
Low-Rank Tensor Completion with Spatio-Temporal Consistency

Hua Wang†, Feiping Nie‡, Heng Huang‡∗
†Department of Electrical Engineering and Computer Science

Colorado School of Mines, Golden, Colorado 80401, USA
‡Department of Computer Science and Engineering

University of Texas at Arlington, Arlington, Texas 76019, USA
huawangcs@gmail.com, feipingnie@gmail.com, heng@uta.edu

Abstract

Video completion is a computer vision technique to re-
cover the missing values in video sequences by filling
the unknown regions with the known information. In
recent research, tensor completion, a generalization of
matrix completion for higher order data, emerges as
a new solution to estimate the missing information in
video with the assumption that the video frames are ho-
mogenous and correlated. However, each video clip of-
ten stores the heterogeneous episodes and the correla-
tions among all video frames are not high. Thus, the
regular tenor completion methods are not suitable to re-
cover the video missing values in practical applications.
To solve this problem, we propose a novel spatially-
temporally consistent tensor completion method for re-
covering the video missing data. Instead of minimizing
the average of the trace norms of all matrices unfolded
along each mode of a tensor data, we introduce a new
smoothness regularization along video time direction to
utilize the temporal information between consecutive
video frames. Meanwhile, we also minimize the trace
norm of each individual video frame to employ the spa-
tial correlations among pixels. Different to previous ten-
sor completion approaches, our new method can keep
the spatio-temporal consistency in video and do not as-
sume the global correlation in video frames. Thus, the
proposed method can be applied to the general and prac-
tical video completion applications. Our method shows
promising results in all evaluations on both 3D biomed-
ical image sequence and video benchmark data sets.

Video completion is the process of filling in missing pix-
els or replacing undesirable pixels in a video. The missing
values in a video can be caused by many situations, e.g.,
the natural noise in video capture equipment, the occlusion
from the obstacles in environment, segmenting or removing
interested objects from videos. Video completion is of great
importance to many applications such as video repairing and
editing, movie post-production (e.g., remove unwanted ob-
jects), etc.

Missing information recovery in images is called inpaint-
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ing, which is usually accomplished by inferring or guess-
ing the missing information from the surrounding regions,
i.e. the spatial information. Video completion can be con-
sidered as an extension of 2D image inpainting to 3D. Video
completion uses the information from the past and the future
frames to fill the pixels in the missing region, i.e. the spatio-
temporal information, which has been getting increasing at-
tention in recent years.

In computer vision, an important application area of
artificial intelligence, there are many video completion
algorithms. The most representative approaches include
video inpainting, analogous to image inpainting (Bertalmio,
Bertozzi, and Sapiro 2001), motion layer video completion,
which splits the video sequence into different motion layers
and completes each motion layer separately (Shiratori et al.
2006), space-time video completion, which is based on tex-
ture synthesis and is good but slow (Wexler, Shechtman, and
Irani 2004), and video repairing, which repairs static back-
ground with motion layers and repairs moving foreground
using model alignment (Jia et al. 2004).

Many video completion methods are less effective be-
cause the video is often treated as a set of independent 2D
images. Although the temporal independence assumption
simplifies the problem, losing temporal consistency in re-
covered pixels leads to the unsatisfactory performance. On
the other hand, temporal information can improve the video
completion results (Wexler, Shechtman, and Irani 2004;
Matsushita et al. 2005), but to exploit it the computational
speeds of most methods are significantly reduced. Thus, how
to efficiently and effectively utilize both spatial and temporal
information is a challenging problem in video completion.

In most recent work, Liu et. al. (Liu et al. 2013) estimated
the missing data in video via tensor completion which was
generalized from matrix completion methods. In these meth-
ods, the rank or rank approximation (trace norm) is used,
as a powerful tool, to capture the global information. The
tensor completion method (Liu et al. 2013) minimizes the
trace norm of a tensor, i.e. the average of the trace norms
of all matrices unfolded along each mode. Thus, it assumes
the video frames are highly correlated in the temporal di-
rection. If the video records homogenous episodes and all
frames describe the similar information, this assumption has
no problem. However, one video clip usually includes multi-
ple different episodes and the frames from different episodes
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could be totally different. Thus, the homogeneity assump-
tion of the previous tensor completion method (Liu et al.
2013) restricted its application to the general and practical
video missing data estimation.

