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Abstract 
An important problem in analyzing complex networks is 
discovery of modular or community structures embedded in 
the networks. Although being promising for identifying 
network communities, the popular stochastic models often 
do not preserve node degrees, thus reducing their represen-
tation power and applicability to real-world networks. Here 
we address this critical problem. Instead of using a block-
model, we adopted a random-graph null model to faithfully 
capture community structures by preserving in the model 
the expected node degrees. The new model, learned using 
nonnegative matrix factorization, is more accurate and ro-
bust in representing community structures than the existing 
methods. Our results from extensive experiments on syn-
thetic benchmarks and real-world networks show the supe-
rior performance of the new method over the existing me-
thods in detecting both disjoint and overlapping communi-
ties. 

1. Introduction   
Most networks, such as social and biological networks, are 
better organized and represented in communities or mod-
ules, where nodes within a community are relatively dense-
ly connected and nodes across communities are sparsely 
linked (Girvan and Newman 2002). Due to its utility in 
unraveling complex structures in networks from diverse 
fields, ranging from social sciences, engineering to biology 
and medicine, identification of communities in complex 
networks has attracted much attention in recent years (For-
tunato 2010). Much effort has been devoted to developing 
methods for community detection. These methods can be 
grouped into that for finding disjoint communities (Girvan 
and Newman 2002; Blondel et al. 2008; Rosvall and 
Bergstrom 2008) and those for finding overlapping com-
munities (Palla et al. 2005; Lancichinetti, Fortunato and 
Kertesz 2009; Ahn, Bagrow and Lehmann 2010). 

Among the existing methods for community discovery 
are stochastic models of communities, which offer an ef-
fective technique for network analysis and has attracted 
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much attention lately (Newman 2012). Several model-
based methods have been proposed (Wang et al. 2011; Pso-
rakis et al. 2011; Zhang and Yeung 2012; Ren et al. 2009; 
Shen, Cheng and Guo 2011; Karrer and Newman 2011; 
Ball, Karrer and Newman 2011), most of which are based 
on the popular stochastic blockmodel (Nowicki and Snijd-
ers 2001). In a simple form of the stochastic blockmodel, 
each of n nodes of a network is assigned to one of c com-
munities, and two nodes are connected with a probability 
depending on the community memberships of the nodes. 
To be concrete, the stochastic blockmodel of a network of 
n nodes can be represented by a c×c probability matrix ω = 
(ωgigj), where gi is the community that node i belongs to 
and ωgigj is the probability that an edge is introduced be-
tween nodes i and j. 

Although simple, this blockmodel ignores variation of 
node degrees and thus does not preserve node degrees of a 
network to be modeled, rendering the model unsuitable for 
real networks (Karrer and Newman 2011). Node degrees of 
a real-world network are typically distinct from that of a 
random graph; node degrees of a real-world network often 
exhibit a power-law distribution (Barabasi and Albert 
1999). Neglect or improper formulation of node degrees 
can result in inaccurate network structures and thereby 
affecting the quality of a community discovery algorithm. 

The idea of preserving node degrees was proposed by 
(Karrer and Newman 2011). However, their model itself 
does not preserve node degrees; this is achieved by addi-
tional inference, which limits its generality. This critical 
issue has not been addressed adequately in the existing 
methods that adopt or extend the blockmodel, as discussed 
in Sec. 5. Here, we attempted to address this issue. In our 
study, we did not use the blockmodel. Rather, we intro-
duced a new stochastic model atop a popular random-graph 
null model, i.e., null model of modularity (Newman and 
Girvan 2004). Using probabilistic community membership, 
our new model can not only describe those community 
structures that the original null model failed to capture, but 
also hold the property of retaining the expected node de-
grees in the model to be the same as in the original network. 
The community structure was learned by fitting the model 
to the given network. Our model preserves node degrees by 
itself without inference, and hence it doesn’t have to rely 
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on specialized inference algorithms for this task. As a re-
sult, the new model and its companion network community 
discovery method are effective in discovering intrinsic and 
subtle community structures of many real-world networks. 

This paper is organized as follows. We first show the 
importance of preserving node degrees by an example. We 
then introduce the new model and discuss the new MNDP 
method. We present experimental results thereafter. Finally, 
we discuss the related works and conclude this work. 

2. A Motivating Example 
We examine here the well-known “karate club” (Zachary 
1977) to show the importance of preserving node degrees. 
This network has been considered as the de facto model for 
network analysis. It represents the relationships among the 
34 members of a karate club. The club is known to have 
split into two groups or communities as a result of a dis-
pute, and the members of each group are known. 

 
(a)                                         (b) 

Figure 1: The Zachary’s “karate club” network. The two node 
shapes represent the two actual communities reported: the club 
administrator’s (square) and the instructor’s (circle). (a) The two 
communities, in red and blue, reported by the basic blockmodel. 
(b) The two communities, also in red and blue, correctly 
identified by our model that is able to preserve node degrees. 

