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Abstract

Community-based Question Answering (CQA) has become
popular in knowledge sharing sites since it allows users to
get answers to complex, detailed, and personal questions di-
rectly from other users. Large archives of historical questions
and associated answers have been accumulated. Retrieving
relevant historical answers that best match a question is an
essential component of a CQA service. Most state of the art
approaches are based on bag-of-words models, which have
been proven successful in a range of text matching tasks, but
are insufficient for capturing the important word sequence in-
formation in short text matching. In this paper, a new archi-
tecture is proposed to more effectively model the complicated
matching relations between questions and answers. It utilises
a similarity matrix which contains both lexical and sequential
information. Afterwards the information is put into a deep
architecture to find potentially suitable answers. The experi-
mental study shows its potential in improving matching accu-
racy of question and answer.

Introduction
Community-based Question Answering (CQA) systems are
Internet services which enable users to ask questions and re-
ceive answers. By using CQA systems, users can ask ques-
tions via sentences rather than issuing queries in the form of
keywords to a Web search engine. CQA is proven success
for knowledge sharing since it is easier for users to express
their real information needs in natural language (Bilotti et
al. 2010). Furthermore, using CQA is also easier to get an-
swers to a personal nature, extremely specific questions, and
even open-ended questions as in these cases it is difficult for
a search engine to directly provide such complex and hetero-
geneous information (Chua and Banerjee 2013). CQA sites
have become a kind of popular forum for people to seek
information and share knowledge. Examples of such CQA
sites include Yahoo! Answers and Baidu Zhidao.

Though CQA has shown its promising applicability, there
still exists several challenges among which a notable one
is the unanswered question rate. It is frequently observed
that in spite of active participation in CQA sites, a signifi-
cant portion of questions remain unanswered (Dror, Maarek,
and Szpektor 2013). This phenomenon widely exists in CQA
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systems and is often referred as question starvation (Li and
King 2010). Several efforts have been made to reduce the
number of unanswered questions and one method has been
attached much importance in the community, namely how to
proactively seek knowledge from historical question/answer
pairs.

Normally CQA sites have accumulated large archives of
historical questions and associated answers. Retrieving rel-
evant historical question/answer pairs which best match a
user’s new question or search query is an essential compo-
nent of a CQA service. Additionally, when a user asks a new
question in CQA service and good matches can be located,
the lag time incurred by having to wait for a person to re-
spond can be avoided, thus improving user satisfaction.

Question/answer pair retrieval has three major methods:
1) finding historical questions which are similar to the target
question. For example, Carmel et al. tried to rank histori-
cal questions using both inter-question and question-answer
similarity to respond to a newly posed question (Carmel,
Shtalhaim, and Soffer 2000) (Figueroa and Neumann 2014);
2) identifying the most relevant answers to the target ques-
tion within a collection of answers. A representative ap-
plication was proposed by Surdeanu et al. (Surdeanu, Cia-
ramita, and Zaragoza 2008), who combine translation and
similarity features to recommend historical answers by rele-
vance to a given question, though it focuses only on how to
questions; 3) combining question similarity and answer rel-
evance. Shtok et al. proposed a two stage approach (Shtok
et al. 2012), in the first stage historical questions similar to
the new question are identified and ranked so as to produce
a single resolved question candidate, in the second stage the
best answer to the top candidate question is evaluated in or-
der to verify whether it meets the underlying needs of the
new question.

In this paper, we mainly focus on identifying the most
relevant answers from a collection of answers by calculating
the matching probability between the question q and each
candidate answer d. The candidate answers are then ranked
by their probability. Intuitively, many bag-of-words based
models can be applied to solve this kind of problem, includ-
ing vector space model (VSM) (Jeon, Croft, and Lee 2005a;
2005b; Duan et al. 2008), language model (LM) (Jeon,
Croft, and Lee 2005b; Duan et al. 2008), and Okapi model
(Okapi) (Jeon, Croft, and Lee 2005b). These early ap-
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proaches are normally based purely on lexical matching
techniques in the form of exact string matches for n-grams,
as such they will fail to detect similar meaning which is con-
veyed by synonymous words. To overcome this problem,
several approaches have been proposed: Wordnet-based and
corpus-based semantic similarity measures, the translation
model (TM) (Jeon, Croft, and Lee 2005b; Riezler et al. 2007;
Xue, Jeon, and Croft 2008), and translation based language
model (TRLM) (Cao et al. 2010).