In this work, we propose a novel spatially-temporally con-
sistent tensor completion method to utilize both spatial and
temporal information of a video clip. Instead of assuming
the global correlation along the temporal direction as in ex-
isting works, we introduce a new smoothness regularization
to utilize the content continuity within videos due to the fol-
lowing observation. Although one video clip can have multi-
ple totally different episodes, most information in every two
successive frames are similar. Figure 1 illustrates the con-
tent continuity in two corrupted videos. In video with image
noise or obstacle occlusion, the first and last image frames
have considerably large difference, but every two consecu-
tive frames have pretty small difference. Besides using the
new smoothness regularization to keep the temporal consis-
tency, we also minimize the trace norm of each individual
video frame to make use of the spatial correlations among
pixels. Because our new tensor completion method uses the
content continuity and does not assume the low-rank approx-
imation among temporal direction, it can be applied to gen-
eral video completion applications. We employ the Alternat-
ing Direction Method (ADM) to optimize our new objective
with the global optimal solution. Both 3D biomedical image
sequence and video benchmark data sets are used to eval-
uate the proposed method. In all experimental results, our
approach outperforms the most recent methods.

Related Work
The matrix completion problem is to find a matrix with low-
rank or low norm based on the observed entries, and has
been actively studied in statistical learning (Rennie and Sre-
bro 2005; Mazumder, Hastie, and Tibshirani 2009), opti-
mization (Candes and Recht 2008; Recht, Fazel, and Par-
rilo 2007; Nie, Huang, and Ding 2012; Nie et al. 2012), sig-
nal processing (Candes and Tao 2009), information retrieval
(Huang, Nie, and Huang 2013; Huang et al. 2013) areas. The
matrix completion problem of recovering a low-rank matrix
from a subset of its entries is,

min
X∈Rn×m

rank(X),

s.t. X(i, j) = D(i, j) ∀ (i, j) ∈ Ω,
(1)

where rank(X) denotes the rank of matrix X, and D(i, j) ∈
R are observed entries from entries set Ω. Directly solving
the problem (1) is difficult as the rank minimization problem
is known as NP-hard. Recently, (M.Fazel 2002) proved the
trace norm function is the convex envelope of the rank func-
tion over the unit ball of matrices, and thus the trace norm is
the best convex approximation of the rank function. More
recently, it has been shown in (Candes and Recht 2008;
Candes and Tao 2009; Recht, Fazel, and Parrilo 2007) that,
under mild conditions, the solution of problem in Eq. (1) can
be found by solving the following convex problem:

min
X∈Rn×m

‖X‖∗ ,

s.t. X(i, j) = D(i, j) ∀ (i, j) ∈ Ω,
(2)

...

Temporal order

Noise corrupted video clip

...

Temporal order

Occluded video clip

...

Temporal order

Original video clip

Missing pixels Occlusions

Figure 1: A video clip (top panel) naturally forms up a ten-
sor. Missing pixel (middle panel) imputation and occlusion
(bottom panel) correction can be formalized as a tensor com-
pletion problem. An important observation for video data is
the content continuity, i.e., the pixels at the same location in
consecutive frames tends to change very small. For exam-
ple, the static objects in the figure, including the road, trees,
house, do not change in all the video frames. Although the
dynamic object, i.e., the car, has significant location change
between the starting frame and the ending frame, its loca-
tion changes between the consecutive frames are consider-
ably small. As a result, continuity over the third mode of a
3-mode tensor convey very important information to recover
corrupted entries, which is utilized in the proposed method
to improve the tensor completion performance.

where ‖X‖∗ is the trace norm of X. Several methods (Toh
and Yun 2010; Ji and Ye 2009; Liu, Sun, and Toh 2009;
Ma, Goldfarb, and Chen 2009; Mazumder, Hastie, and Tib-
shirani 2009) have recently been published to solve this kind
of trace norm minimization problem.