The basic blockmodel (Nowicki and Snijders 2001) 
found two communities (Fig. 1(a)), which are drastically 
different from the two actual groups of the club. The main 
problem of this model, as correctly pointed out by others 
(Karrer and Newman 2011), is that it fails to preserve node 
degrees so that it erroneously splits the club members into 
a group with (red) nodes of high degrees and another with 
(blue) nodes of low degrees. 

On the contrary, our model correctly split the club mem-
bers into two groups that perfectly match the actual net-
work communities (Fig. 1(b)). The success of our model 
on this well-known network, as well as on other networks 
to be discussed in later sections, is mainly from faithfully 
modeling heterogeneous node degrees in the model (see 
Fig. 2 and Table 1). Besides, our result here is also better 
than that of the Karrer’s degree-corrected blockmodel (Fig. 
1(b) in (Karrer and Newman 2011)). The reason may be 
that: we adopt the random-graph null model while Karrer 
used the stochastic blockmodel; our model itself preserves 
node degrees while Karrer’s model achieved this by spe-
cialized inference (see Sec. 5 for discussion). 

3. The Method 
We first describe the new model, discuss its properties, and 
then introduce an algorithm to learn the model parameters. 

3.1  Stochastic Model 
Consider an undirected graph of n nodes, G = (V, E), 
represented by an adjacency matrix A. Assume that the 
nodes can be partitioned into c communities using a proba-
bilistic group membership variable S, where Siz is the prob-
ability that node i belongs to community z, subject to 

1izz S = . 
Given Siz, network G can be viewed as an ensemble of c 

probabilistic communities, {C1, C2, …, Cc}, where every 
node has a probabilistic membership in each community Cz. 
The degree of node i within community Cz can be defined 
as diz = diSiz, where di is the degree of node i in G. Since Cz 
corresponds to only one community, it can be regarded as a 
random graph with no community structure. A popular 
random-graph null model, namely null model of modulari-
ty (Newman and Girvan 2004), is suitable for characteriz-
ing a probabilistic community. This null model describes 
random graphs with no communities where edges are re-
wired randomly among the nodes. We used the null model 
of modularity to describe each Cz with the given node de-
grees {d1z, d2z,…,dnz}, so that we preserved node degrees in 
each of the probabilistic communities. In this null model, 
the expected number of links (or expected link weight) 
between nodes i and j in Cz can be written as  

ˆ /z
ij iz jz kzkw d d d=  .                           (1) 

Taking all the communities {Cz|z=1,2,..,c} into considera-
tion, the expected number of links between nodes i and j in 
the model can be written as 

( )ˆ ˆ /z
ij ij iz jz kzz z kw w d d d= =   .             (2) 

However, the community membership Siz is unknown in 
advance, and it needs to be inferred by fitting the model 
parameters diz to the given network, which will be dis-
cussed in Sec. 3.3. When the parameters diz are available, 
the community membership Siz can then be inferred by 

/ /iz iz ir iz irS d d d d= = .                      (3) 
Both hard and overlapping communities can be derived 

from the probabilistic community membership, Siz. Specif-
ically, to derive a hard partition, node i can be assigned to 
community r = argmaxz {Siz, z=1,2,…,c}. To construct a 
structure with overlapping communities, the strategy of 
(Zhang and Yeung 2012) can be adopted, i.e., the entries in 
vector {Si1, Si2,…,Sic} are first scaled to values in [0, 1], 
and those entries whose rescaled values exceed a threshold 
are set to 1, or 0 otherwise. Then we can use a suitable 
quality metrics of communities to determine the threshold. 

3.2  Model Properties 
The new model consists of a set of probabilistic communi-
ties, each of which is considered to be a random graph and 
represented by a null model of modularity. The new model 
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can in essence be regarded as a generalization to the null 
model of modularity. It not only incorporates the ability of 
describing communities which the original null model does 
not have, but also holds the property, as with the original 
model, that fixes the expected node degrees to be the same 
as that of the observed network, as captured by Proposition 
1 below. Our model naturally describes the distributions of 
heterogeneous node degrees, making it more robust for 
complex network community structures than the blockmo-
dels, which do not have this property. 
Proposition 1. In our model, the expected graph of G pre-
serves the same node degrees as in the observed network G 
(see Appendix for proof). 

 
(a)                                         (b) 

 
(c)                                          (d) 

Figure 2: An example illustrating some properties of the model 
with network parameters diz listed in Table 1. (a) A given network 
G with two communities shown in red and blue. (b) and (c) The 
expected graphs of the red and blue communities, each of which 
is described by a null model of modularity. (d) The expected 
graph of G that combines the expected graphs of the two 
communities. The width of a link corresponds to its expected 
values; the links with values smaller than 1.0e-2 are omitted. 