These bag-of-words based schemas, although proven to
be effective for tasks like information retrieval, are often
incapable of modelling the matching between complicated
and structured objects. Firstly, a text contains both syntac-
tical and lexical information, however bag-of-words mod-
els normally put the structural information aside, e.g., the
word sequence information. As a result, in some worst cases,
though two phrases have the same bag-of-words represen-
tation, their real meaning is totally opposite (Socher et al.
2011b). Secondly, pre-defined functions cannot sufficiently
take into account the complicated interaction between com-
ponents within the texts (Lu and Li 2013), thereby making it
more reasonable to use a trainable model.

In this research we try to make use of the most basic struc-
tural information, word sequence, to help improve the ques-
tion and answer matching precision. Instead of simply dis-
organizing text into a set of words, we directly model sen-
tences into an ordered list of vectors, where each unique
vector represents a unique word. Both sequential and lexi-
cal information are stored in the ordered list of word vec-
tors. Afterwards, the complex interaction between questions
and answers is modelled into a similarity matrix (S-matrix).
Finally, the pattern of the best matching QA pairs is recov-
ered by a deep architecture. It is believed that this approach
is able to explicitly capture the word sequence information
and the lexical information in matching two structured ob-
jects. The experimental study conducted on a dataset from
Baidu Zhidao shows promising results.

The rest of the paper is organised as follows. The pro-
posed model will be illustrated in detail in Section 2. Section
3 covers the experimental study and also learned lessons.
Section 4 will present related work in solving the CQA
matching problem. Section 5 concludes the paper and high-
lights possible future research directions.

Methodology
In this paper, we aim to solve the problem of matching ques-
tions and answers in a CQA system by considering both lex-
ical meaning and word sequence information. The basic ar-
chitecture of the proposed model is depicted in Fig. 1, where
three parts are included and summarised below:

S1 Questions and answers are represented as an ordered list
of word vectors using the neural language model;

S2 The complex interaction between questions and answers
is modelled into a two-dimensional matrix “S-matrix”;

S3 A deep convolutional neural network is trained to give
suitable answer probability.

Figure 1: Architecture for Question and Answer Matching
Approach

Question/Answer Sentences Representation
The first task of matching questions and answers is to prop-
erly present the sentences. In this research we employ the
idea of neural language model (Bengio et al. 2006), which
is able to jointly learn embedding of words into an n-
dimensional vector space and then to use these vectors to
predict how likely a word is given its context. One of the
popular methods to calculate such embedding information is
a model called skip-gram (Mikolov et al. 2013). When skip-
gram networks are optimised via gradient ascent, the deriva-
tives will modify the word embedding matrix L ∈ R(n×|V |),
where |V | is the size of the vocabulary. The word vectors
inside the embedding matrix will capture distributional syn-
tactic and semantic information via the word co-occurrence
statistics (Bengio et al. 2006; Collobert and Weston 2008;
Mikolov et al. 2013).

Once this matrix is learned on an unlabelled corpus, it can
be used for subsequent tasks by using each word’s vector (a
column in L) to represent that word. In the remainder of this
paper, we represent a short text as an ordered list of these
vectors (x1, ..., xm). This representation contains more in-
formation than the bag-of-words representation. For exam-
ple, the sentence “Why don’t cat eat mice?” is transformed
into a list of vector (xwhy, xdon′t, xcat, xeat, xmice).