In practice, the given data D(i, j), (i, j) ∈ Ω, might con-
tain noise. To handle this case, the constraint in Eq. (2) is
relaxed to minimize the error of observed data entries as fol-
lowing:

min
X∈Rn×m

‖X‖∗ + γ
∑

(i,j)∈Ω

(X(i, j)−D(i, j))2. (3)

In recent work, several methods extended the matrix com-
pletion to tensor completion (Liu et al. 2013; Signoretto et
al. ; Tomioka et al. 2011). They mainly minimize the av-
erage norm of all matrices on each mode. If the tensor data
is homogenous, these methods can have good estimations on
missing values. However, the video data is heterogenous, be-
cause one video often captures many episodes that are totally
different and have few correlations along the temporal direc-
tion. Thus, the rank minimization along the temporal mode
does not help the video completion. To solve this problem,
we propose a new tensor completion method with keeping
spatio-temporal consistency in video to estimate the missing
values cross frames.
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Tensor Completion with Spatio-Temporal
Consistency

Given a tensor data X = {X1, X2, ..., Xn} ∈ Rr×c×n,
and the observed values in each Xi(1 ≤ i ≤ n) are
{Di(i, j) |(i, j) ∈ Ωi }. Suppose the third dimension of the
tensorX is the temporal direction, and {X1, X2, ..., Xn} are
ordered along the temporal information. The task is to re-
cover the unobserved values in in each Xi(1 ≤ i ≤ n).
Because most pixels’ values are redundant, the video frames
are low-rank, the low-rank matrix completion (Cai, Candès,
and Shen 2010) can be applied to every frame. Thus, we can
solve the following objective to complete each video frame
individually:

min
X

γ
∑

(k,h)∈Ω

(X(k, h)−D(k, h))2 + rank(X). (4)

It is known that the rank minimization problem is NP-hard,
and the tightest convex relaxation to it is the following trace
norm minimization problem:

min
X

γ
∑

(k,h)∈Ω

(X(k, h)−D(k, h))2 + ‖X‖∗ . (5)

Given a tensor data {X1, X2, ..., Xn}, we can perform the
tensor completion by

min
Xi|n1

γ

n∑
i=1

∑
(k,h)∈Ωi

(Xi(k, h)−Di(k, h))2 +

n∑
i=1

‖Xi‖∗.

(6)
However, problem (6) do not take into account the tempo-

ral information of the video data, which, though, is crucial
for video data. In the video, the successive dataXi andXi+1

should not change much between each other. In this paper,
we explore the prior information of the smoothness in the
tensor, and propose the smoothness regularization for tensor
completion. Concretely, we add the following smoothness
regularization into problem (6)

g(X ) =

n−1∑
i=1

‖Xi+1 −Xi‖2F , (7)

and to solve the following problem:

min
Xi|n1

γ
n∑
i=1

∑
(k,h)∈Ωi

(Xi(k, h)−Di(k, h))2

+
n∑
i=1

‖Xi‖∗ + α
n−1∑
i=1

‖Xi+1 −Xi‖2F .

(8)

In Eq. (8), the parameter γ does not have explicit meanings.
From the value of γ, we do not explicitly how much differ-
ence there is between the predicted value and the observed
value. Thus tuning this parameter is inconvenient in prac-
tice. To alleviate this issue, we propose to solve the follow-
ing problem:

min
Xi|n1

n∑
i=1

‖Xi‖∗ + α
n−1∑
i=1

‖Xi+1 −Xi‖2F

s.t. | Xi(k, h)−Di(k, h)| ≤ ε, ∀(k, h) ∈ Ωi, ∀i

(9)

In Eq. (9), ε explicitly measures the difference between the
predicted value and the observed value at the same location
(pixel) between two consecutive frames, which makes the
tuning of this parameter is controllable in practice. More-
over, compared to the overall error measured over the entire
video frame as in the first term of Eq. (8), such more strin-
gent error bound defined over every pixel is highly desirable
for practical use, because the observed value are typically
expensive to obtain and trustworthy, such that we should not
allow too much deviation from each of these observed val-
ues.

