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Abstract

Recently with the explosive growth of visual content on
the Internet, large-scale image search has attracted in-
tensive attention. It has been shown that mapping high-
dimensional image descriptors to compact binary codes
can lead to considerable efficiency gains in both storage
and similarity computation of images. However, most
existing methods still suffer from expensive training de-
voted to large-scale binary code learning. To address
this issue, we propose a sub-selection based matrix ma-
nipulation algorithm which can significantly reduce the
computational cost of code learning. As case studies,
we apply the sub-selection algorithm to two popular
quantization techniques PCA Quantization (PCAQ) and
Iterative Quantization (ITQ). Crucially, we can justify
the resulting sub-selective quantization by proving its
theoretic properties. Extensive experiments are carried
out on three image benchmarks with up to one million
samples, corroborating the efficacy of the sub-selective
quantization method in terms of image retrieval.

Introduction
Similarity search has stood as a fundamental technique used
in many vision related applications including object recog-
nition (Torralba, Fergus, and Weiss 2008; Torralba, Fergus,
and Freeman 2008), image retrieval (Kulis, Jain, and Grau-
man 2009)(Wang, Kumar, and Chang 2012), image match-
ing (Korman and Avidan 2011)(Strecha et al. 2012), etc. The
explosive growth of visual content on the Internet has made
this task more challenging due to the high storage and com-
putation overhead. To this end, mapping high-dimensional
image descriptors to compact binary codes has been sug-
gested, leading to considerable efficiency gains in both stor-
age and similarity computation of images. The reason is sim-
ple: compact binary codes are much more efficient to store
than floating-point feature vectors, and meanwhile similarity
based on Hamming distances among binary bits is much eas-
ier to compute than Euclidean distances among real-valued
features.

The benefits of binary encoding, also known as Hashing
and Quantization in literature, have motivated a tremendous
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amount of research in binary code generation such as (An-
doni and Indyk 2006)(Jegou, Douze, and Schmid 2011)(Ge
et al. 2013)(Raginsky and Lazebnik 2009)(Kulis and Grau-
man 2012) (Weiss, Torralba, and Fergus 2008)(Weiss, Fer-
gus, and Torralba 2012)(Gong et al. 2013)(Liu et al. 2011)
(Mu, Shen, and Yan 2010)(Wang, Kumar, and Chang
2012)(Hinton and Salakhutdinov 2006)(Kulis and Darrell
2009) (Norouzi and Blei 2011) (Strecha et al. 2012)(Liu et
al. 2012). The main challenge of these approaches is how
to effectively incorporate domain knowledge into traditional
models (Huang, Huang, and Metaxas 2009), and how to effi-
ciently solve them (Huang et al. 2011). The composite prior
models are promising solutions because of their flexibility
in modeling prior knowledge and their computational ef-
ficiency (Huang et al. 2011; Huang, Zhang, and Metaxas
2011). Common in many methods, the first step has been
adopted to leverage a linear mapping to project original fea-
tures in high dimensions to lower dimensions. The represen-
tatives include Locality Sensitive Hashing (LSH) (Andoni
and Indyk 2006), Spectral Hashing (SH) (Weiss, Torralba,
and Fergus 2008), PCA Quantization (PCAQ) (Wang, Ku-
mar, and Chang 2012), Iterative Quantization (ITQ) (Gong
et al. 2013), and Isotropic Hashing (IsoH) (Kong and Li
2012). LSH uses random projections to form such a linear
mapping, which is categorized into data-independent ap-
proaches since the used coding (hash) functions are fully
independent of training data. Although learning-free, LSH
requires long codes to achieve satisfactory accuracy. In con-
trast, data-dependent approaches can obtain high-quality
compact codes by learning from training data. Specifically,
PCAQ applies PCA to project the input data onto a low-
dimensional subspace, and simply thresholds the projected
data to generate binary bits each of which corresponds to
a single PCA projection. Following PCAQ, SH, ITQ, and
IsoH all employ PCA to acquire a low-dimensional data em-
bedding, and then propose different postprocessing schemes
to produce binary bits. A common drawback of the above
learning-driven hashing methods is the expensive computa-
tional cost in matrix manipulations.

