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Abstract

Face recognition has been widely studied due to its
importance in various applications. However, the case
that both training images and testing images are cor-
rupted is not well addressed. Motivated by the success
of low-rank matrix recovery, we propose a novel semi-
supervised low-rank matrix recovery algorithm for ro-
bust face recognition. The proposed method can learn
robust discriminative representations for both training
images and testing images simultaneously by exploit-
ing the classwise block-diagonal structure. Specifically,
low-rank matrix approximation can handle the possible
contamination of data. Moreover, the classwise block-
diagonal structure is exploited to promote discrimina-
tion of representations for robust recognition. The above
issues are formulated into a unified objective function
and we design an efficient optimization procedure based
on augmented Lagrange multiplier method to solve it.
Extensive experiments on three public databases are
performed to validate the effectiveness of our approach.
The strong identification capability of representations
with block-diagonal structure is verified.

Introduction
Face recognition has been actively studied over the past
years due to its important role in a number of applications
( i.e., access control, visual surveillance). Representations
of faces play a important role in the face recognition system.
Existing methods like Eigenfaces (Turk and Pentland 1991),
Fisherfaces (Belhumeur, Hespanha, and Kriegman 1997),
and Laplacianfaces (He et al. 2005) are proposed to learn
low dimension representations to improve recognition effi-
ciency. However, these methods are not robust to outliers
or sparse noises such as occlusion, illumination changes,
pixel corruption. To alleviate the aforementioned problems
and learn robust representations, methods based on low-rank
matrix recovery have been proposed and shown to achieve
promising results (Chen, Wei, and Wang 2012)(Ma et al.
2012).

Low-rank matrix recovery is proposed to recover a low-
rank matrix from corrupted observations, also known as Ro-
bust Principal Component Analysis (RPCA) (Wright et al.
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2009b). It efficiently removes sparse noises from corrupted
observations and has been widely applied to applications
like background modeling (Cui et al. 2012), saliency detec-
tion (Shen and Wu 2012)(Peng et al. 2013), image classifi-
cation (Zhang et al. 2011). However, the previous work only
deals with unsupervised case and does not take advantage of
structural information when the label information is avail-
able.

To leverage structural information in the face recogni-
tion problem, some methods are proposed based on low-
rank matrix recovery (Chen, Wei, and Wang 2012)(Ma
et al. 2012)(Zhang, Jiang, and Davis 2013). Chen et al.
proposed a low-rank matrix approximation algorithm with
structural incoherence (LRSI). The introduction of such in-
coherence would prefer the resulting low-rank matrix of
different classes to be independent. Ma et al. presented
a discriminative low-rank dictionary learning algorithm
(DLRD SR). The proposed algorithm tries to optimize the
sub-dictionaries for each class to be low-rank. However,
both of them explore structural information class by class,
which do not capture the global structure.

To explore the global structure, Zhang et al. proposed a
discriminative, structured low-rank method (DSLR). It tries
to regularize all the training images of the same class to have
the same representation code. However, it is not usually the
case. Though images from the same class usually lie in the
same subspace, it is unreasonable to assume representations
of the same class images to be the same.

To this end, we focus on capturing the global data struc-
ture among the whole database. Since training images of
the same class usually lie in the same subspace, and should
be represented by the base elements of corresponding class,
then the ideal representations of training images will have
classwise block-diagonal structure as follows,

Z̄∗1 0 0 0
0 Z̄∗2 0 0

0 0
. . . 0

0 0 0 Z̄∗C


where Z̄∗i is the representation matrix of the i-th class train-
ing images corresponding to the i-th class bases, and C
is the class number. Representations with classwise block-
diagonal structure have high intra-class similarities and large

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2810



inter-class differences, which is critical for the recognition
problem. Moreover, representations of training images and
testing images should be consistent, which is important for
the recognition process. Representations of training images
and testing images should be learnt in a unified framework.