Optimization Algorithm

Despite its nice property for practical use as analyzed above,
the constraint | Xi(k, h)−Di(k, h)| ≤ ε is equivalent to
the quadratic constraint (Xi(k, h)−Di(k, h))2 ≤ ε2, which,
however, usually makes the problem difficult or inefficient to
be optimized. In this paper, we use the Alternating Direction
Method (ADM) to solve this problem, in which the quadratic
constraints are surprisingly very easy to be handled. We note
that although ADM method has been developed for decades
as an optimization framework, how to use it to solve a spe-
cific problem is not mathematically trivial. As an important
theoretical contribution of our work, in this section we ele-
gantly and rigorously derived the solution to our new objec-
tive in Eq. (9) under the ADM framework and achieved an
efficient solution algorithm as summarized in Algorithm 3.

Augmented Lagrangian Method (ALM) and
Alternating Direction Method (ADM)

Consider the following constrained optimization problem:

min
h(X)=0

f(X). (10)

The Augmented Lagrangian Method (ALM) to solve the
problem (10) is described in Algorithm 1. Under wild con-
dition, the Algorithm 1 was proved to converge Q-linearly
to the optimal solution (Bertsekas 1996).

Set 1 < ρ < 2. Initialize µ > 0, Λ ;
while not converge do

1. Update X by min
X

f(X) + µ
2

∥∥∥h(X) + 1
µ

Λ
∥∥∥2

F
;

2. Update Λ by Λ = Λ + µh(X) ;
3. Update µ by µ = ρµ ;

end
Algorithm 1: Algorithm to solve the problem (10).

Consider the following optimization problem:

min
h(X,Y )=0

f(X,Y ). (11)

Alternating Direction Method (ADM) (Gabay and Mercier
1969) to solve the problem (11) is described in Algorithm 2.
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Algorithm to Solve the Problem (9)
Problem (9) can be equivalently rewritten as

min
Xi|n1 ,Zi|n1

n∑
i=1

‖Zi‖∗ + α
n−1∑
i=1

‖Xi+1 −Xi‖2F

s.t. |Xi(k, h)−Di(k, h)| ≤ ε, ∀(k, h) ∈ Ωi, ∀i
Zi = Xi

(12)

According to Algorithm 2, we need to solve the following
problem:

min
Xi|n1 ,Zi|n1

n∑
i=1

‖Zi‖∗ + α
n−1∑
i=1

‖Xi+1 −Xi‖2F

+µ
2

n∑
i=1

∥∥∥Zi −Xi + 1
µΛi

∥∥∥2

F

s.t. |Xi(k, h)−Di(k, h)| ≤ ε, ∀(k, h) ∈ Ωi, ∀i

(13)

Set 1 < ρ < 2. Initialize µ > 0, Λ ;
while not converge do

1. Update X by min
X

f(X,Y ) + µ
2

∥∥∥h(X,Y ) + 1
µ

Λ
∥∥∥2

F
;

2. Update Y by min
Y

f(X,Y ) + µ
2

∥∥∥h(X,Y ) + 1
µ

Λ
∥∥∥2

F
;

3. Update Λ by Λ = Λ + µh(X,Y ) ;
4. Update µ by µ = ρµ ;

end
Algorithm 2: Algorithm to solve the problem (11).