In this paper, we demonstrate that the most time-
consuming matrix operations encountered in code learning,
typically data projection and rotation, can be performed in a
more efficient manner. To this end, we propose a fast matrix
multiplication algorithm using a sub-selection (Li, Chen,
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and Huang 2014) technique to accelerate the learning of cod-
ing functions. Our algorithm is motivated by the observation
that the degree of the algorithm parameters is usually very
small compared to the number of entire data samples. There-
fore, we are able to determine these parameters merely using
partial data samples.

The contributions of this paper are three-folds: (1) To
handle large-scale data, we propose a sub-selection based
matrix multiplication algorithm and demonstrate its benefits
theoretically. (2) We develop two fast quantization methods
PCAQ-SS and ITQ-SS by combining the sub-selective algo-
rithm with PCAQ and ITQ. (3) Extensive experiments are
conducted to validate the efficiency and effectiveness of the
proposed PCAQ-SS and ITQ-SS, which indicate that ITQ-
SS can achieve an up to 30 times acceleration of binary code
learning yet with an imperceptible loss of accuracy.

Background and Related Work
Before describing our methods, we will briefly introduce the
binary code learning problem and two popular approaches.

Binary Encoding is trying to seek a coding function
which maps a feature vector to short binary bits. Let X ∈
Rn×d be the matrix of input data samples, and the i-th data
sample xi ∈ R1×d be the i-th row in X . Additional, X is
made to be zero-centered. The goal is then to learn a binary
code matrix B ∈ {−1, 1}n×c, where c denotes the code
length. The coding functions of several hashing and quan-
tization methods can be formulated into hk(x) = sgn(xpk)
(k = 1, . . . , c), where pk ∈ Rd and the sign function sgn(·)
is defined as: sgn(v) = 1 if v > 0, sgn(v) = −1 otherwise.
Hence, the coding process can be written asB = sgn(XP ),
where P = [p1, · · · , pc] ∈ Rd×c is the projection matrix.

PCA Quantization (PCAQ) (Wang, Kumar, and Chang
2012) finds a linear transformation P = W that maxi-
mizes the variance of each bit and makes the c bits mutually
uncorrelated. W is obtained by running Principal Compo-
nents Analysis (PCA). Let [W,Λ] = eig(·, c) be a function
which returns the first c eigenvalues in a diagonal matrix
S ∈ Rc×c and the corresponding eigenvectors as columns
of W ∈ Rd×c. The whole procedure is summarized in Al-
gorithm 1. While it is not a good coding method, its PCA
step has widely used as an initial step of many sophisti-
cated coding methods. However, the computation of PCA
involves a multiplication with high-dimensional matrix X ,
which consumes considerable amount of memory and com-
putation time. We will address the efficiency issue of PCAQ
in the next section.

Algorithm 1 PCA Quantization (PCAQ)
1: Input: Zero-centered data X ∈ Rn×d, code length c.
2: Output: B ∈ {−1, 1}n×c, W ∈ Rd×c.
3: cov = XTX;
4: [W,Λ] = eig(cov, c);
5: B = sgn(XW ).

Iterative Quantization (ITQ) (Gong et al. 2013) im-
proves the quality of PCAQ by iteratively finding the op-
timal rotation matrix R on the projected data to minimize

the quantization error. This is done through finding an ap-
propriate orthogonal rotation by minimizing:

Q(B,R) = ‖B − V R‖2F , (1)

where V = XW is the PCA projected data. This equation is
minimized using the spectral-clustering like iterative quan-
tization procedure (Yu and Shi 2003). The whole procedure
is summarized in Algorithm 2, where svd(·) indicates sin-
gular value decomposition. The ITQ method converges in
a small number of iterations and is able to achieve high-
quality binary codes compared with state-of-the-art coding
methods. However, it involves not only multiplications with
high-dimensional matrices (e.g., XTX and BTV ) in the
PCA step, but also those inside each quantization iteration,
which makes it very slow in training. In the next section,
we will propose a method to overcome this drawback while
preserving almost the same level of coding quality.