Table 1: The parameters diz used in Fig 2 and learned by NMF 

diz i = 1 i = 2 i = 3 i = 4 i = 5 
z = 1 3.999949 3.999974 3.999975 3.999972 4.253827
z = 2 5.12E-05 2.63E-05 2.45E-05 2.76E-05 0.746173
diz i = 6 i = 7 i = 8 i = 9 i = 10 
z = 1 0.748089 7.14E-04 7.39E-04 7.02E-04 6.89E-04
z = 2 4.251911 3.999286 3.999261 3.999298 3.999311

Here we offer an example, shown in Fig. 2 and in Table 
1, to illustrate our model of a small network. The red and 
blue communities are indexed by ‘z=1’ and ‘z=2’ in Table 
1, respectively. Firstly, consider the within-community 
nodes, e.g., nodes 3 and 4. As d31 and d41 are both large, 
the expected number of red links between them is large 
( 1

3,4ŵ =0.76), so that the expected number of links between 
nodes 3 and 4 is large as well ( 3,4ŵ = 0.76). On the other 
hand, consider the nodes in different communities, such as 
nodes 3 and 7. As d71 is very small, although d31 is large, 
the expected number of red links between these two nodes 
is still small ( 1

3,7ŵ <1.0e-2); similarly, the expected number 

of blue links between them is also small ( 2
3,7ŵ < 1.0e-2). 

Thus, the expected number of links between nodes 3 and 7 
is much smaller than that between 3 and 4 ( 3,7 3,4ˆ ˆw w<< ). 
This result correctly matches the intuition that intra-cluster 
connectivities are dense than inter-cluster connectivities. 

More importantly, by preserving node degrees our mod-
el is consistent with the observation that nodes with high 
degrees are, with all other things being equal, more likely 
to be connected among themselves than those with low 
degrees. In Fig. 1(d), for instance, as node 5 has a larger 
degree than node 3, 5,4 3,4ˆ ˆ0.81 0.76w w= > = . Intuitively, 
two nodes of high degrees are more likely to be connected 
than two nodes of low degrees. Thus, by incorporating 
such observations, we can faithfully describe heterogene-
ous node degrees and accurately find communities. 

3.3  Parameter Learning 
The model is specified by a set of parameters diz of node 
degrees in the communities, for n nodes i =1,2,…,n and c 
communities z=1,2,…,c. These parameters have to be 
learned from the data of the given network G. The problem 
of fitting the model to the data of G can be cast as the fol-
lowing optimization problem, 

( )( )22
0

ˆmin /

. .
izd ij iz jz kzij z kF

iz iz

A A w d d d

s t d d

≥ − = −

=

  


,  (4) 

where ||.||F denotes Frobenius norm. The best fit between 
the expected graph with adjacency ˆ ˆ( )ij n nA w ×=  and a given 
network G with adjacency A = (wij)n×n can be achieved by 
optimizing (4). We give a nonnegative matrix factorization 
(NMF) method to solve the optimization in (4). 

We first introduce an auxiliary matrix X, where Xiz is  
/iz iz jzjX d d=  .                               (5) 

Function (4) can be written as a constrained NMF problem, 
2T T

0min , . 1X nF
A XX st XX d≥ − = ,           (6) 

where d = (d1, d2,…, dn)T. It is nontrivial to directly optim-
ize (6) with the hard constraints. We relax this optimization 
problem by introducing a penalty term that represents the 
hard constraints into the objective function, arriving at mi-
nimizing the following objective function, 

2 2

2

1( ) 1
2 2

T T
nF

X A XX XX dλ= − + −O            (7) 

where ߣ is a hyperparameter that reflects the importance of 
the hard constraints. Violation to more hard constraints 
incurs a higher penalty to the objective function. In our 
experiments, we first get an initial value of ܺ଴ by setting ߣ = 0. Then we restart the optimization with ܺ = ܺ଴ and 
let ߣ to a relatively large number, e.g., 1000, to minimize 
the chance of violating the degree constraints. The purpose 
of the initialization is to restrict the search for a model to 
start from some good approximations. Similar to other 
forms of NMF, the objective function in (7) is not convex 
w.r.t. ܺ , so that it is computationally intractable to find 
global minima. Therefore, the gradient descent method is 
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adopted to search for local minima, which can be imple-
mented in a multiplicative updating algorithm similar to 
the method for SNMF (Wang et al. 2011). In order to de-
rive the updating rule, a Lagrange multiplier matrix ߆ for 
the nonnegative constraints on  ܺ  is introduced to (7), re-
sulting in the following equivalent objective function, ℒ(ܺ) = 4/(்்ܺܺܺܺ)ݎܶ − 2/(1௡்்்ܺܺܺܺ1௡)ݎܶߣ+ 2/(்்ܺܺܣ)ݎܶ − (1௡்்ܺܺ݀)ݎܶߣ +  (୘ܺ߆)ݎܶ
For any stationary state, we have ߲ℒ/߲ܺ = ்ܺܺܺ − ܺܣ + 1௡1௡்்ܺܺܺߣ+ 1௡1௡்்ܺܺܺߣ − 1௡்݀ܺߣ + 1௡்ܺ݀ߣ + Θ  
Using complementary slackness condition (Θ)௜௞(ܺ)௜௞ = 0, 
we have the following equation, (்ܺܺܺ − ܺܣ + 1௡1௡்்ܺܺܺߣ + 1௡1௡்்ܺܺܺߣ − +1௡்݀ܺߣ 1௡்ܺ)௜௞(ܺ)௜௞݀ߣ = 0. 
This leads to the following update rule for ܺ: 