When fix Xi |n1 , the problem (13) is reduced to the fol-
lowing problem:

min
Zi|n1

1

2

n∑
i=1

‖Zi −Mi‖2F +
1

µ

n∑
i=1

‖Zi‖∗ (14)

where Mi = Xi − 1
µΛi. Note that Zi |n1 in problem (14) is

decoupled, we only need to solve the following simplified
problem for each Zi:

min
Zi

1

2
‖Zi −Mi‖2F +

1

µ
‖Zi‖∗ (15)

The optimal solution to problem (15) can be obtained by soft
thresholding method (Cai, Candès, and Shen 2010). Specif-
ically, suppose the singular vector decomposition of Mi is
Mi = UΣV T , and denote the i-th diagonal element of Σ+

by σi, then the optimal solutionZ∗i isZ∗i = UΣ+V
T , where

the i-th diagonal element of Σ+ is max(0, σi − 1
µ ).

When fix Zi |n1 , the problem (13) is reduced to the follow-
ing problem:

min
Xi|n1

α
n−1∑
i=1

‖Xi+1 −Xi‖2F + µ
2

n∑
i=1

‖Xi −Ni‖2F

s.t. |Xi(k, h)−Di(k, h)| ≤ ε, ∀(k, h) ∈ Ωi, ∀i

(16)

where Ni = Zi + 1
µΛi. We optimize one variable of the

problem (16) when fix the other n variables.

For X1, the problem (16) becomes

min
X1

α ‖X1 −X2‖2F + µ
2 ‖X1 −N1‖2F

s.t. |X1(k, h)−D1(k, h)| ≤ ε, ∀(k, h) ∈ Ω1

(17)

which can be written as

min
X1

∥∥∥X1 − 2
2α+µ

(
αX2 + µ

2N1)
) ∥∥∥2

F

s.t. |X1(k, h)−D1(k, h)| ≤ ε, ∀(k, h) ∈ Ω1

(18)

For Xn, the problem (16) becomes

min
Xn

α ‖Xn −Xn−1‖2F + µ
2 ‖Xn −Nn‖2F

s.t. |Xn(k, h)−Dn(k, h)| ≤ ε, ∀(k, h) ∈ Ωn

(19)

which can be written as

min
Xn

∥∥∥Xn − 2
2α+µ

(
αXn−1 + µ

2Nn)
) ∥∥∥2

F

s.t. |Xn(k, h)−Dn(k, h)| ≤ ε, ∀(k, h) ∈ Ωn

(20)

For Xi(1 < i < n), the problem (16) becomes

min
Xi

α ‖Xi −Xi+1‖2F + α ‖Xi −Xi−1‖2F + µ
2
‖Xi −Ni‖2F

s.t. |Xi(k, h)−Di(k, h)| ≤ ε, ∀(k, h) ∈ Ωi
(21)

which can be written as

min
Xi

∥∥∥Xi − 2
4α+µ

(
αXi+1 + αXi−1 + µ

2Ni)
) ∥∥∥2

F

s.t. |Xi(k, h)−Di(k, h)| ≤ ε, ∀(k, h) ∈ Ωi

(22)

We can see that the three problems (18), (20) and (22) can
be reduced to solving the following problem

min
|x−a|≤ε

(x− d)2 (23)

The optimal solution to this problem can be obtained by{
a− ε ≤ d ≤ a+ ε x∗ = d
d > a+ ε x∗ = a+ ε
d < a− ε x∗ = a− ε

(24)

Set 1 < ρ < 2. Initialize µ > 0, Λi(1 ≤ i ≤ n) ;
while not converge do

1. Update Z by solving problem (14) ;
2. Update X1 by solving problem (18) ;
3. Update Xi(1 < i < n) by solving problem (22) ;
4. Update Xn by solving problem (20) ;
5. Update Λi(1 ≤ i ≤ n) by Λi = Λi + µ(Zi −Xi) ;
6. Update µ by µ = ρµ ;

end
Algorithm 3: Algorithm to solve the problem (9).
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(a) (b) (c) (d)

Figure 2: Missing value imputation for MRI data: a 3D ob-
ject comprising a set of slices. (a) 3D visualization. (b) An
original slice. (c) Slice with randomly removed pixels. (d)
Recovered slice.