Algorithm 2 Iterative Quantization (ITQ)
1: Input: Zero-centered data X ∈ Rn×d, code length c,

iteration number N .
2: Output: B ∈ {−1, 1}n×c, W ∈ Rd×c.
3: cov = XTX;
4: [W,Λ] = eig(cov, c);
5: V = XW ;
6: initialize R as an Orthogonal Gaussian Random matrix;
7: for k = 1 to N do
8: B = sgn(V R);
9: [S,Λ, Ŝ] = svd(BTV );

10: R = ŜST ;
11: end for
12: B = sgn(V R).

Methodology
According to our previous discussion, the common bottle-
neck of many existing methods is high dimensional matrix
multiplication. However, dimensions of the product of these
multiplication is relatively small. This motivates us to search
for good approximation of those products using a subset of
data, which results in our sub-selective matrix multiplication
approach.

Sub-selective Matrix Multiplication
The motivation behind sub-selective multiplication can be
explain intuitively using data distribution. First of all, the
data matrix X is low-rank compared to n when d << n.
Hence, all samples can be linear represented by a small
subset of all. In previous discussion, the quantization algo-
rithms try to learn the parameters, i.e. W and R, that can
transform data distribution according to specific criteria (e.g.
variances). If data are distributed closely to uniform, then
a sufficient random subset can represent the full set well
enough. Therefore we can find those parameters by solving
the optimization problems in the selected subsets.

We begin with introduction to the notations of sub-
selection. Let Ω ⊂ {1, . . . , n} denotes the indexes of se-
lected rows of matrix ordered lexicographically and |Ω| =
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m denotes the cardinality of Ω. With the same notations as
previous section, the sub-selection operation on X can be
expressed as XΩ ∈ Rm×d that consists of row subset of X .
For easy understanding we can consider XΩ as IΩX where
X multiply by a matrix IΩ ∈ {0, 1}m×n that consists of
random row subset of the identify matrix In.

With sub-selection operation, for matrix Y ∈ Rn×d1 and
Z ∈ Rn×d2 , where d1, d2 � n, sub-selective multiplica-
tion use n

mY
T
Ω ZΩ to approximate Y TZ. And for a special

case Y TY , its sub-selection approximation is n
mY

T
Ω YΩ. The

complexity of multiplication is now reduced fromO(nd1d2)
toO(md1d2). Before we apply this methods to binary quan-
tization, we will first examine if it’s theoretically sound.

We will prove a bound for sub-selective multiplication.
Before providing our analysis, we first introduce a key result
(Lemma 1 below) that will be crucial for the later analysis.
Lemma 1. (McDiarmid’s Inequality (McDiarmid 1989)):
Let X1, ..., Xn be independent random variables, and as-
sume f is a function for which there exist ti, i = 1, ..., n
satisfying

sup
x1,...,xn,x̂i

|f(x1, ..., xn)− f(x1, ..., x̂i, ..., xn)| ≤ ti (2)

where x̂i indicates replacing the sample value xi with any
other of its possible values. Call f(X1, ..., Xn) := Y . Then
for any ε > 0,

P [Y ≥ E[Y ] + ε] ≤ exp

(
−2ε2∑n
i=1 t

2
i

)
(3)

P [Y ≤ E[Y ]− ε] ≤ exp
(
−2ε2∑n
i=1 t

2
i

)
(4)

Let U be an n × r matrix whose columns span the r-
dimensional subspace S. Let PS = U(UTU)−1UT denotes
the projection operator onto S. The “coherence” (Candès
and Recht 2009) of U is defined to be