( )
( )

1
4( 1 1 )

1 1 1 1

T T
n n ik

ik ik T T T T T
n n n n ik

A d d X
X X

XX X XX X XX X

λ λ

λ λ

 + +
 =  + + 
 

  (8) 

When the update rule converges, shown in Theorem 1 be-
low, the solution satisfies the Karush-Kuhn-Tucker (KKT) 
conditions (Boyd and Vandenberghe 2004).  
Theorem 1. Function ࣩ in (7) is non-increasing under the 
updating rule in (8). ࣩ is invariant under these updates if 
and only if ܺ becomes stationary (see Appendix for proof). 

Finally, when the method converges, the parameters diz 
of the model can be computed using (5) as follows, 

iz iz jz iz jzj jd X d X X= =  .                  (9) 

Notice that, the time to calculate AX, 1n(dTX), d(1n
TX), 

X(XTX), 1n(1n
TXXTX) and X(XT1n)(1n

TX) in (8) is 2mc, 2nc, 
2nc, 2nc2, 4nc and 4nc, respectively, where n is the number 
of nodes, m is the number of edges and c is the number of 
clusters. So the time to evaluate (8) once is O(mc+nc2), 
and hence the time complexity of MNDP is O(T(mc+nc2)), 
where T is the iteration number for convergence. As the 
number of communities is much smaller than network size 
(i.e., c << m, n), our method scales well to large networks. 

4. Experiments 
To test the performance of our MNDP, we evaluated it on 
synthetic and real networks. We also compared it with four 
related methods, i.e., Karrer’s method (Karrer and New-
man 2011), Ball’s method (Ball, Karrer and Newman 
2011), SNMF (Wang et al. 2011) and BNMTF (Zhang and 
Yeung 2012). Karrer’s method considers node degrees, but 
it adopts likelihood probability as objective function which 
is optimized by local search. Ball’s method was designed 
for link partitions (overlapping communities) and extended 
to node partitions with node degrees being taken into con-
sideration. SNMF and BNMTF use squared loss objective 
functions and adopt NMF for optimization. Since the me-
thods compared converge to local minima, we ran each 
method 20 times and reported the best result. We compared 
them in terms of hard partitions and overlapping communi-

ties. Besides, we compared them on a large weighted net-
work to assess their applicability to weighted networks. 

4.1  Synthetic Networks 
Two types of synthetic benchmarks, one with disjoint 
communities (Lancichinetti, Fortunato and Radicchi 2008) 
and the other with overlapping communities (Lancichinetti 
and Fortunato 2009), were proposed. Here we considered 
them in our experiments. The node degrees and community 
size of a LFR benchmark graph follow power law distribu-
tions, a property that most real-world networks share. We 
did not compare the results of BNMTF here because it 
cannot finish in 100 hours on every trial attempted. 
4.1.1  LFR Benchmark with Disjoint Communities 
Proposed by (Lancichinetti, Fortunato and Radicchi 2008), 
this type of benchmark is designed to detect disjoint com-
munities. We adopted the widely used Normalized Mutual 
Information (NMI) index as the quality metric in our study. 

Following the parameter setting as the LFR benchmark 
used in (Lancichinetti, Fortunato and Radicchi 2008), we 
considered networks with 1000 nodes and the minimum 
community size cmin of 10 or 20. We varied the mixing 
parameter μ, which specifies the fraction of the links of a 
node connecting to nodes outside of the node’s community, 
from 0 to 0.8 with an increment of 0.05. The remaining 
parameters were kept fixed: the average degree d was set to 
20, the maximum degree dmax to 2.5×d, the maximum 
community size cmax to 5×cmin, the exponent of power-law 
distribution of node degrees τ1 to -2 and community size τ2 
to -1. This design space led to two sets of benchmarks. 

Fig. 3 shows the accuracy of each algorithm in NMI as a 
function of the mixing parameter μ. As shown, our MNDP 
outperformed Karrer’s method, Ball’s method and SNMF, 
especially when μ is in the range of 0.5 to 0.7. 

 
(a)                                          (b) 

Figure 3: Comparison of different methods in terms of NMI 
accuracy on the LFR benchmark of disjoint communities. Error 
bars show the standard deviations estimated from 50 graphs. 
Shown are results on networks of (a) small communities (cmin = 
10, cmax = 50) and (b) large communities (cmin = 20, cmax = 100). 