S-matrix
After the sentences in a question/answer pair are properly
presented, the next step is to model the complex interac-
tion between questions and answers. We calculate the co-
sine vector similarity between all words within the two sen-
tences. These similarities fill a matrix as the one shown on
the left side of Fig. 2. Consider a pair of question (repre-
sented as (xq1, ..., x

q
n)) and candidate answer (represented as

(xd1, ..., x
d
m)) with the lengths n and m, respectively, it is

able to map this pair into a matrix Σ of size n ×m, where
σij is defined as below:

σij = cosine(xqi , x
d
j ) (1)

However, since the matrix dimensions vary according to
the sentence lengths, we cannot simply feed the matrix into a
standard neural network or classifier. As such in this paper,
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Figure 2: Example of Original Matrix and Tiled Matrix
(darker pixel represent higher similarity).

we simply tile the matrix into a larger matrix of fixed size
nf × mf , as shown in right side of Fig. 2. As a result, it
is able to keep all information stored in this matrix during
the transformation. The matrix of fixed size is called an S-
matrix, denoted by S. Although this approach limits us to
deal with question and answer pairs with length smaller than
nf and mf . In practice, most of the questions and answers
in CQA sites are relatively short.

Suitable Answer Probability Estimation
Simply extracting the aggregate statistics of this matrix, such
as the average similarity or a histogram of similarities, can-
not accurately capture the global structure of the S-matrix.
In order to utilise the information stored in the S-matrix to
estimate whether the answer is suitable for the question, a
deep convolution network (DCNN) (LeCun et al. 1998) is
employed to create a function f(S):

pd|q = f(S) (2)

where pd|q refers to the possibility of the answer d being
suitable for the question q.

DCNN are variants of MLPs which are inspired from biol-
ogy. From Hubel and Wiesel’s early work on the cat’s visual
cortex (Hubel and Wiesel 1962), it is known that there ex-
ists a complex arrangement of cells within the visual cortex.
These cells are sensitive to small sub-regions of the input
space, called receptive fields, and are tiled in such a way as
to cover the entire visual field. These filters are local in input
space and are thus better suited to exploit the strong spatially
local correlation present in natural images1.

DCNN is employed in this research because the pattern,
which signifies whether question and answer are matched,
can be found in any part of the original S-matrix. Firstly, the
original matrix is tiled into a bigger matrix, thus the same
pattern can be repeated many times in the bigger matrix.
Secondly, the question can be answered in different parts of
the answer body, i.e., head, middle, or end.

The overall structure is illustrated in Fig. 3. The first con-
volution layer C1 is used to estimate phrase-level match
score between the question and the answer. The input hid-
den units in C1 are connected to a local sub-matrix in the

1http://deeplearning.net/tutorial/lenet.html

input S. If the k-th feature map at layer C1 is denoted as hk,
whose filters are determined by the weightsW k and bias bk,
xij denote a sub-matrix of S-matrix, then the feature map hk
is obtained as follows (for tanh non-linearity):

hkij = tanh((W k ∗ xij) + bk) (3)

The matching score for each sub-matrix in S is calculated
but only part of these sub-matrices contain useful informa-
tion. The first max-pooling layer M1 is used to eliminate
useless match scores. Max-pooling partitions the input ma-
trix into a set of non-overlapping rectangles and for each
such sub-region it outputs the maximum value. Layer C2 is
used to estimate sentence-level match score and the input
hidden units are connected to a local subset of units in M1.
the second max-pooling layer M2 eliminates useless match
scores in C2. Finally, a fully connected layer is used to es-
timate the final match score. Fig. 4 gives us some insights
into layer C1 and M1. Convolutional layers C1 and C2 both
contain multiple feature maps. Because similarity between
phrases and sentences can be evaluated in variety of per-
spectives (Mikolov et al. 2013), our experiments will further
confirm the usefulness of multiple feature maps.

We employ a discriminative training strategy with a large
margin objective. Suppose that we are given the following
triples (x, y+, y−) from the oracle, with x (∈ X) matched
with y+ better than with y− (both ∈ Y ). We have the fol-
lowing ranking-based loss as objective:

L(W,Dtrn) =
∑

(xi,y
+
i ,y−i )∈Dtrn

eW (xi, y
+
i , y

−
i ) (4)

where eW (xi, y
+
i , y

−
i ) is the error for triple (xi, y

+
i , y

−
i ),

given by the following large margin form:

ei = eW (xi, y
+
i , y

−
i )

= max(0,ma + s(xi, y
−
i )− s(xi, y+i ))

(5)

with 0 < ma < 1 controlling the margin in training.