µ(S) :=
n

r
max
j
‖PSej‖22, (5)

where ej represents a standard basis element. µ(S) measure
the maximum magnitude attainable by projecting a stan-
dard basis element onto S. Note that 1 ≤ µ(S) ≤ n

r . Let
z = [‖U1‖2, . . . , ‖Ui‖2, . . . , ‖Un‖2]T ∈ Rn, where each
element of z is l2-norm of one row in U . Thus, based on
“coherence”, we define “row coherence” to be the quantity

φ(S) := µ(z). (6)

By plugging in the definition, we have φ(S) =
n‖U‖22,∞
‖U‖2F

,
where ‖ · ‖2,∞ means first compute the l2-norm of each row
then compute l∞-norm of result vector.

The key contribution of this paper is the following two
theorems that form the analysis of bounds to sub-selective
matrix multiplication. We start from the special case Y TΩ YΩ.

Theorem 1. : Suppose δ > 0, Y ∈ Rn×d and |Ω| = m,
then

(1− α1)
m

n
‖Y ‖2F ≤ ‖YΩ‖2F ≤ (1 + α1)

m

n
‖Y ‖2F (7)

with probability at least 1 − 2δ, where α1 =√
2φ1(Y )2

m log( 1
δ ) and φ1(Y ) =

n‖Y ‖22,∞
‖Y ‖2F

.

Proof. We use McDiarmid’s inequality from Lemma 1 for
the function f(X1, . . . , Xm) =

∑m
i=1Xi to prove this. Set

Xi =
∑d
j=1 |YΩ(i),j |2. Let ‖ · ‖1 denotes the l1 norm of

matrix. Since
∑d
j=1 |YΩ(i),j |2 ≤ ‖Y ‖22,∞ for all i, we have∣∣∣∣∣∣

m∑
i=1

Xi −
∑
i6=k

Xi − X̂k

∣∣∣∣∣∣ =
∣∣∣Xk − X̂k

∣∣∣ ≤ 2‖Y ‖22,∞. (8)

We first calculate E[
∑m
i=1Xi] as follows. Define I{} to be

the indicator function, and assume that the samples are taken
uniformly with replacement.

E

[
m∑
i=1

Xi

]
= E

[
m∑
i=1

d∑
j=1

|YΩ(i,j)|2
]

=

m∑
i=1

[
E

[
n∑

k=1

d∑
j=1

|Yk,j |2I{Ω(i)=k}

]]
=
m

n
‖Y ‖2F . (9)

Invoking the Lemma 1, the left hand side is

P

[
m∑
i=1

Xi ≤ E

[
m∑
i=1

Xi

]
− ε

]
= P

[
m∑
i=1

Xi ≤
m

n
‖Y ‖2F − ε

]
.

(10)

We can let ε = αmn ‖y‖
2
F and then have that this probabil-

ity is bounded by

exp

(
−2α2(m

n
)2‖Y ‖4F

4m‖Y ‖42,∞

)
(11)

Thus, the resulting probability bound is

P
[
‖YΩ‖2F ≥ (1− α)m

n
‖Y ‖2F

]
≥ 1− exp

(
−α2m‖Y ‖4F
2n2‖Y ‖42,∞

)
.

(12)

Substituting our definitions of φ1(Y ) =
n‖Y ‖22,∞
‖Y ‖2F

and α1 =√
2φ1(Y )2

m log( 1
δ ) shows that the lower bound holds with

probability at least 1− δ. The argument for the upper bound
can be proved similarly. The Theorem now follows by ap-
plying the union bound.

Now we analysis the property of general case Y TΩ Z.

Theorem 2. : Suppose δ > 0, Y ∈ Rn×d1 , Z ∈ Rn×d2 and
|Ω| = m, then

(1−β1)
2(
m

n
)2‖Y TZ‖2F ≤ ‖Y T

Ω ZΩ‖2F ≤ (1+β2)
2m

n
‖Y TZ‖2F

(13)
with probability at least 1 − 2δ, where

β1 =
√

2nd1d2µ(SY )µ(SZ)
m2‖Y TZ‖2F

log (1
δ ) and β2 =√

2d1d2µ(SY )µ(SZ)
m‖Y TZ‖2F

log (1
δ ).

