
Efficient Top-k Shortest-Path Distance Queries on
Large Networks by Pruned Landmark Labeling

Takuya Akiba†, Takanori Hayashi†, Nozomi Nori‡, Yoichi Iwata† and Yuichi Yoshida§k

†The University of Tokyo, 113-0033, Tokyo, Japan ‡Kyoto University, 606-8501, Kyoto, Japan
§National Institute of Informatics, 101-8430, Tokyo, Japan
kPreferred Infrastructure, Inc., 113-0033, Tokyo, Japan

{t.akiba,thayashi,y.iwata}@is.s.u-tokyo.ac.jp, nozomi@ml.ist.i.kyoto-u.ac.jp, yyoshida@nii.ac.jp

Abstract

We propose an indexing scheme for top-k shortest-
path distance queries on graphs, which is useful in a
wide range of important applications such as network-
aware searches and link prediction. While many effi-
cient methods for answering standard (top-1) distance
queries have been developed, none of these methods
are directly extensible to top-k distance queries. We
develop a new framework for top-k distance queries
based on 2-hop cover and then present an efficient in-
dexing algorithm based on the recently proposed pruned
landmark labeling scheme. The scalability, efficiency
and robustness of our method is demonstrated in ex-
tensive experimental results. Moreover, we demonstrate
the usefulness of top-k distance queries by applying
them to link prediction, the most fundamental graph
problem in the AI and Web communities.

Introduction
The shortest-path distance between vertices in a network
is a fundamental concept in graph theory and is widely
applied in the AI and Web communities. For example,
because the distances between vertices indicate the rele-
vance among the vertices, they can identify other users
or contents that best match a user’s intent in socially-
sensitive searches (Vieira et al. 2007; Yahia et al. 2008;
Maniu and Cautis 2013). In context-aware searches, they
are used to assign higher ranks to web pages more related
to the currently visited web page (Ukkonen et al. 2008;
Potamias et al. 2009).

However, there is a fundamental drawback of basing rel-
evance on distance alone. Specifically, distances should be
integers and the diameters of real-world networks are typi-
cally small (Watts and Strogatz 1998). Such small diameter
greatly reduce the number of possible distances and preclude
the full use of the underlying structure.

This problem is clearly depicted in Figure 1. In each graph
in the figure, the distance between the pair of black vertices
is four. Hence, based on distance alone, the black pairs in
all three graphs have the same similarity. However, the pair
in graph (c) seems more tightly connected than the pairs in

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c)

Figure 1: Examples of connection between two vertices.

Table 1: Distances and top-k distances between the two
black vertices in Figure 1.

Graph (Top-1) Distance Top-k Distances
(a) 4 [4, 6, 6, 6, 6, 8, 8, . . .]
(b) 4 [4, 4, 4, 6, 6, 6, 6, . . .]
(c) 4 [4, 4, 4, 4, 4, 4, 4, . . .]

graphs (a) and (b), since this pair is connected by a greater
number of shortest paths.

This intuitive concept can be naturally implemented by
adopting the top-k shortest paths and top-k distances (for-
mally defined later). Table 1 presents the top-k distances be-
tween the pair of black vertices in each graph of Figure 1.
Although the pairs in each graph are separated by the same
distance, their top-k distances markedly vary, providing a
potential means of distinguishing these three graph struc-
tures.

However, determining the top-k distances between ver-
tices is computationally expensive. The naive approach is
to apply a variant of Dijkstra’s algorithm that visits the
same vertex k times. This approach consumes O((n+m)k)
and O((n log n + m)k) time on unweighted and weighted
graphs, respectively, where n and m are the numbers of ver-
tices and edges, respectively. In the above-mentioned appli-
cations, the top-k distances must be interactively computed
for many vertex pairs on large social and web graphs, requir-
ing a much faster algorithm. Eppstein (Eppstein 1998) im-
proved the time complexity to O(n+m+k) and O(n log n+
m+k) on unweighted and weighted graphs respectively, but
his algorithm remains prohibitively slow.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2

Contribution
To resolve this issue, we propose an indexing method for an-
swering the top-k distances. The proposed method is an in-
dexing method, i.e., it first constructs a data structure called
an index from a graph and then top-k distances between ar-
bitrary pairs of vertices are rapidly obtained using the index.
To our knowledge, we present the first indexing method to
top-k distance inquiry.