Experimental Study
Dataset
For the purpose of evaluating and validating the proposed
model, a dataset is installed by collecting data from Baidu
Zhidao2, the biggest Chinese CQA site. We randomly col-
lected 438,078 questions throughout March 2013 from this
CQA site. Among these questions, 303,588 (69.3%) ques-
tions have at least one answer, 196,879 (44.9%) questions
have been solved (at least one answer has been marked as
the best answer), while 134,490 (30.7%) questions have not
received even one answer after 6 months since posting. This
finding of question starvation is in accordance with previous
report (Li and King 2010).

From this dataset, 196,879 solved questions are employed
to create training data and testing data. Since S-matrix lim-
its the maximum length of questions and answers to nf and
mf , it is necessary to firstly select proper nf and mf val-
ues. Table 1 shows the number and proportion of questions

2http://zhidao.baidu.com/
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Figure 3: Architecture of Deep Convolutional Neural Network

Figure 4: (a) is S-matrix(S) generated from question “Why don’t cat eat mice?” and answer “Cats don’t eat it because they get
fed.” (darker grid represents higher similarity or matching score) (b) is layer C1 result of S. In this example, units in C1 are
connected to a 4 ∗ 4 local sub-matrix of S, weight W k and bias bk are trained on large QA archive. Layer M1 filters out low
similarity grids, keeps high similarity dark grids. (c) emphasises the ability of matching question and answer at phrase level.
With convolution layer, n-gram matching score is calculated. With pooling layer, important relation can be identified (solid line
in (c)).

Table 1: Number and Coverage proportion of questions with
different nf and mf

nf mf Question# Coverage proportion
30 50 99,909 50.7%
40 60 115,666 58.7%

covered by different nf and mf . From the table it is ob-
served that lengths of more than half of question and answer
pairs are less than 30 and 50, respectively. Furthermore, if
we gradually increase nf and mf from (30, 50) to (40, 60),
the coverage only increases by 8.0%, but the cost of memory
increases by 60%. Thus, it is reasonable to choose nf = 30
and mf = 50 in our experimental study. In real application,
this model can be trained with high performance computing
platform or parallel training method, nf and mf can be in-
creased to several hundreds. As such, much more questions
and answers can be covered.

To better evaluate the proposed method, several data sub-
sets are utilised. Firstly, all 99,909 questions are randomly
split into training and testing data. Training data contains

90,000 questions and 90,000 (x, y+, y−) triples are gener-
ated, where x is a solved question, y+ is the best answer,
and y− is a randomly selected answer which belongs to
a random category. Secondly, another 4 groups of 90,000
(x, y+, y−) triples are generated. They are noted as train-
ing data Tr2, Tr3, Tr4, and Tr5. Training data Tr2 con-
tains 18,000 different questions which belong to the cate-
gory ’Computers & Internet’. Each pair of x and y+ appear
in 5 different triples with different y−. Consequently, 90,000
different triples are generated. Training data Tr3, Tr4, and
Tr5 are produced with same method using questions in “Ed-
ucation & Science”, “Games”, and “Entertainment & Recre-
ation”. The remaining questions in these categories make up
testing data Te2, Te3, Te4, and Te5. Each testing data con-
tain at least 1,000 different questions. All models’ parame-
ters are learned from the training data. The hyper parameters
are tuned on a validation set (as part of the training set).

Evaluation Metrics & Baseline
In order to evaluate the accuracy of matching questions and
answers, a set of candidate answers is created with size 6
(one positive + five negative) for each question in the testing
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data. In Te1 negative candidates usually belong to different
categories to the questions, while in Te2−5 negative candi-
dates always belong to the same category as the question.
We compare the performance of our approach in ranking
quality of the six candidate answers against that of others
baselines. Discounted cumulative gain (DCG) (Järvelin and
Kekäläinen 2000) is employed to evaluate the ranking qual-
ity. The premise of DCG is that highly relevant documents
appearing lower in a ranking list should be penalised as the
graded relevance value is reduced logarithmically propor-
tional to the position of the result. DCG accumulated at a
particular rank position p is defined as:

DCG@p = rel1 +

p∑
i=2

reli
log2(i)

(6)

where best answer rel = 1, for other answers rel = 0. We
choose DCG@1 to evaluate the precision of first rank result
and DCG@6 to evaluate the quality of ranking, similar to
the metrics introduced in (Lu and Li 2013).