Experimental Results
In this section, we evaluate the proposed method and com-
pare it with several related methods, where we apply our
method to real world data including both 3D MRI images
and video data.

In our experiments, we set the parameter α in Eq. (9) as 1
for simplicity. Given the input tensor X , we empirically set
the error bound ε = 0.05

∑
ijk |xijk|/ (r × c× n).

Compared methods. We compare our method against one
of the most closely related method, the Low-Rank Ten-
sor Completion (LRTC) method (Liu et al. 2013), which
has demonstrated the promising empirical results in several
practical applications. For the parameter of LRTC method,
we set α = 50 to achieve best performance according to (Liu
et al. 2013).

In addition, we report the results of the Accelerated Prox-
imal Gradient singular value thresholding (APG) method
(Toh and Yun 2010), which is a most recent matrix com-
pletion method and reported superior performance. Because
matrix completion method work with each individual frame
of a video clip or each slice of a 3D object, it is not able to
take into account the temporal correlations among the video
frames and the spatial correspondence among the 3D object
slices. Following (Toh and Yun 2010), we set the parameter
of APG method to optimal.

Following (Liu et al. 2013), we also compare our method
against three heuristic algorithms for tensor completion as
baseline, including Tucker algorithm (Eldén 2007), Parafac
algorithm (Harshman 1970) and SVD algorithm. We refer
readers to (Liu et al. 2013) for the details and parameter set-
tings of these three algorithms.

Performance metric. We measure the accuracy of the com-
puted solution Xsol of the compared algorithms by the rel-
ative squared error (RSE) (Liu et al. 2013; Toh and Yun
2010), which is defined by RSE :=

‖Xsol−T ‖F
‖T ‖F

, where T
is the original tensor without missing data and ‖X‖F =√∑

i1,i2,i3
|xi1,i2,i3 |2.

Improved missing value imputation for 3D objects
Missing value imputation for 3D objects has broad real
world applications, such as medical image analysis. Typ-
ically high quality medical images require high radiation,

Table 1: Performances of the compared methods measured
by RSE for missing value imputation on 3D object (MRI
images) data.

Method RSE

Tucker 3.67× 10−2

Parafac 2.46× 10−2

SVD 4.51× 10−2

APG 2.84× 10−2

LRTC 2.01× 10−2

Our method 7.95× 10−3

e.g., computed tomography (CT) images and Magnetic Res-
onance Imaging (MRI) images. However, too much radia-
tion could hurt human health, therefore it is expected to con-
trol the amount of radiation without sacrificing too much im-
age quality. As a result, when the quality of scanned CT or
MRI images are not sufficiently good, imputation over the
noisy or missing pixels could potentially improve the image
quality for better diagnosis. Because of the spatial contin-
uation of 3D objects along slices, a group of pixels at the
same locations over different CT or MRI scan slices usually
share common patterns, which makes our model of partic-
ular use to impute the missing values based upon not only
the intra-slice correspondences but also the inter-slice ones.
Therefore, we evaluate our method on MRI data.

The MRI data used in our experiments are a set of MRI
slices, which form a tensor of size 208 × 250 × 170. The
3D visualization of the data is shown in Figure 2(a), and an
sample slice is shown in Figure 2(b). We randomly remove
70% pixels of each slice to emulate noise caused by low ra-
diation as shown in Figure 2(c). Then we apply our method
to complete the input tensor with missing entries, and the
recovery result of the same slice is shown in Figure 2(d).
As can be seen, the quality the recovered image is reason-
ably good, which provide a concrete evidence to support the
usefulness of the proposed method in practical applications.