Our method is built on the recently proposed pruned land-
mark labeling, an indexing scheme that answers shortest-
path distances (Akiba, Iwata, and Yoshida 2013). However,
modifying this method to answer top-k distances is non-
trivial because the number of paths becomes crucial, bring-
ing the new challenge of carefully avoiding double counts.
Moreover, it requires several interesting ideas in order to
keep the scalability.

As shown later in our experiments, our method can con-
struct indices from large graphs comprising millions of ver-
tices and tens of millions of edges within a reasonable run-
ning time. Having obtained the indices, we can compute the
top-k distances within a few microseconds, six orders of
magnitude faster than existing methods, which require a few
seconds to compute these distances.

Moreover, to illustrate the importance of the top-k dis-
tances, we apply our method to the link prediction prob-
lem (Liben-Nowell and Kleinberg 2003), a well-studied
problem in AI and Web communities. We empirically show
that the support vector machine (SVM) with the top-k dis-
tances as its feature outperforms a number of baseline meth-
ods including singular value decomposition and random
walk with restart. We emphasize that our indexing method
enables the first use of the top-k distances for such tasks.
The results also indicate the feasibility of top-k distances in
other tasks, such as network-aware searching.

Our implementation of the proposed indexing method is
publicly available from the first author’s web page. We hope
that our public code will enable further exploration of top-k
distances in various applications.

Related Work
Distance Indices. Although numerous indexing meth-
ods for computing shortest-path distances have been pro-
posed (Cheng and Yu 2009; Xiao et al. 2009; Wei 2010;
Akiba, Sommer, and Kawarabayashi 2012; Jin et al. 2012;
Fu et al. 2013; Akiba, Iwata, and Yoshida 2013), none of
these methods can directly answer top-k distance queries.

Pruned Labeling Algorithms. Pruned labeling was first
proposed for distance queries on complex networks (Ak-
iba, Iwata, and Yoshida 2013). Then, specialization and ex-
tensions have been proposed for reachability queries on di-
rected acyclic graphs (Yano et al. 2013), distance queries on
road networks (Akiba et al. 2014), and distance queries on
dynamic graphs (Akiba, Iwata, and Yoshida 2014).

Other Vertex Similarities. The performance of applica-
tions related to graph mining can also be enhanced by fea-
tures other than top-k distances, such as random walk with
restart (RWR). As straightforward iterative algorithms are

precluded by their high computational cost, several approxi-
mation methods have been proposed (Jeh and Widom 2003;
McSherry 2005; Sun et al. 2005; Tong, Faloutsos, and
Pan 2006). Despite sacrificing accuracy for efficiency, these
methods remain prohibitively time-expensive for computing
the RWR scores for many vertex pairs on large networks in
real-time applications, such as network-aware searches.

Similar arguments apply to other walk-based similarities
such as SimRank (Jeh and Widom 2002) and commuting
time (Lovász 1996). In contrast, as we shall experimentally
demonstrate, such large networks are efficiently handled by
our method for answering top-k distances. We also believe
that top-k distances provide features with different proper-
ties from them, which can be used as complementary fea-
tures for those other vertex similarities.

Some of graph kernels (Smola and Kondor 2003), in par-
ticular, those based on the graph Laplacian such as the regu-
larized Laplacian kernel can also be used to assign relevance
scores for vertex pairs (Ito et al. 2005). However, the com-
putational cost of graph kernels is even more infeasible for
large graphs.

Preliminaries
The current study focus on networks that are modeled
as graphs. To simplify our discussion, we consider only
undirected and unweighted graphs first. However, as dis-
cussed later, our method is easily extendible to directed and
weighted graphs.

Let G = (V,E) be a graph with a vertex set V and an
edge set E. We denote the number of vertices |V | and the
number of edges |E| by n and m, respectively. We assume
that vertices are uniquely represented by integers, enabling
natural comparisons of two vertices u, v 2 V by expressions
such as u < v or u  v.

An internal vertex of a path refers to a vertex in the path
that is not an endpoint of it. Let P be a set of paths. The i-th
shortest path in P refers to the i-th path in P , ordered by
length, where ties are broken arbitrarily.

