72 7192 2
COIL20 1440 1024 20
PIE10P 210 1024 10

TOX-171 171 5748 4
PIX10P 100 10000 10

Prostate-GE 102 5996 2

Experimental Settings
Following the common way to evaluate unsupervised feature
selection algorithms, we assess EUFS in terms of clustering
performance (Zhao and Liu 2007; Li et al. 2012). We com-
pare EUFS with the following representative unsupervised
feature selection algorithms:

• All Features: All original features are adopted
• LS: Laplacian Score (He et al. 2005) which evaluates

the importance of a feature through its power of locality
preservation

• MCFS: Multi-Cluster Feature Selection (Cai et al. 2010)
which selects features using spectral regression with l1-
norm regularization

• NDFS: Nonnegative Discriminative Feature Selection (Li
et al. 2012) which selects features by a joint feamewrok
of nonnegative spectral analysis and l2,1 regularized re-
gression

• RUFS: Robust Unsupervised Feature Selection (Qian and
Zhai 2013) which jointly performs robust label learn-
ing via local learning regularized robust orthogonal non-
negative matrix factorization and robust feature learning
via joint l2,1-norms minimization.

Two widely used evaluation metrics, accuracy (ACC)
and normalized mutual information (NMI), are employed to
evaluate the quality of clusters. The larger ACC and NMI
are, the better performance is.

There are some parameters to be set. Following (Qian and
Zhai 2013), for LS, MCFS, NDFS, RUFS and EUFS, we fix
the neighborhood size to be 5 for all the datasets. To fairly
compare different unsupervised feature selection methods,
we tune the parameters for all methods by a ”grid-search”
strategy from {10−6, 10−4, . . . , 104, 106}. For EUFS, we
set the latent dimension as the number of clusters. How to
determine the optimal number of selected features is still
an open problem (Tang and Liu 2012a), we set the num-
ber of selected features as {50, 100, 150, . . . , 300} for all
datasets. Best clustering results from the optimal parameters
are reported for all the algorithms. In the evaluation , we use
K-means to cluster samples based on the selected features.
Since K-means depends on initialization, following previous
work, we repeat the experiments 20 times and the average
results with standard deviation are reported.

Experimental Results
The experimental results of different methods on the datasets
are summarized in Table 2 and Table 3. We make the follow-
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Table 2: Clustering results(ACC%±std) of different feature selection algorithms on different datasets. The best results are
highlighted in bold. The number in parentheses is the number of features when the performance is achieved

Dataset ALL Features Laplacian Score MCFS NDFS RUFS EUFS
ALLAML 67.3±6.72 73.2±5.52(150) 68.4±10.4(100) 69.4±0.00(100) 72.2±0.00(150) 73.6±0.00(100)
COIL20 53.6±3.83 55.2±2.84(250) 59.7±4.03(250) 60.1±4.26(300) 62.7±3.51(150) 63.4±5.47(100)
PIE10P 30.8±2.29 36.0±2.95(100) 44.3±3.20(50) 40.5±4.51(100) 42.6±4.61(50) 46.4±2.69(50)

TOX-171 41.5±3.88 47.5±3.33(200) 42.5±5.15(100) 46.1±2.55(100) 47.8±3.78(300) 49.5±2.57(100)
PIX10P 74.3±12.1 76.6±8.10(150) 75.9±8.59(200) 76.7±8.52(200) 73.2±9.40(300) 76.8±5.88(150)

Prostate-GE 58.1±0.44 57.5±0.49(300) 57.3±0.50(300) 58.3±0.50(100) 59.8±0.00(50) 60.4±0.80(100)

Table 3: Clustering results(NMI%±std) of different feature selection algorithms on different datasets. The best results are
highlighted in bold. The number in parentheses is the number of features when the performance is achieved

Dataset ALL Features Laplacian Score MCFS NDFS RUFS EUFS
ALLAML 8.55±5.62 15.0±1.34(100) 11.7±12.2(50) 7.20±0.30(300) 12.0±0.00(150) 15.1±0.00(100)
COIL20 70.6±1.95 70.3±1.73(300) 72.4±1.90(150) 72.1±1.75(300) 73.1±1.69(150) 77.2±2.75(100)
PIE10P 32.2±3.47 38.5±1.44(50) 54.3±3.39(50) 46.0±3.14(100) 49.6±5.15(50) 49.8±3.10(150)

TOX-171 17.8±5.20 30.5±2.70(150) 17.7±6.88(100) 22.3±2.41(300) 28.8±2.71(300) 26.0±2.41(100)
PIX10P 82.8±6.48 84.3±4.63(150) 85.0±4.95(200) 84.8±4.76(200) 81.1±6.23(300) 85.1±4.30(50)

Prostate-GE 1.95±0.27 1.59±0.21(300) 1.53±0.21(300) 2.02±0.25(100) 2.86±0.00(50) 3.36±0.48(100)

ing observations:

• Feature selection is necessary and effective. The selected
subset of the features can not only reduce the computation
cost, but also improve the clustering performance;

• Robust analysis is also important for unsupervised feature
selection, which helps us select more relevant features and
improve the performance;

• EUFS tends to achieve better performance with usually
fewer selected features such as 50 or 100; and

• Most of the time, the proposed framework EUFS outper-
forms baseline methods, which demonstrates the effec-
tiveness of the proposed algorithm. There are two major
reasons. First, we directly embed feature selection in the
process of clustering using sparse learning and the norm
of the latent feature reflects the quality of the reconstruc-
tion and thus the importance of the original feature. Sec-
ond, the graph regularize helps to learn better cluster indi-
cators that fits the existing manifold structure, which leads
to a better latent feature matrix. Finally, we introduce ro-
bust analysis to ensure that these poorly reconstructed in-
stances have less effect on feature selection.

We also perform parameter analysis for some important
parameters of EUFS. Due to space limit, we only report
the results on COIL20 in Figure2. The experimental results
show that our method is not very sensitive to α and β. How-
ever, the performance is relatively sensitive to the number
of selected features, which is a common problem for many
unsupervised feature selection methods.

Conclusion
We propose a new unsupervised feature selection approach,
EUFS, which directly embeds feature selection into a clus-
tering algorithm via sparse learning. It eliminates the need
for transforming unsupervised feature selection into the
sparse learning based supervised feature selection with
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(c) ACC for COIL20 (α = 0.1)
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(d) NMI for COIL20 (α = 0.1)

Figure 2: ACC and NMI of EUFS with different α, β and
feature numbers on datasets COIL20

pseudo labels. Nonnegative orthogonality is applied on the
cluster indicator to make the problem tractable and ensure
that feature selection on latent features has similar effects as
on original features. l2,1-norm is applied on the cost func-
tion to reduce the effects of the noise introduced by the re-
construction of X and feature selection on V. Experimental
results on 6 different real world datasets validate the unique
contributions of EUFS. Future work is to investigate if EUFS
can be extended to dimensionality reduction algorithms.
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