For this purpose, we propose a semi-supervised frame-
work to learn low-rank representations with classwise block-
diagonal structure (LR-CBDS). Representations of training
images and testing images are learnt simultaneously, lever-
aging the global structure over the whole database. We in-
troduce a classwise regularization term to capture classwise
block-diagonal structure for representations of training im-
ages. A sparse error component is introduced to remove
sparse noises from corrupted observations for robust recog-
nition. Extensive experiments show that the learnt represen-
tations of testing images also have classwise block-diagonal
structure, due to the fact that the learnt representations of
testing images are relevant to representations of training im-
ages because of low-rank property. The main contributions
of this paper are summarized as follows.

• We propose a semi-supervised framework to learn low-
rank representations with classwise block-diagonal struc-
ture, which have strong identification capability.

• Our approach learns robust representations of training im-
ages and testing images simultaneously, which leverages
the global structure over the whole database.

• Our approach is robust even when training images and
testing images are both badly corrupted. Furthermore, it
outperforms state-of-the-art methods both in time effi-
ciency and recognition accuracy.

Learning Low-Rank Representations with
Classwise Block-Diagonal Structure

Notations. Throughout this paper, notations with a bar de-
note symbols of training images, while notations with a hat
denote symbols of testing images. X̄ = [X̄1, X̄2, . . . , X̄C ]
is the feature matrix of C classes training images. It is
rearranged based on the class label, and X̄i ∈ Rd×ni

corresponds to the feature matrix of i-th class images
with ni samples of dimension d. Meanwhile, X̂ =
[x̂1, x̂2, . . . , x̂ns ] ∈ Rd×ns denotes the feature matrix of ns
testing images, where each column of X̂ denotes the feature
of a testing image. Moreover,X = [X̄, X̂] is the feature ma-
trix of whole database. Each sample ofX can be represented
by the linear combination of base elements of dictionary A,

X = AZ, (1)

where Z = [Z̄, Ẑ], and Z̄ corresponds to the representation
matrix of training images, while Ẑ corresponds to the repre-
sentation matrix of testing images.

Generally, this paper is to address the following problem.
Problem Definition. Given a set of corrupted images

from multiple classes, the problem is to learn robust rep-
resentations of training images and testing images simulta-
neously. The representations should have classwise block-
diagonal structure.

Low rankness is an appropriate criterion to capture low-
dimensional structure in high-dimensional data. For the
clean database X , Learning low-rank representations can be
solved as follows,

min
Z
rank(Z)

s.t.,X = AZ.
(2)

Without loss of generality, we assume that the training fea-
ture matrix X̄ in X is rearranged based on the class la-
bel, since interchanging columns does not change the value
of rank function. The discrete nature of the rank function
makes it difficult to solve, Liu et al.(2013) shows that the
following convex optimization provides a good surrogate for
problem (2),

min
Z
‖Z‖∗

s.t.,X = AZ,
(3)

where ‖Z‖∗ is the nuclear norm (i.e., the sum of the singular
values) of Z. When we do not have any learnt dictionary, the
training data X̄ itself can be used as the dictionary.

Generally, training samples should be reconstructed by
the bases of corresponding class, then the ideal representa-
tion Z̄ of training images will have classwise block-diagonal
structure as follows.

Z̄ =


Z̄∗1 0 0 0
0 Z̄∗2 0 0

0 0
. . . 0

0 0 0 Z̄∗C


To capture the classwise block-diagonal structure, we in-
troduce a classwise regularization term

∑C
i ‖Z̄−i‖2F , where

‖ · ‖F denotes the Frobenius norm of a matrix, and Z̄−i is
the representation matrix of the i-th class training images
subject to the dictionary X̄−i. X̄−i stands for the feature
matrix excluding the i-th class training images. It is to reg-
ularize representations of training images to be represented
by the bases of corresponding class. By taking considera-
tion of sparse noises, we formulate the final target function
as follows,

min
Z,E
‖Z‖∗ + λ‖E‖1 +

α

2
(

C∑
i=1

‖Z̄−i‖2F + ‖Ẑ‖2F )