For a pair of vertices (s, t), let Pst be the set of all (un-
necessarily simple) paths between s and t. For a vertex v, let
P

>v
st be the set of paths in Pst whose internal vertices are all

larger than v. Similarly, let P 6>v
st be the set of paths in Pst

such that at least one internal vertex is smaller than or equal
to v. Then for two vertices s and t, the i-th shortest path be-
tween s and t is the i-th shortest path in Pst. Let di-th(s, t),
d>v
i-th(s, t), and d 6>v

i-th(s, t) denote the length of the i-th short-
est path in Pst, P>v

st , and P

6>v
st , respectively. If the size of

the corresponding set is less than i, then we set them to 1.
We define d�v

i-th(s, t) and d 6�v
i-th(s, t) similarly.

Problem Definition
In this paper, we propose an indexing method that, given
a graph G and a positive integer k, construct an index to
quickly answer the following query.
Problem 1 (Top-k Distance Query).
Given: A pair of vertices (s, t).
Answer: An array (d1st(s, t), d2nd(s, t), . . . , dk-th(s, t)).

3

Proposed Method
This section describes our proposed method and show its
correctness. We also suggest several important techniques
for practical performance enhancement.

Data Structure
The data structure and query algorithm of the proposed
method are based on the general framework of 2-hop
cover (Cohen et al. 2002), which is designed for stan-
dard (top-1) distance queries. However, as normal distance
queries do not consider the number of paths, the main chal-
lenge in processing top-k distance queries is preventing mul-
tiple counts of the same path. To this end, we require a more
involved framework.

For each vertex v, our method precomputes and stores the
following two labels:
• Distance label L(v), comprising a set of pairs (u, �) of

a vertex and a path length. If we gather lengths in L(v)
associated with a vertex u, they should form the sequence
(d>v

1st (v, u), d
>v
2nd(v, u), . . . , d

>v
`-th(v, u)) for some 1  ` 

k.
• Loop label C(v), constituting a sequence of k in-

tegers (�1, �2, . . . , �k). This sequence should equal
(d�v

1st (v, v), d
�v
2nd(v, v), . . . , d

�v
k-th(v, v)).

An index is a pair I = (L,C), where L and C are the sets
of distance labels {L(v)}v2V and loop labels {C(v)}v2V ,
respectively.

Query Algorithm
Given an index I = (L,C) and a pair of vertices (s, t),
we compute the top-k distances between s and t as follows.
First, we compute the following multiset.

�(I, s, t) = {�sv + �vv + �vt | (v, �sv) 2 L(s),

�vv 2 C(v), (v, �vt) 2 L(t)}.

Intuitively, we first move from s to v, then loop back to v
several steps later, and finally move from v to t. Note that
from the definition of distance labels and loop labels, every
internal vertex in the path from s to t (except v itself) is
larger than v.

Let QUERY(I, s, t) denote the smallest k elements in the
multiset �(I, s, t). If |�(I, s, t)| < k, the remaining en-
tries are filled with 1. Our answer to the query (s, t) is
QUERY(I, s, t).

Indexing Algorithm
Our index constructing algorithm is summarized in Algo-
rithm 1. We first compute the loop label C(v) for every ver-
tex v. We then construct the distance labels L by conducting
a pruned BFS from each vertex.

Algorithm for Computing Loop Labels. We construct
the loop labels as follows. For each vertex v, using vertices
larger than or equal to v, we perform a modified version of
breadth first search (BFS). In the BFS, each vertex may be
visited up to k times. The first k visits to the vertex v gives
the distance sequence d�v

1st (v, v), d
�v
2nd(v, v), . . . , d

�v
k-th(v, v).

Algorithm 1 Indexing Algorithm
1: procedure CONSTRUCTINDEX(G)
2: for i = 1 to n do Compute C(vi) using the modified BFS.
3: L(v) ; for all v 2 V .
4: for i = 1 to n do PRUNEDBFS(G, vi).
5: return (C,L).

Algorithm 2 Pruned Top-k BFS from v 2 V .
1: procedure PRUNEDBFS(G, v)
2: Q a queue with only one element (v, 0).
3: while Q is not empty do
4: Dequeue (u, �) from Q.
5: if � < max (QUERY((L,C), v, u)) then
6: Add (v, �) to L(u).
7: for all w 2 V such that (u,w) 2 E,w > v do
8: Enqueue (w, � + 1) onto Q.