Proof. This theorem can be proved by involving McDi-
armid’s inequality in similar fashion to the proof of Theorem
1. Let Xi = Y TΩ(i)ZΩ(i) ∈ Rd1×d2 , where Ω(i) denotes the
ith sample index, YΩ(i) ∈ Rd1×1 and ZΩ(i) ∈ Rd2×1.
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Let our function f(X1, . . . , Xm) = ‖
∑m
i=1Xi‖F =

‖Y TΩ ZΩ‖F . First, we need to bound ‖Xi‖ for all i. Observe
that ‖YΩ(i)‖F = ‖Y T ei‖2 = ‖PSY

ei‖2 ≤
√
d1µ(SY )/n

by assumption, where SY refers to the subspace span by Y .
Likewise, we have ‖ZΩ(i)‖F ≤

√
d2µ(SZ)/n, where SZ

refers to the subspace span by Z. Thus,
‖Xi‖F = ‖Y T

Ω(i)ZΩ(i)‖F ≤ ‖YΩ(i)‖F ‖ZΩ(i)‖F
≤
√
d1d2µ(SY )µ(SZ)/n2. (14)

Then |f(X1, . . . , Xm) − f(X1, . . . , X̂K , . . . , Xm)| is
bounded by ∣∣∣∣∣∣

∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
F

−

∥∥∥∥∥∥
∑
i6=k

Xi + X̂k

∥∥∥∥∥∥
F

∣∣∣∣∣∣
≤‖Xk − X̂k‖F ≤ ‖Xk‖F + ‖X̂k‖F
≤2
√
d1d2µ(SY )µ(SZ)/n2, (15)

where the first two inequalities follow from the tri-
angular inequality. Next we calculate the bound for
E [f(X1, . . . , Xm)] = E[‖

∑m
i=1Xi‖F ]. Assume again that

the samples are taken uniformly with replacement.

E

[∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2

F

]
= E

[∥∥∥∥∥
m∑
i=1

Y T
Ω(i)ZΩ(i)

∥∥∥∥∥
2

F

]

=

d1∑
k1=1

d2∑
k2=1

E

[
m∑
i=1

n∑
j=1

Y 2
k1,jZ

2
k2,jI{Ω(i)=j}

]
(16)

=

d1∑
k1=1

d2∑
k2=1

m

n∑
j=1

Y 2
k1,jZ

2
k2,j

1

n
=
m

n
‖Y TZ‖2F (17)

The step (16) follows because of our assumption that sam-
pling if uniform with replacement.

Since E[‖
∑m
i=1Xi‖F ] ≤ E[‖

∑m
i=1Xi‖2F ]1/2 by

Jensen’s inequality, we have E‖
∑m
i=1Xi‖F ] ≤√

m
n ‖Y

TZ‖F .
Using Jensen’s inequality and indicator function in simi-

lar fashion, we also have bound for the left side:

E

[
‖

m∑
i=1

Xi‖F

]
≥

∥∥∥∥∥
m∑
i=1

E [Xi]

∥∥∥∥∥
F

=
m

n
‖Y TZ‖F (18)

Letting ε1 = β1
m
n ‖Y

TZ‖F and plugging into Equa-
tion (4), we then have that probability is bounded by

exp
(
−2β2

1( m
n )2‖Y TZ‖2F

4nd1d2µ(SY )µ(SZ)/n2

)
Thus, the resulting probability

bound is P
[
‖Y TΩ ZΩ‖2F ≥ (1− β2)2(mn )2‖Y TZ‖2F

]
≥ 1− exp

(
−β2

1m
2‖Y TZ‖2F

2nd1d2µ(SY )µ(SZ)

)
Substituting our definitions

of µ(SY ), µ(SZ) and β1 shows that the lower bound holds
with probability at least 1− δ.