The quantitative recovery performances of the compared
methods measured by RSE are listed in Table 1, which
show that our method clearly outperforms the other com-
pared methods. Moreover, although the APG method is bet-
ter than two heuristic methods, it is worse than the two ten-
sor completion method, especially when compared with the
proposed method. This is consistent with our previous theo-
retical analysis in that our method is able to exploit the con-
tinuation over the slices of a 3D object, which thereby can
capture the additional spatial information. In contrast, the
APG method is a matrix completion method but not directly
deals with tensor, therefore the useful information conveyed
by tensor is not employed.

Improved missing value imputation and occlusion
removal for video data
Video data can be naturally described by tensors, in which
the third mode is often used to capture the crucial informa-
tion of the temporal order of a video clip. As a result, miss-
ing value imputation and occlusion removal for video clips
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Missing value imputation and occlusion removal. (a—e) Foreman video data, (f—j) Flower video data. (a, f) A sample
frame. (b, g) Corrupted by missing entries. (c, h) Recovered from missing entries. (d, i) Corrupted by occlusion. (e, j) Recovered
from occlusion.

Table 2: Performances of the compared methods measured
by RSE for missing value imputation on video data.

Foreman Flower

Tucker 4.52× 10−2 7.95× 10−2

Parafac 3.81× 10−2 7.84× 10−2

SVD 4.39× 10−2 8.02× 10−2

APG 3.70× 10−2 7.07× 10−2

LRTC 2.89× 10−2 5.11× 10−2

Our method 1.57× 10−2 4.87× 10−2

turn out to be tensor completion problems. Therefore, in this
subsection we evaluate the proposed method in both missing
value imputation and occlusion removal tasks on two bench-
mark video data clips: Foreman data and Flower data. These
two video clips are in CIF format. The former clip has 300
frames, therefore it forms a tensor of size 352× 288× 300;
the latter clip has 250 frames, therefore it forms a tensor of
size 352× 288× 250. A sample frame of each video clip is
shown in Figure 3(a) and Figure 3(f) respectively. For miss-
ing value imputation task, same as in previous experiments,
we randomly remove 70% pixels of each frame of a video
clip as shown in Figure 3(b) and Figure 3(g), and apply the
compared methods to recover them. For the latter, for each
frame, we first randomly pick a location in the frame and
then remove a block of pixels of size 64 × 64 as shown in
Figure 3(d) and Figure 3(i), and then apply the compared
methods to remove the occlusions.

The results of the missing value imputation task are shown
in Figure 3(c) and Figure 3(h), from which we can see that
the definitions of the recovered sample frames largely re-
main same as the original one. The results for the occlusion
removal task are shown in Figure 3(e) and Figure 3(j), in
which the occluded patches are generally unnoticeable in the
recovered frames. These results firmly confirm the effective-
ness of the proposed method to recovery incomplete frames

Table 3: Performances of the compared methods measured
by RSE for occlusion removal on video data.

Foreman Flower

Tucker 3.88× 10−2 6.14× 10−2

Parafac 3.29× 10−2 6.21× 10−2

SVD 3.74× 10−2 6.53× 10−2

APG 3.17× 10−2 6.10× 10−2

LRTC 2.51× 10−2 4.96× 10−2

Our method 1.17× 10−2 2.81× 10−2

on video data.
Finally, we quantitatively compare our method against

other related tensor (matrix) completion methods. The re-
sults measured by RSE are listed in Table 2 and Table 3.
Again, our method reports the best performances. More re-
sults are shown in the accompanied videos, which are sup-
plied as the supplementary materials of this paper.

Conclusions

In this paper, we proposed a novel spatio-temporal consis-
tency tensor completion method to restore the missing val-
ues in video. Different to existing tensor completion meth-
ods, we did not minimize the average of the trace norms of
all matrices unfolded along each mode. Instead, we intro-
duced a new smoothness regularization to utilize the video
content continuity in temporal direction. We also minimized
the trace norm of each individual video frame to employ the
spatial correlations among pixels. Because our new method
kept the spatio-temporal consistency in video and didn’t
assume the global correlation among video frames, it is
suitable to the general video completion applications. Our
method showed promising results in all experiments on 3D
MRI image sequence and video benchmark data sets.
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