The modified BFS returns to the starting vertex long be-
fore all vertices in the graph have been visited. Conse-
quently, the running time is very small in practice and em-
pirically estimated as O(nk) in total from experiments.

Algorithm for Computing Distance Labels. We assume
that vertices in V are ordered as v1, v2, . . . , vn. Then for
each 1  i  n, we perform a pruned BFS from vi (Al-
gorithm 2). The pruned BFS is essentially a modified ver-
sion of the BFS from v that visits the same vertex at most
k times. The crucial difference is the non-trivial pruning;
that is, when visiting a vertex u at distance �, the process is
discontinued if � is larger than or equal to the k-th shortest
distance computable by the current index (L,C) (Line 5).

We roughly estimate the time complexity. Let l be the av-
erage size of labels. We visit O(nl) vertices in total, travers-
ing O(

m
n) edges on average and evaluating a query in O(l)

time (by using the fast pruning technique introduced later).
Thus, the total time complexity of this part is O(ml + nl2).
In our experiments, l was a few hundred.

Proof of Correctness
The correctness of our method is shown as follows. Let Li

denote the set of distance labels L after the i-th pruned BFS
from vi. We define L0(v) = ; for any v. Let Ii denote pair
(Li, C) of the partially constructed set of distance labels and
the set of loop labels. We prove the following lemma.
Lemma 1. For every integer i where 0  i  n,
and every pair of vertices (s, t), QUERY(Ii, s, t) =

(d 6>vi
1st (s, t), d

6>vi

2nd(s, t), . . . , d
6>vi
k-th (s, t)) holds.

Proof. We prove the claim by induction on i. When i = 0,
we have QUERY(Ii, s, t) = (1,1, . . . ,1) and the claim
clearly holds. Suppose that the claim holds for every i0 < i.
For a fixed pair of vertices (s, t) where s 6= t, we validate
the claim for i and the pair (s, t).

Note that we can already compute QUERY(Ii�1, s, t) =

(d
6>vi�1

1st (s, t), d
6>vi�1

2nd (s, t), . . . , d
6>vi�1

k-th (s, t)). Let P denote
the set of paths P such that (i) P is in P

>vi�1

st , (ii) P
passes through vi, and (iii) the length of P is smaller than

4

d
6>vi�1

k-th (s, t). Let P 0 be the first k elements in P . It suffices
to show that, after the i-th pruned BFS, we can also compute
the distances of paths in P

0.
Let P 2 P

0. We can split P into three parts Psvi , Pvivi ,
and Pvit. Here, Psvi denotes the subsequence of P from s
to the first appearance of vi in P , Pvivi denotes the subse-
quence of P from the first appearance of vi to the final ap-
pearance of vi in P , and Pvit denotes the subsequence of P
from the last appearance of vi in P to t. Note that Pvivi must
be among the first k elements in P

>vi
vivi

; otherwise shorter k
paths are possible and P 2 P

0 is contradicted. Hence, C(vi)
must include the length of Pvivi .

Now we observe that the BFS from vi along path Pvit is
not pruned in the i-th pruned BFS (and similarly for Psvi).
To illustrate by contradiction, suppose that the BFS is pruned
at some vertex u on path Pvit. In this case, there exist at
least k paths in P

6>vi�1
viu shorter than �, where � is the dis-

tance from vi to u in the BFS. For each of these k paths, we
concatenate Psvi , Pvivi , and the suffix of Pvit from u to t.
Then, we obtain k paths in P

6>vi�1

st that are shorter than P ,
and therefore shorter than d

6>vi�1

k-th (s, t) from condition (iii).
Hence, we reach a contradiction.

Corollary 1. At the end of Algorithm 1, we can correctly
answer top-k distance queries using the constructed index.

Techniques for Efficient Implementation
We introduce several key techniques for practical perfor-
mance improvement.

Vertex Ordering Strategy. By properly selecting the or-
der of vertices from which we conduct pruned BFSs, our
pruning can drastically reduce the search space and label
sizes by exploiting the structure of real-world networks,
greatly enhancing the efficiency of the proposed method.
This is possible because the real networks contain highly
centralized vertices (sometimes called hubs). As a heuristic
vertex ordering strategy, vertices are selected in order of de-
creasing degrees. Further discussion is provided in (Akiba,
Iwata, and Yoshida 2013).