Letting ε2 = β2

√
m
n ‖Y

TZ‖F and with similar fash-
ion we can obtain the probability of uppper bound:
P
[
‖Y TΩ ZΩ‖2F ≤ (1 + β2)2m

n ‖Y
TZ‖2F

]
≥ 1− exp

(
−β2

2m‖Y
TZ‖2F

2d1d2µ(SY )µ(SZ)

)
Substituting our definitions of µ(SY ), µ(SZ) and β2

shows that the upper bound holds with probability at least
1 − δ. The theorem now follows by applying the union
bound, completing the proof.

The above two theorems prove that the product of sub-
selective multiplication will be very close the original prod-
uct of full data with high probability.

Case Studies: Sub-selective Quantization

With the theoretical guarantee, we are now ready to apply
sub-selective multiplication on existing quantization meth-
ods, i.e. PCAQ (Wang, Kumar, and Chang 2012), ITQ (Gong
et al. 2013). A common initial step of them is PCA projec-
tion (e.g. Alg. 1 and Alg. 2). The time complexity for matrix
multiplication XTX is O(nd2)) when d < n. For large n,
this step could take up considerable amount of time. Hence,
we can approximate it by 1

mX
T
ΩXΩ, which is surprisingly

the covariance matrix of the selected samples. From statis-
tics point of view, this could be intuitively interpreted as us-
ing the variance matrix of a random subset of samples to
approximate the covariance matrix of full ones when the
data is redundant. Now the time complexity is onlyO(md2),
where m � n in large dataset. For ITQ, the learning pro-
cess includes dozens of iterations to find rotation matrix R
(Alg. 2 line 7 to 11). We approximate R with R̂ = SrSl,
where SlΛSr = BTΩVΩ is the SVD of BTΩVΩ, BΩ and VΩ

are sub-selection version of B and V in Alg. 2 respectively.
The time complexity of compute R is reduced from O(nc2)
to O(mc2).

By replacing corresponding steps in original methods, we
get two Sub-selective Quantization methods corresponding
to PCAQ and ITQ, which are named PCAQ-SS, ITQ-SS.
ITQ-SS is summarized in Algorithm 3. PCAQ-SS is the
same as first 5 lines in Algorithm 3 plus one encoding step
B = sgn(V ). It’s omitted because of the page limits. Com-
plexity of original ITQ is O(nd2 + (p+ 1)nc2). In contrast,
complexity of ITQ-SS is reduced to O(md2 +pmc2 +nc2).
The acceleration can be seen more clearly in the experimen-
tal results in the next section.

Algorithm 3 ITQ with Sub-Selection (ITQ-SS)
Input: Zero-centered data X ∈ Rn×d, code length c, it-
eration number p.
Output: B ∈ {−1, 1}n×c, W ∈ Rd×c.

1. Uniformly randomly generate Ω ⊂ [1 : n];
2. XΩ = Ω�X;
3. cov = XT

ΩXΩ;
4. [W,Λ] = eig(cov, c);
5. V = XW ;
6. initializeR as an Othorgonal Gaussian Random matrix;
for k = 1 to p do

uniformly randomly generate Ω ⊂ [1 : n];
compute VΩ;
BΩ = sgn(VΩR);
[S,Λ, Ŝ] = svd(BTΩVΩ);
R = ŜST ;

end for
7. B = sgn(V R).
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Evaluations
Experimental Setting
In this section, we evaluate the Sub-selective Quantization
approaches on three public datasets: CIFAR (Krizhevsky
and Hinton 2009) 1, MNIST2 and Tiny-1M (Wang, Kumar,
and Chang 2012).

• CIFAR consists of 60K 32 × 32 color images that have
been manually labelled to ten categories. Each category
contains 6K samples. Each image in CIFAR is assigned
to one mutually exclusive class label and represented by a
512-dimensional GIST feature vector (Oliva and Torralba
2001).