4.1.2  LFR Benchmark with Overlapping Communities 
This type of benchmark for overlapping communities was 
proposed by (Lancichinetti and Fortunato 2009). We used 
the generalized NMI (GNMI) (Lancichinetti, Fortunato and 
Kertesz 2009) as accuracy metric. Here we did not include 
Karrer’s method, as it cannot find overlapping structures, 
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nor Ball’s method as it finds highly overlapped structures, 
thus failing to detect clusters defined in this benchmark. 

Adopting the same parameter setting as for the LFR 
benchmark in (Lancichinetti and Fortunato 2009), we used 
networks with 1000 nodes, the minimum community size 
cmin of 10 or 20, the mixing parameter μ of 0.1 or 0.3, and 
varying fraction of overlapping (on/n) from 0 to 0.5 with an 
increment of 0.05. The remaining parameters were fixed: 
the average node degree d was set to 20, the maximum 
degree dmax to 2.5×d, the maximum community size cmax to 
5×cmin, the number of communities that an overlapping 
node belongs to (denoted as om) to 2, the exponents of the 
power-law distribution of node degrees τ1 to -2 and com-
munity sizes τ2 to -1, resulting in four sets of benchmarks. 

Fig. 4 shows the results comparing MNDP and SNMF in 
terms of the GNMI index. As shown, MNDP outperforms 
SNMF on all four sets of benchmarks. Particularly, when 
overlapping (on/n) is larger, MNDP performs better. 

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 4: The GNMI accuracy of each algorithm as a function of 
the fraction of overlapping nodes. Shown are results on networks 
of (a) small mixing parameter & small communities (μ = 0.1, cmin 
= 10, cmax = 50), (b) big mixing parameter & small communities 
(μ = 0.3, cmin = 10, cmax = 50), (c) small mixing parameter & big 
communities (μ = 0.1, cmin = 20, cmax = 100) and (d) big mixing 
parameter & big communities (μ = 0.3, cmin = 20, cmax = 100). 

4. 2  Real-World Networks 
Many real-world networks have distinct topological prop-
erties from synthetic networks so that different network 
analysis methods may render performance on such net-
works different from that on synthetic networks. We com-
pared the algorithms on two types of real-world networks, 
i.e., networks with known community structures and net-
works with actual community structures unknown. We 
included networks with disjoint and overlapping communi-
ties, as well as a large weighted network in comparison. 

4.2.1  Networks with Known Community Structures 
The real networks analyzed (Newman 2013; Xie, Kelley 
and Szymanski 2013) and the methods compared are listed 
in Table 2. For comparison on networks with known com-
munity structures, we adopted the NMI index as the quality 
metric. As shown in the table, the new method MNDP has 
the best performance on five of the seven networks, and is 
also competitive with the other methods on the left two 
networks. On average, our method is 6.7543%, 3.9414%, 
1.2814% and 2.5186% more accurate than Karrer’s method, 
Ball’s method, SNMF and BNMTF, respectively. 

Table 2: Accuracies of 5 methods compared, in NMI index, on 7 
networks. ‘Friendship6’ and ‘friendship7’ have the same network, 
but are described by different “true” community structures. 

Datasets n m c NMI index (%) 
MNDP Karrer Ball SNMF BNMTF

Zachary’s karate club 34 78 2 100 83.72 100 100 100 
Dolphin social network 62 160 2 88.88 88.88 81.41 81.41 81.41 
High school friendship6 69 220 6 79.30 77.02 78.08 78.64 71.22 
High school friendship7 69 220 7 84.26 85.10 83.93 82.11 84.30 
Political books 105 441 3 53.01 54.20 53.39 56.48 51.18 
American college football 115 613 12 92.42 87.06 91.34 90.38 92.42 
Political blogs 1,490 16,717 2 71.07 45.68 53.20 70.95 70.78 

 
4.2.2  Networks with no Known Community Structures 
These five methods were further compared on real-world 
networks whose community structures are unknown 
(Newman 2013; Nelson, McEvoy and Schreiber 2013). 
The results are in Table 3. As no “true” community struc-
ture is known, Louvain method (Blondel et al. 2008), 
which is regarded as one of the best algorithms for com-
munity detection by (Fortunato 2010), was applied to esti-
mate the numbers of communities that were used by the 5 
methods. Because some of the algorithms compared are 
able to find both disjoint and overlapping community 
structures, we used two widely used quality metrics: the 
modularity Q (Newman and Girvan 2004) for evaluating 
hard partitions and the generalized map equation L for test-
ing overlapping communities (Esquivel and Rosvall 2011). 
Because Louvain method was designed to optimize Q, it is 
not surprising that it is able to derive higher Q-values. Be-
sides, as Louvain method is unable to find overlapping 
communities, we did not include it in comparison here. 