Fast Pruning. When constructing distance labels, many
queries are evaluated for pruning. However, when conduct-
ing a pruned BFS from a vertex v, queries are limited to “Are
there more than k paths of length less than � between v and
u?” Given this restriction, we can reduce the query time. For
each vertex w in the distance label of v, we can precompute
the number cw,�0 of paths between v and w of length not ex-
ceeding �0 using the loop label C(w). Suppose that we have
reached vertex u in the pruned BFS conducted from v. We
can then compute the number of paths between v and u of
length less than � as

P
(w,�0,c)2L(u) c · cw,���0 .

Merged Queue Entries. When a (pruned) BFS is per-
formed from a vertex v, rather than pair (u, �), which de-
notes the existence of a path of length � between v and u,
triplets (u, �, c) are pushed onto the queue. These triples
specify that c paths of length � exist between v and u, This
technique enables the simultaneous handling of many paths,

and significantly reduces the number of pushes onto the
queue. Hence, it significantly reduces the running time.

Merged Label Entries. Related to the above technique,
instead of pairs (u, �), which denotes that there is a path
of length � between v and u, triplets (u, �, c) are stored in
distance labels. These triplets indicate that c paths of length
� exist between v and u. A similar technique is applicable to
loop labels.

Extensions
Directed graphs. If the input graph is a directed graph, we
compute and store two distance labels LIN(v) and LOUT(v)
for each vertex v, where LIN(v) and LOUT(v) contain the
distances from and to v, respectively.

Weighted graphs. For weighted graphs, we can replace
the pruned BFS by pruned Dijkstra’s algorithm. In this
scheme, the queue used in Algorithm 2 is replaced by
a priority queue. The time complexity becomes O(ml +
nl(log n+ l)).

Experimental Evaluation
In this section, we show the scalability, efficiency and ro-
bustness of the proposed method by experimental results us-
ing real-world networks.

Setup
Environment. All experiments were conducted on a
Linux server with Intel Xeon X5670 (2.93 GHz) and 48 GB
of main memory. The proposed method was implemented in
C++. The implementation will be made publicly available
online.

Datasets. The target applications of the proposed method
are graph mining tasks such as network-aware searching and
link prediction. Therefore, our experiments were conducted
on publicly available real-world social and web graphs12345.
The sizes and types of these graphs are listed in Table 2. We
treated all the graphs as unweighted undirected graphs.

Algorithms. As there are no previous indexing methods
for top-k distances, the proposed method was evaluated
against the following two algorithms without precomputa-
tion.
• The first is the BFS-based naive approach, which uses a

FIFO queue in the graph search, but which allows at most
k visits to each vertex. This algorithm was also imple-
mented in C++ by the authors.

• The second is Eppstein’s algorithm (Eppstein 1998),
which theoretically attains near-optimal time complexity.
We adopted the C++ implementation of Jon Graehl6.

1http://lovro.lpt.fri.uni-lj.si/support.jsp
2http://grouplens.org/datasets/hetrec-2011/
3http://snap.stanford.edu/
4http://socialnetworks.mpi-sws.org/datasets.html
5http://law.di.unimi.it/datasets.php (Boldi and Vigna 2004)
6http://www.ics.uci.edu/ eppstein/pubs/p-kpath.html

5

Table 2: Dataset information and performance of the proposed and existing methods on real-world datasets (k = 8).
Dataset Top-k PLL (this work) BFS EppsteinName Type |V | |E| Indexing time Index size Query time

Facebook-1 Social 334 2,218 13.7 ms 178.6 KB 1.9 µs 227.1 µs 378.4 µs
Last.fm Social 1,892 12,717 125.3 ms 1.3 MB 1.7 µs 1.6 ms 7.5 ms
GrQc Social 5,242 14,496 152.9 ms 2.7 MB 1.6 µs 2.2 ms 7.3 ms
HepTh Social 9,877 25,998 631.2 ms 7.8 MB 2.2 µs 5.5 ms 16.5 ms
CondMat Social 23,133 186,936 3.2 s 26.4 MB 3.1 µs 15.2 ms 158.8 ms
Facebook-2 Social 63,732 1,545,686 239.0 s 716.8 MB 15.2 µs 117.6 ms 2.7 s
YouTube-1 Social 1,157,828 4,945,382 624.3 s 2.3 GB 5.1 µs 1.5 s 7.0 s
YouTube-2 Social 3,238,848 18,512,606 1627.1 s 9.6 GB 3.9 µs 5.0 s 41.1 s