• MNIST consists of 70K samples of 784-dimensional fea-
ture vector associated with digits from ‘0’ to ‘9’. The true
neighbours are defined semantic neighbours based on the
associated digit labels.

• Tiny-1M consists of one million images. Each image
is represented by a 384-dimensional GIST vector. Since
manually labels are not available on Tiny-1M, Euclidean
neighbours are computed and used as ground truth of
nearest neighbour search.

We compare proposed methods PCAQ-SS and ITQ-
SS with their corresponding unaccelerated methods PCAQ
(Wang, Kumar, and Chang 2012) and ITQ (Gong et al.
2013). We also compare our methods to two baseline
methods that follow similar quantization scheme B =
sgn(XW̃ ): 1) LSH (Andoni and Indyk 2006), W̃ is a Gaus-
sian random matrix; 2) SH (Weiss, Torralba, and Fergus
2008), which is based on quantizing the values of analyt-
ical eigenfunctions computed along PCA directions of the
data. All the compared codes are provided by the authors.

Two types of evaluation are conducted following (Gong et
al. 2013). First, semantic consistency of codes is evaluated
for different methods while class labels are used as ground
truth. We report four measures, the average precision of top
100 ranked images for each query, mean average preci-
sion, recall-precision curve and training time, in CIFAR
and MNIST. Second, we use the generated codes for near-
est neighbour search, where Euclidean neighbours are used
as ground truth. This experiment is conducted on Tiny-1M
dataset. We report the three measures: average precision of
top 5% ranked images for each query and training time.
For both types of evaluation, the query algorithm and cor-
responding structure of binary code are the same, so test-
ing time are exactly the same for all the methods except
SH. Hence, it’s omitted from the results. For the limit of
page length, only parts of results are presented while the rest
are put in the supplementary materials. All our experiments
were conducted on a desktop computer with a 3.4GHz Intel
Core i7 and 12GB RAM.

Results on CIFAR Dataset
The CIFAR dataset is partitioned into two parts: 59K images
as a training set and 1K images as a test query set evenly

1http://www.cs.toronto.edu/ kriz/cifar.html
2http://yann.lecun.com/exdb/mnist/
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Figure 1: The results on CIFAR. All the subfigures share the
same legends.
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(d) Recall precision @256 bits

Figure 2: Results on MNIST. All the subfigures share the
same set of legends.

16 32 64 128 256
0.4

0.5

0.6

0.7

0.8

0.9

Numberof bits

P
re

c
is

io
n

(a) Precision vs #bits

16 32 64 128 256
0

5

10

15

20

25

Numberof bits

T
ra

in
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

ITQ
PCA
LSH
SH
ITQ−SS
PCA−SS

(b) Training time vs #bits

Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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1M.
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(b) Training time vs #bits on
Tiny-1M.

Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 1: The results on CIFAR. All the subfigures share the
same legends.

sampled from ten classes. We uniformly randomly generate
our sub-selective matrix Ω with cardinality equals to 1/40
of number of data points, i.e. |Ω| = m = n/40.

Figure 1(a) and Figure 1(b) show complete precision of
top 100 ranked images and mean average precision (mAP)
over 1K query images for different number of bits. Figure
1(c) shows recall-precision curse of 64 bits code. For these
three metrics, ITQ and ITQ-SS have the best performance.
Both sub-selective methods (PCAQ-SS and ITQ-SS) pre-
serve the performance of original methods (i.e. PCAQ and
ITQ). Our results indicate that sub-selection preserve se-
mantic consistency of original coding method. Figure 1(d)
shows the training time of the two methods. Our method is
about 4 to 8 times faster than ITQ (Gong et al. 2013). Orig-
inal ITQ is the slowest among all the comparing methods,
while the speed of the accelerated version ITQ-SS is com-
parable, if not superior, to the fastest methods. This is due to
ITQ-SS reduce the dimension of the problem from a func-
tion of n to that of m, where m� n. These results validate
the benefits of sub-selection to preserve the performance of
original method with far less training cost.