We compare our S-matrix + DCNN approach against
five popular retrieval models: Okapi model (Okapi) (Jeon,
Croft, and Lee 2005b), Language model (LM) (Jeon, Croft,
and Lee 2005b; Duan et al. 2008), Translation model (TM)
(Jeon, Croft, and Lee 2005b; Riezler et al. 2007; Xue, Jeon,
and Croft 2008), Translation based language model (TRLM)
(Cao et al. 2010) and Random guess. The model parameters
setup are same as in (Cao et al. 2010), but we use word vec-
tor cosine similarity for word translation probabilities in TM
and TRLM model.

Experiment Settings
After the choice of nf and mf , each (x, y+) and (x, y−)
pair becomes a 30 × 50 matrix and the training set is then
transformed into 180,000 matrixes. Our goal is to train a
classifier which can tell whether one matrix is formed by
(x, y+) or (x, y−). In the following, convolution layers are
labelled Cx, and max-pooling layers are labelled Px, where
x is the layer index. Each unit in convolutional layer is con-
nected to a 5× 5 neighbourhood in the previous layer. Each
unit in max-pooling layer Px is connected to a 2 × 2 neigh-
bourhood in the corresponding feature map in Cx. Layer C1
is a convolutional layer with 20 feature maps. Layer M1 is
a max-pooling layer with 20 feature maps. Layer C2 is a
convolutional layer with 50 feature maps. Layer M2 is a
max-pooling layer with 50 feature maps. Fully connected
layer contains 500 units and is fully connected to M2. It has
900,000 trainable parameters in total.

Fig. 5 shows the evolution of nDCG@1 and nDCG@6
with different margin ma. It is observed that 0.2 is the best
choice of ma. Table 2 shows that multiple feature maps in
C1 and C2 achieve better precision than uni-feature map.

Result and Discussion
From Table 3, it is observed that S-matrix + DCNN, TRLM
and TM perform better than the other methods on Te1. This
is because word embedding can capture more lexical in-
formation than traditional approaches. When comparing S-
matrix + DCNN against the TRLM model, we are able to see
that the improvement is due to extra structural information.

Figure 5: Evolution of DCG@1 and DCG@6 while m in-
creasing

Table 2: Performance difference between uni-feature map
and multiple feature map

Feature map in C1 & C2 1-1 20-50
DCG@1 0.691 0.752
DCG@6 0.927 0.943

Table 3: Performance of different approach on random cate-
gory training data Te1

Approach DCG@1 DCG@6
S-matrix + DCNN
(trained on Tr1) 0.752 0.943
TRLM 0.696 0.924
TM 0.690 0.922
LM 0.634 0.819
Okapi 0.608 0.807
Random guess 0.167 0.550

From Table 4, it is observed that if the questions and an-
swers are limited to a specific category, accuracy will de-
crease to some extent. This is because, within a single cat-
egory, inappropriate answers are more similar to the best
answer than random selected answers. In those cases, S-
matrix + DCNN can still achieve better performance than
traditional approaches. To further analyse the performance,
we compared DCNN with Matrix sum (add all similarity to-
gether), Multilayer Perceptron (MLP) with a single hidden
layer, and Logistic regression. Table 5 shows that DCNN can
achieve a better performance than other methods. As such
we conclude that DCNN has the ability to discover hidden
information in S-matrix due to its ability to exploit the strong
spatially local correlations.