NotreDame Web 325,729 1,497,134 52.3 s 617.7 MB 2.9 µs 249.8 ms 1.7 s
Stanford Web 281,903 2,312,497 42.5 s 230.0 MB 1.7 µs 454.9 ms 2.9 s
BerkStan Web 685,230 7,600,595 108.7 s 1.0 GB 1.9 µs 643.3 ms 10.8 s
Indo Web 1,382,906 16,539,644 2695.3 s 6.0 GB 12.1 µs 1.4 s 25.4 s

(a) Indexing time (b) Index size (c) Query time

Figure 2: Effect of k on indexing time, index size, and query time.

Indexing Time and Index Size
The high scalability of the proposed method is evident from
the index construction time and constructed index size re-
ported in Table 2. Indices were constructed from large so-
cial and web graphs comprising tens of millions of edges
(YouTube-2 and Indo) in one hour. The index sizes are be-
low 10 GB, easily accommodated by the main memories of
modern commodity computers.

While the index construction of all datasets was consis-
tently efficient, we observe that the indexing time does not
depend on graph size alone. The efficiency of the proposed
method relies on the efficiency of pruning, and is thus re-
lated to network properties such as degree distribution and
clustering coefficient. However, because the graphs of real-
world social, web, computer and biological networks exhibit
similar qualitative properties, the proposed method is robust
and consistently efficient. The same argument is valid for
index size.

Figure 2a and 2b illustrate the effect of k on the index-
ing time and index size in the proposed method. Both are
relatively insensitive to the value of k.

Query Time
The proposed method generally answers queries within mi-
croseconds, very much faster than the other algorithms (Ta-
ble 2). Indeed for the largest dataset, YouTube-2, the query

time was six orders of magnitude faster than those of the
BFS-based and Eppstein algorithms. In our experiments the
BFS-based method was faster than Eppstein’s algorithm.
This is due to the big constant factor hidden in the O-
notation of the time complexity of Eppstein’s algorithm, as
it involves complex data structure manipulation.

Figure 2c plots the query time as a function of k. Although
the query time increased with k, it remained sufficiently fast
at high k.

Application to Link Prediction

This section demonstrates the usefulness of the proposed
method by applying it to the link prediction problem (Liben-
Nowell and Kleinberg 2003). In particular, we confirm that
top-k distances can contribute to prediction precision im-
provement. Note that our indexing method enables the first
use of the top-k distances for such tasks, because top-k dis-
tances must be computed for many pairs of vertices during
training and evaluation.

We selected link prediction as it is one of the most funda-
mental and popular problems on graphs in the AI and Web
communities. However, the results suggest the applicabil-
ity of top-k distances to other graph tasks such as network-
aware searching.

6

Table 3: Predictive performance (AUC) of the method based on top-k distances and several baseline methods on the link
prediction problem. Statistically significant winners (by paired t-test with p < 0.05) are highlighted in bold font.

Dataset CN Jaccard Adamic Preferential Combined SVD RWR Top-k Top-1
Facebook-1 0.806 0.812 0.817 0.754 0.890 0.792 0.873 0.901 0.808
Facebook-2 0.776 0.777 0.777 0.875 0.755 0.823 0.949 0.931 0.931
Last.fm 0.596 0.597 0.603 0.831 0.861 0.644 0.844 0.876 0.802
GrQc 0.658 0.658 0.658 0.709 0.793 0.791 0.802 0.824 0.799
HepTh 0.546 0.546 0.547 0.686 0.714 0.774 0.779 0.817 0.775
CondMat 0.763 0.763 0.764 0.749 0.877 0.875 0.900 0.929 0.896

Setup
Prediction Settings. We randomly sampled 60% edges
for training and reserved the remaining 40% for evaluation.
The task was to predict the hidden evaluation edges given
training edges. The sampling, prediction and evaluation pro-
cedures were performed 10 times on each datasets.