Table 3: Some real-world networks without ground-truths. 

Datasets  n m c (Louvain)
Les Miserables 77 254 6 
Word adjacencies 112 425 7 
Jazz musicians collaborations 198 2,742 4 
C. Elegans neural 297 2,148 5 
E. coli metabolic 453 2,025 10 
E-mail network URV 1,133 5,451 11 
Network Science collaborations 1,589 2,742 277 
Power grid 4,941 6,594 39 
Word association (unweighted) 5,018 55,234 12 
Word association (weighted) 5,018 55,234 30 

0 0.1 0.2 0.3 0.4
0.92

0.94

0.96

0.98

fraction of overlapping nodes

ge
ne

ra
liz

ed
 N

M
I

n=1000  u=0.1  cmin=10  cmax=50

 

 

MNDP
SNMF

0 0.1 0.2 0.3 0.4
0.86

0.88

0.9

0.92

0.94

0.96

fraction of overlapping nodes

ge
ne

ra
liz

ed
 N

M
I

n=1000  u=0.3  cmin=10  cmax=50

 

 

MNDP
SNMF

0 0.1 0.2 0.3 0.4
0.92

0.94

0.96

0.98

fraction of overlapping nodes

ge
ne

ra
liz

ed
 N

M
I

n=1000  u=0.1  cmin=20  cmax=100

 

 

MNDP
SNMF

0 0.1 0.2 0.3 0.4

0.85

0.9

0.95

fraction of overlapping nodes

ge
ne

ra
liz

ed
 N

M
I

n=1000  u=0.3  cmin=20  cmax=100

 

 

MNDP
SNMF

164



 

 

Table 4: The comparison of community detection algorithms on 
several real networks. The greater a Q-value, the better; and the 
smaller a L-value, the better. ‘−’ denotes run time >100 hours. 
Karrer’s method cannot find overlapping communities. Karrer’s 
method and Ball’s method cannot deal with weighted networks. 

Datasets 
(abbr) 

Modularity Q (disjoint) Map equation L (overlaps) 
MNDP Karrer Ball SNMF BNMTF MNDP Ball SNMF BNMTF

Les Mis 0.5434 0.4575 0.5211 0.5453 0.5487 4.7283 4.8922 4.7640 4.7713
Adjnoun 0.2712 -0.1041 0.2594 0.2672 0.2634 6.6474 6.7941 6.6869 6.6397
Jazz 0.4377 0.3696 0.4352 0.4348 0.4347 6.8327 6.9121 6.8465 6.8506
Neural 0.3811 0.2617 0.3638 0.3701 0.3689 7.6108 7.7163 7.6276 7.6893
Metabolic 0.3796 0.2656 0.3689 0.3879 0.3834 7.6252 7.7358 7.5434 7.6129
Email 0.5154 0.5126 0.4814 0.5007 0.4685 8.6075 9.0586 8.6202 8.7130
Netscience 0.8336 0.6402 0.7296 0.7986 0.7592 5.2338 3.7445 5.2922 6.7284
Power 0.8683 0.1796 0.6641 0.8649 − 8.1487 8.8804 8.1512 −
Word_u 0.3613 0.4595 0.3625 0.3546 − 11.7068 12.2743 11.7225 −
Word_w 0.5190 NaN NaN 0.5030 − 10.4104 NaN 10.4499 −

The results are in Table 4. As shown, MNDP has the 
best performance on seven of the ten networks in terms of 
modularity Q. On average, our method is 0.1722, 0.0451, 
0.0083 and 0.0193 better than Karrer’s method, Ball’s me-
thod, SNMF and BNMTF, respectively. As Q-values are 
normally in the range of 0.3 to 0.8 (Newman and Girvan 
2004), MNDP obviously outperforms the existing methods. 
In terms of map equation L, MNDP has the best perfor-
mance on seven of the ten networks. On average, our me-
thod is 0.0963, 0.0153 and 0.2456 bits better than Ball’s 
method, SNMF and BNMTF, respectively. It is known that 
the improvement of L is typically very small near optimal 
solutions (see Table II of (Kim and Jeong 2011)), thus our 
improvement here is also nontrivial. Furthermore, we used 
the unweighted and weighted versions of the ‘word associ-
ation’ network in the comparison. The performance of each 
method on the weighted network is much better than that 
on unweighted network. This suggests that edge weights 
contain additional information of the networks, and thus it 
is important for an algorithm to be able to incorporate 
weight information in the weighted networks. Importantly, 
MNDP outperformed the other two NMF-based methods 
on both unweighted and weighted versions of this network. 