Results on MNIST Dataset
The MNIST dataset is splited into two subsets: 69K sam-
ples as a training set and 1K samples as a query set. While
CIFAR dataset evaluates the performance of sub-selective
quantization on complex visual features, MNIST evaluates
that on raw pixel features. Similar to the previous experi-
ment on CIFAR, we uniformly randomly generate our sub-
selective matrix Ω with cardinality equals to 1/40 of number
of datapoints, i.e. |Ω| = m = n/40. Figure 2(b) to Figure
2(d) shows three recall-precision curves of Hamming rank-
ing over 1K images corresponding to 16, 64 and 256 bits
code. In all cases, the two curves of ITQ and proposed ITQ-
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Figure 1: The results on CIFAR. All the subfigures share the
same legends.
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(d) Recall precision @256 bits

Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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Tiny-1M.

Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 1: The results on CIFAR. All the subfigures share the
same legends.
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Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 3: The results on MNIST. All the subfigures share the
same set of legends.

SS are almost overlapping in all segments. Same trend can
be seen for PCAQ and PCAQ-SS. Figure 2(a) and Figure
3(a) show complete precision of top 100 ranked images and
mean average precision (mAP) over 1K query images for
different number of bits. The difference between ITQ and
proposed ITQ-SS are almost negligible. The results confirm
the trends seen in Figure 3(a). Figure 3(b) shows the train-
ing time of the two methods. Our method is about 3 to 8
times faster than ITQ. The results of performance and train-
ing time are consistent with results on CIFAR. These results
again validate the benefits of sub-selection.

Results on Tiny-1M Dataset
For experiment without labelled groundtruth, a separate sub-
set of 2K images of 80 million images are used as the test
set while another one million images are used as the training
set. We uniformly randomly generate our sub-selective ma-
trix Ω with cardinality equals to 1/1000 of number of data
points, i.e. |Ω| = m = n/1000. Figure 4(a) shows com-
plete precision of top 5% ranked images and mean average
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Figure 1: The results on CIFAR. All the subfigures share the
same legends.
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Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

precision (mAP) over 1K query images for different number
of bits. The difference between sub-selective methods (i.e.
PCAQ-SS, ITQ-SS) and their counterparts (i.e. PCAQ, ITQ)
are less than 1%. Figure 4(b) shows the training time of the
two methods. The ITQ-SS have achieved even bigger speed
advantage, which is about 10 to 30 times faster than ITQ.
This is because the larger dataset samples are more redun-
dant, making it possible to use smaller portion of data.

Discussion and Conclusion

All of the experimental results have verified the benefits of
the sub-selective quantization technique whose parameters
can be automatically learned from a subset of the original
dataset. The proposed PCAQ-SS and ITQ-SS methods have
achieved almost the same quantization quality as PCAQ and
ITQ with only a small portion of training time. The advan-
tage in training time is more prominent on larger datasets,
e.g., 10 to 30 times faster on Tiny-1M. Hence, for larger
datasets good quantization quality can be achieved with an
even lower sampling ratio.

One may notice that the speed-up ratio is not as same as
the sampling ratio. This is because the training process of
quantization includes not only finding the coding parame-
ters but also generating the binary codes of the input dataset.
The latter inevitably involves the operations upon the whole
dataset, which costs a considerable number of matrix mul-
tiplications. In fact, this is one single step requiring matrix
multiplications, thus enabling an easy acceleration by using
parallel or distributed computing techniques. We will leave
this problem to future work.

We accredit the success of the proposed sub-selective
quantization technique to the effective use of sub-selection
in accelerating the quantization optimization that involves
large-scale matrix multiplications. Moreover, the benefits
of sub-selection were theoretically demonstrated. As a case
study of sub-selective quantization, we found that ITQ-SS
can accomplish the same level of coding quality with sig-
nificantly reduced training time in contrast to the existing
methods. The extensive image retrieval results on large im-
age corpora with size up to one million further empirically
verified the speed gain of sub-selective quantization.
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