As an evaluation metric for predictive performance, we
used AUC (area under the ROC curve). Generally, AUC is
defined as the probability of predictions for positive exam-
ples larger than those for negative ones in test set. Since the
tested datasets contain only positive, our investigation con-
stitutes a “positive-and-unlabeled” case. Therefore, in our
AUC evaluation, our test set is regarded as a subset of pos-
itive links. Withholding these links, we applied the evalu-
ated methods to the dataset, treating the withheld links as
no-links. We evaluated AUC as the probability that a ran-
domly sampled withheld link has a higher predicted rela-
tional strength than a randomly sampled no-link vertex pair.

Method Based on Top-k Distances. We used the top-k
distances as features in a support vector machine (SVM).
More precisely, assuming (�1, �2, . . . , �k) as the top-k dis-
tances of a vertex pair, we defined the features of the pair as
k values, where the i-th value is given by 1/

p

�i. The value
of k was tuned among {2

0, 21, . . . , 26}, using one sample as
a development dataset. Moreover, for each dataset we tested
both linear SVM and non-linear SVM (with the RBF ker-
nel) and selected the better performing one using the devel-
opment dataset. The results on the development dataset are
not included in the actual evaluation.

Baseline Methods. As baseline methods, we selected four
methods commonly used in link prediction; (1) CN (Com-
mon neighbors), (2) Jaccard, (3) Adamic, (4) Preferential
(Preferential Attachment). The scores of these methods were
used as link scores. We also considered (5) a Combined
method, in which the link scores of the four baseline meth-
ods were used as the features in SVM. We further com-
pared our method with (6) SVD (singular value decompo-
sition) (Golub and Loan 1996) and (7) RWR (Random Walk
with Restart), and (8) Top-1 distance. In SVD, the link score
is calculated by cosine similarity based on the latent vectors.
The number of latent dimension in SVD was tuned among
{2

0, 21, . . . , 28}, again using one sample as a development
dataset. We adopted the RWR parameters of (He et al. 2004;
Tong, Faloutsos, and Pan 2006). More specifically, the
restart probability was set to 0.95 and the number of iter-
ations was set to 50. The top-1 distance method corresponds

Figure 3: Effect of k on AUC, evaluated on the Last.fm
dataset

to the above method with k = 1; its purpose was to evaluate
the true importance of the top-k (k > 1) distances.

Datasets. We used the six smaller social networks ex-
tracted from the graphs in the previous section, as some of
the baseline methods (such as RWR) were too computation-
ally expensive.

Results
Predictive Performance. Table 3 shows the mean AUCs
for each method and dataset. The top-k distance method out-
performed all the other methods for almost all the datasets.
The exception was Facebook-2, for which the method based
on top-k distances performed comparably to the top per-
former, RWR. Moreover, in most of the datasets, the top-k
distances yielded higher performance than the top-1 (usual)
distance.

Parameter Sensitivity. We experimentally studied the
effect of the parameter k. Figure 3 plots the AUCs
of the proposed method for the Last.fm dataset with k
{2

0, 21, . . . , 26}. We observe that the predictive perfor-
mance was stable with respect to k.

Conclusion
In this study, we proposed a new indexing method that
quickly answers top-k distance queries on large networks.
Indeed, we present the first practical indexing method for
top-k distances. The efficiency, scalability and robustness
of the method was evaluated in extensive experiments on
real-world social and web graphs. Moreover, by applying the
method to link prediction, we indicated the practicability of
top-k distance queries to various applications.

7

Acknowledgments
Takuya Akiba, Nozomi Nori and Yoichi Iwata are supported
by Grant-in-Aid for JSPS Fellows (256563, 269329 and
256487, respectively). Takanori Hayashi and Yuichi Yoshida
are supported by JST, ERATO, Kawarabayashi Large Graph
Project. Yuichi Yoshida is supported by JSPS Grant-in-Aid
for Young Scientists (B) (No. 26730009) and MEXT Grant-
in-Aid for Scientific Research on Innovative Areas (No.
24106003).