5. Related Works 
Several model-based methods have been developed, most 
of which are built atop the stochastic blockmodel or its 
variations and employ different optimization methods for 
model learning. For instance, some works extend the basic 
blockmodel by introducing soft community membership 
and use nonnegative matrix factorization (NMF) or its var-
iations as the optimization methods to learn model parame-
ters. In particular, (Wang et al. 2011) use a squared loss 
and a symmetric nonnegative matrix factorization (SNMF) 
to minimize the loss function. (Psorakis et al. 2011) adopt 
generalized KL-divergence as the loss function, and devel-
op a Bayesian nonnegative matrix factorization (BNMF) 
for optimization. (Zhang and Yeung 2012) remove the 
constraint that the sum of probabilities for each node be-
longing to different communities equals to 1 to better mod-
el overlapping structures. Further, they use both squared 

loss and KL-divergence as the loss functions, and devise a 
bounded nonnegative matrix tri-factorization (BNMTF) for 
optimization. While these methods are all based on NMF 
with soft membership, they do not preserve node degrees, 
which may distort the community detection results. 

There are also other works that adopt similar models 
(Ren et al. 2009; Shen, Cheng and Guo 2011; Karrer and 
Newman 2011; Ball, Karrer and Newman 2011). However, 
rather than using loss functions, they adopt likelihood 
probabilities as the objectives, and take different algorith-
mic approaches, e.g., Expectation-Maximization algorithm, 
to learn the models. Of particular interest is the Karrer’s 
method (Karrer and Newman 2011), which attempts to 
preserve node degrees. However, it does not preserve the 
node degrees in its model, but achieves this objective by a 
special inference algorithm, which may limit its generality. 
Specifically, the expected degree of node i in Karrer’s 
model is 

i ji j g gjθ θ ω , which is not necessary equal to 
node i’s degree di. For example, if we use squared loss 
instead of Poisson distribution to fit Karrer’s model to the 
given network, its property of preserving node degree will 
be lost. In contrast, the model in our MNDP preserves node 
degrees by itself with no inference, which makes it a gene-
ralized model for this problem. Specifically, the expected 
degree of node i in our model is ( )/iz jz kzj kd d d  , which 
is equal to node i’s degree di without any inference (proof 
in Proposition 1). Furthermore, Karrer’s model is an exten-
sion of blockmodel to correct node degrees by using a 
block matrix ω (discussed in Sec. 1) to specify relation-
ships among communities. It has two objective functions to 
fit: communities and disassortative structures. In contrast, 
our model is a generalization to the null model of modular-
ity to incorporate community structures, which does not 
use any types of block matrices. It has one objective (i.e. 
communities) to fit, which may improve the ability to 
detect communities. Moreover, Karrer’s model focuses on 
hard clustering that can only detect disjoint communities, 
while our model uses soft community membership and 
thus is able to find both disjoint and overlapping communi-
ties. Finally, Karrer’s model cannot handle weighted net-
works as it uses Poisson distribution to derive the objective 
function, while our model can handle weighted networks. 

The work proposed by (Ball, Karrer and Newman), 
which can be considered as a relaxation to Karrer’s degree-
corrected blockmodel, is also related. Nevertheless, Ball’s 
model was initially designed for link communities and then 
extended to node communities. In contrast, our model fo-
cused on node communities. Furthermore, Ball’s model is 
parameterized by parameters θiz’s, where θiz denotes that 
node i to have links in community z; and then it takes θizθjz 
as the expected number of links in community z connecting 
nodes i and j. In comparison, our model is parameterized 
by parameters diz’s, where diz is the expected node degree 
of i in community z; and takes /iz jz kzkd d d  as the ex-
pected number of links between nodes i and j in communi-
ty z, following the null model of modularity. In short, these 
two models use different ideas to describe communities. 
Specifically, if we map iz iz jzjd θ θ=  , Ball’s model as-
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signs a node to a community for which 1/ n
iz jzjd d=  is the 

largest, while our model assigns a node to a community for 
which 1/ c

iz irrd d=  is the largest, resulting in two different 
types of community structures. More importantly, similar 
to Karrer’s model, Ball’s model does not preserve node 
degrees by itself. Specifically, the expected degree of node 
i in Ball’s model is iz jzjθ θ , which may not be equal to 
node i’s degree di. When using squared loss instead of 
Poisson distribution to fit the Ball’s model to the given 
network, its objective function will be T 2|| ||FA XX− , which 
is a basic NMF and will not preserve node degrees. Finally, 
Ball’s model cannot deal with weighted networks. 

We used the null model of modularity to describe proba-
bilistic communities because of its simplicity and good 
performance. Some other random models with given de-
gree sequence (e.g., that due to Havel-Hakimi (Havel 1955; 
Hakimi 1962)) may also be suitable for this task. We will 
include these models in our framework in the future. Our 
model offers no criterion for determining the number of 
communities, which is a critical parameter for analyzing 
community structures. This is a common drawback shared 
by almost all model methods (Newman 2012). The me-
thods of statistical model selection (Brunet et al. 2004; Tan 
and Févotte 2012) may in principle be used to address this 
issue; nevertheless it is too computationally demanding to 
be useful for any but some small graphs (Ball, Karrer and 
Newman 2011). More research is needed to address this 
issue, a direction we plan to pursue in future research. 