Related work
Retrieving relevant historical answers in a large archive of
questions and associated answers is an essential function
of a CQA site. Most existing works employ bag-of-words
based schema. However, in the question/answer matching
process both syntactic and lexical information are important,
but bag-of-words models remove the order of words. As a
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Table 4: Performance of different approaches on mono-category training data Tr2−5, S+DCNN (Tri) represents the training
data belonging to the same category as the testing data

Approach Te2 Te3 Te4 Te5
DCG@1 DCG@6 DCG@1 DCG@6 DCG@1 DCG@6 DCG@1 DCG@6

S+DCNN (Tri) 0.658 0.912 0.734 0.939 0.619 0.894 0.543 0.866
TRLM 0.601 0.885 0.698 0.924 0.562 0.865 0.492 0.843

TM 0.596 0.885 0.691 0.922 0.560 0.863 0.486 0.841
LM 0.624 0.830 0.746 0.881 0.544 0.765 0.488 0.740

Okapi 0.567 0.806 0.702 0.869 0.467 0.747 0.446 0.723
Random guess 0.167 0.550 0.167 0.550 0.167 0.550 0.167 0.550

Table 5: Performance of different approaches with the same
S-matrix on Te1

Approach DCG@1 DCG@6
S-matrix + DCNN
(trained on Tr1) 0.752 0.943
S-matrix +
Matrix sum 0.676 0.929
S-matrix + MLP 0.671 0.926
S-matrix + logistic 0.652 0.920
Random guess 0.167 0.550

result two irrelevant phrases could probably have the same
bag-of-words representation (Socher et al. 2011b). To solve
this problem, several approaches have been proposed. A so-
lution in (Duan et al. 2008) considers the question structure
for retrieval by building a structured tree for questions. Simi-
larly, Bian et al. proposed an interesting learning framework
for question retrieval (Bian et al. 2008). However, Wang
et al. observed that current parsers are not well-trained for
real-life questions, especially in informally stated questions
(Wang, Ming, and Chua 2009). These proposed approaches
need training data (that are difficult to get for general ques-
tions) and the experimental studies are conducted on factoid
questions. Inspired by technologies in the image processing
field, our work captures both lexical and sequential informa-
tion in matching process. We focus on matching questions
and answers, therefore a large scale of training data can be
constructed based on the past question and answer pairs.

Our work is conceptually similar to the dynamic pooling
algorithm for paraphrase identification, recently developed
by Socher et al. (Socher et al. 2011a). Similar to our pro-
posed model, their model constructs a neural network on the
interaction space of two objects (sentences in their case), and
outputs the measure of semantic similarity between them.
The major differences are two-fold: 1) their model utilises
parse trees to capture the structure information of sentences,
and finds vector representations for each node of a parse tree
using recursive autoencoders; 2) a dynamic pooling model is
used to fit the similarity matrix into a fixed shape. Instead,
our model employs two convolutional layers to capture the
phrase and sentence level structural information, and tile the
similarity matrix into a larger matrix: this is a process with-
out loss of information.

Our work is in a sense related to that presented in (Lu

and Li 2013). This work directly models object-object in-
teractions with a deep architecture. This architecture is able
to explicitly capture the natural non-linearity and the hier-
archical structure in matching two structured objects. The
main difference between their approach and our approach
is that this model is also based on a bag-of-words schema.
Their model represents each word with a single value. We
use a 100-dimensional word embedding vector to represent
words, and multiple senses of similarity between sentences
are also considered through multiple feature maps.

Our work is also conceptually related to the convolu-
tional neural network for modelling sentences (Kalchbren-
ner, Grefenstette, and Blunsom 2014). The idea of using
DCNN to model phrase and sentence level property is simi-
lar. Different from our work, this work uses DCNN to model
single sentence.

Conclusion and Future Works
In this research we presented a novel approach to meet the
short text matching problems in CQA applications, inspired
partially by the long thread of work on deep learning. The
major contribution of this work consists of two parts. Firstly,
questions and answers are modelled with an S-matrix by
considering both lexical and structural interaction. Secondly,
an effective approach of matching question and answer is re-
alised by using a deep convolutional neural network. The ex-
periments have shown the potential of the proposed method
as compared against other popular methods. It is believed
that this work might offer an insight for information seeking
in CQA sites.

Our work opens several interesting new directions for fu-
ture work. It is possible, for example, to try other word to
word similarities, and the similarity between words can be
also expressed as a vector as in (Mikolov et al. 2013). It is
also interesting to explore the possibility of using this ap-
proach to solve other short text matching tasks (e.g., evalu-
ation of machine translation, comment selection on a given
tweet): this deserves further investigation in future work.
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