References
Akiba, T.; Iwata, Y.; Kawarabayashi, K.; and Kawata, Y.
2014. Fast shortest-path distance queries on road networks
by pruned highway labeling. In ALENEX, 147–154.
Akiba, T.; Iwata, Y.; and Yoshida, Y. 2013. Fast exact
shortest-path distance queries on large networks by pruned
landmark labeling. In SIGMOD, 349–360.
Akiba, T.; Iwata, Y.; and Yoshida, Y. 2014. Dynamic and
historical shortest-path distance queries on large evolving
networks by pruned landmark labeling. In WWW, 237–248.
Akiba, T.; Sommer, C.; and Kawarabayashi, K. 2012.
Shortest-path queries for complex networks: exploiting low
tree-width outside the core. In EDBT, 144–155.
Boldi, P., and Vigna, S. 2004. The webgraph framework I:
compression techniques. In WWW, 595–602.
Cheng, J., and Yu, J. X. 2009. On-line exact shortest distance
query processing. In EDBT, 481–492.
Cohen, E.; Halperin, E.; Kaplan, H.; and Zwick, U. 2002.
Reachability and distance queries via 2-hop labels. In
SODA, 937–946.
Eppstein, D. 1998. Finding the k shortest paths. SIAM J.
Computing 28(2):652–673.
Fu, A. W.-C.; Wu, H.; Cheng, J.; Chu, S.; and Wong, R. C.-
W. 2013. Is-label: an independent-set based labeling scheme
for point-to-point distance querying on large graphs. PVLDB
6(6):457–468.
Golub, G. ., and Loan, C. . 1996. Matrix Computations.
Johns Hopkins Studies in the Mathematical Sciences.
He, J.; Li, M.; jiang Zhang, H.; Tong, H.; and Zhang, C.
2004. Manifold-ranking based image retrieval. In MM, 9–
16.
Ito, T.; Shimbo, M.; Kudo, T.; and Matsumoto, Y. 2005.
Application of kernels to link analysis. In KDD, 586–592.
Jeh, G., and Widom, J. 2002. Simrank: a measure of
structural-context similarity. In KDD, 538–543.
Jeh, G., and Widom, J. 2003. Scaling personalized web
search. In WWW, 271–279.
Jin, R.; Ruan, N.; Xiang, Y.; and Lee, V. 2012. A highway-
centric labeling approach for answering distance queries on
large sparse graphs. In SIGMOD, 445–456.
Liben-Nowell, D., and Kleinberg, J. 2003. The link predic-
tion problem for social networks. In CIKM, 556–559.
Lovász, L. 1996. Random walks on graphs: A survey.
In Combinatorics, Paul Erdős is Eighty, volume 2. János
Bolyai Mathematical Society. 353–398.

Maniu, S., and Cautis, B. 2013. Network-aware search in
social tagging applications: Instance optimality versus effi-
ciency. In CIKM, 939–948.
McSherry, F. 2005. A uniform approach to accelerated
pagerank computation. In WWW, 575–582.
Potamias, M.; Bonchi, F.; Castillo, C.; and Gionis, A. 2009.
Fast shortest path distance estimation in large networks. In
CIKM, 867–876.
Smola, A. J., and Kondor. 2003. Kernels and regularization
on graphs. In COLT, 144–158.
Sun, J.; Qu, H.; Chakrabarti, D.; and Faloutsos, C. 2005.
Neighborhood formation and anomaly detection in bipartite
graphs. In ICDM, 418–425.
Tong, H.; Faloutsos, C.; and Pan, J.-Y. 2006. Fast random
walk with restart and its applications. In ICDM, 613–622.
Ukkonen, A.; Castillo, C.; Donato, D.; and Gionis, A. 2008.
Searching the wikipedia with contextual information. In
CIKM, 1351–1352.
Vieira, M. V.; Fonseca, B. M.; Damazio, R.; Golgher, P. B.;
Reis, D. d. C.; and Ribeiro-Neto, B. 2007. Efficient search
ranking in social networks. In CIKM, 563–572.
Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics
of ‘small-world’ networks. Nature 393(6684):440–442.
Wei, F. 2010. Tedi: efficient shortest path query answering
on graphs. In SIGMOD, 99–110.
Xiao, Y.; Wu, W.; Pei, J.; Wang, W.; and He, Z. 2009. Ef-
ficiently indexing shortest paths by exploiting symmetry in
graphs. In EDBT, 493–504.
Yahia, S. A.; Benedikt, M.; Lakshmanan, L. V. S.; and Stoy-
anovich, J. 2008. Efficient network aware search in collab-
orative tagging sites. PVLDB 1(1):710–721.
Yano, Y.; Akiba, T.; Iwata, Y.; and Yoshida, Y. 2013. Fast
and scalable reachability queries on graphs by pruned label-
ing with landmarks and paths. In CIKM, 1601–1606.

8