6. Conclusion  
We studied the importance of preserving node degrees for 
identifying community structures in complex networks. 
We developed a novel model and an efficient algorithm for 
finding such structures. They can be used to identify both 
overlapping and disjoint communities and are applicable to 
weighted networks. The new model generalizes the null 
model of modularity (Newman and Girvan 2004) and uti-
lizes probabilistic community memberships to characterize 
community structures. In our method, we introduced a 
squared loss function based on this extended model, and 
optimized the model parameters using a NMF approach. 

Our extensive experimental comparison of the new me-
thod and four existing competing methods on synthetic 
benchmarks and real-world networks demonstrated the 
superior performance of the new MNDP method in detect-
ing both disjoint and overlapping communities. 
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Appendices 

A1.  Proof of Proposition 1 
Let di be the degree of node i in G. Given an arbitrary set 
of variables diz, subject to iz iz d d= , which correspond 
to our model parameters, then using (2) the degree of node 
i in the expected graph of G can be inferred as  

( )
( )

ˆ ˆ /

/

i ij iz jz kzj j z k

iz jz kz iz iz j k z

d w d d d

d d d d d

= =

= = =

   

   
, 

which equals to node i’s degree in the observed network G. 

A2.  Proof of Theorem 1 
We adopt the auxiliary function approach used in Expecta-
tion-Maximization and NMF. The basic idea is to construct 
an auxiliary function ܥ(ܺ, ෨ܺ) such that: ࣩ(ܺ) = ,ܺ)ܥ ܺ) ≤ ,൫ܺܥ ෨ܺ൯ ≤ ൫ܥ ෨ܺ, ෨ܺ൯ = ࣩ( ෨ܺ) 
If we can minimize ܥ൫ܺ, ෨ܺ൯ w.r.t to ܺ, then we are guaran-
teed to drive ࣩ(ܺ) down. Note that, ࣩ(ܺ) = 4/(்்ܺܺܺܺ)ݎܶ − 2/(1௡்்்ܺܺܺܺ1௡)ݎܶߣ+ 2/(்்ܺܺܣ)ݎܶ  − ≥ (1௡்்ܺܺ݀)ݎܶߣ ൫ܲݎܶ  ෨ܺ ෨்ܺ൯/4 + ൫ܲ1௡1௡்ݎܶߣ ෨ܺ ෨்ܺ൯/2 − ≥ (by Lemma 6 of (Wang et al. 2011)) (1௡்்ܺܺ݀)ݎܶߣ− 2/(்்ܺܺܣ)ݎܶ  ൫்ܴݎܶ ෨ܺ ෨்ܺ ෨ܺ൯/4 + ൫்ܴ1௡1௡்ݎܶߣ ෨ܺ ෨்ܺ ෨ܺ൯/4+ ൫ݎܶߣ ෨்ܺ1௡1௡் ෨ܺ ෨்ܴܺ൯/4 − ܣ൫்ܼݎܶ  ෨ܺ൯ − ൫்ܼ݀1௡்ݎܶߣ ෨ܺ൯− ൫ݎܶߣ ෨்ܺ݀1௡்ܼ൯ − ൫ݎܶ ෨்ܺܣ ෨ܺ൯/2 − ൫ݎܶߣ ෨்ܺ݀1௡் ෨ܺ൯ 
(by Lemma 7 and 3 of (Wang et al. 2011)) ≡ ,൫ܺܥ ෨ܺ൯, 
where ௞ܲ௟ = ሾ்ܺܺሿ௞௟ଶ /ሾ ෨ܺ ෨்ܺሿ௞௟ , ܴ௜௞ = ሾܺሿ௜௞ସ /ሾ ෨ܺሿ௜௞ଷ , and ܼ௜௝ = ෨ܺ௜௝ln ( ௜ܺ௝/ ෨ܺ௜௝) . The equality holds when ܺ = ෨ܺ . 
Then ܥ൫ܺ, ෨ܺ൯ satisfied the conditions of being an auxiliary 
function for ࣩ(ܺ).  So we can define the updating rules as: ܺ(௧ାଵ) = min௑ ,ܺ)ܥ ܺ(௧))  ߲ܥ(ܺ, ෨ܺ)߲ ௜ܺ௞ = ௜ܺ௞ଷ෨ܺ௜௞ଷ ሾ ෨ܺ ෨்ܺ ෨ܺ + 1௡1௡்ߣ ෨ܺ ෨்ܺ ෨ܺ + ߣ ෨ܺ ෨்ܺ1௡1௡் ෨ܺሿ௜௞ − ෨ܺ௜௞௜ܺ௞ ሾܣ ෨ܺ + 1௡்݀ߣ ෨ܺ + 1௡்݀ߣ ෨ܺሿ௜௞ = 0 

Thus we get the update rule for ܺ as in (8). 
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