s.t.,X = X̄Z + E,

(4)

where E is corresponding to the sparse noise matrix and
‖E‖1 =

∑
i,j |Ei,j |. λ controls the sparsities of the noise

matrix E, and α controls the contribution of structural regu-
larization term. Representations of training images and test-
ing images are learnt in a unified framework, which lever-
ages the global structure over the whole database. Represen-
tations of testing images learnt by (4) will have classwise
block-diagonal structure because of the low-rank property
of Z and structural regularization to Z.
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Optimization Algorithm
To solve optimization problem (4), we first introduce an aux-
iliary variable J and convert (4) to the following equivalent
problem,

min
Z,E,J

‖J‖∗+λ‖E‖1 +
α

2
(

C∑
i=1

‖Z̄−i‖2F + ‖Ẑ‖2F )

s.t.,X = X̄Z + E

Z = J,

(5)

which can be solved by the Augmented Lagrange Multiplier
(ALM) method (Lin, Chen, and Ma 2010). Correspondingly,
the augmented Lagrangian function form of (5) is as follows,

L(Z,E, J, Y1, Y2, µ)

= ‖J‖∗ + λ‖E‖1 +
α

2
(

C∑
i=1

‖Z̄−i‖2F + ‖Ẑ‖2F )

+ < Y1, X − X̄Z − E > + < Y2, Z − J >

+
µ

2
(‖X − X̄Z − E‖2F + ‖Z − J‖2F ),

(6)

where < A,B >= trace(AtB). Y1 and Y2 are Lagrange
multipliers and µ > 0 is a penalty parameter. The optimiza-
tion of (6) can be solved iteratively by updating J , Z and E
once at a time. The updating scheme is as follows.

Updating J: Fix the other variables and solve the follow-
ing problem,

Jk+1 = arg min
J
‖J‖∗+ < Y k

2 , Z
k − J > +

µk

2
‖Zk − J‖2F

= arg min
J

1

µk
‖J‖∗ +

1

2
‖J − (Zk + Y k

2 /µ
k)‖2F

= US 1
µk

[Σ]V T . (7)

where UΣV T is the singular value decomposition of the
matrix (Zk + Y k

2 /µ
k), and Sε[·] is the soft-thresholding

(shrinkage) operator defined as follows (Lin, Chen, and Ma
2010),

Sε[x] =


x− ε, if x > ε,

x+ ε, if x < −ε,
0, otherwise.

(8)

Updating Z: Fix the other variables and solve the follow-
ing problem,

Zk+1 = arg min
Z

α

2
(

C∑
i=1

‖Z̄−i‖2F + ‖Ẑ‖2F )

+ < Y k
1 , X − X̄Z − Ek > + < Y k

2 , Z − Jk+1 >

+
µk

2
(‖X − X̄Z − Ek‖2F + ‖Z − Jk+1‖2F ).

(9)

To solve (9) in a unified matrix form, we introduce an auxil-
iary matrix Qk = [Q̄k, Q̂k], defined as follows,

Q̄k =


Z̄k
1 0 0 0

0 Z̄k
2 0 0

0 0
. . . 0

0 0 0 Z̄k
C



and Q̂k is a zero matrix with the same size as Ẑk, while Ẑk

is the sub-matrix of Zk corresponding to the representation
of testing images. Then problem (9) can be relaxed into the
following formulation,

Zk+1 = arg min
Z

α

2
‖Z −Qk‖2F

+ < Y k
1 , X − X̄Z − Ek > + < Y k

2 , Z − Jk+1 >

+
µk

2
(‖X − X̄Z − Ek‖2F + ‖Z − Jk+1‖2F ).

(10)

Since problem (10) is convex, it has closed form solution as
follows,

Z =((α/µk + 1)I + X̄T X̄)−1(X̄T (X − Ek)

+ Jk+1 + (αQk + X̄TY k
1 − Y k

2 )/µk).
(11)

Updating E: Fix the other variables and solve the following
problem,

Ek+1 = arg min
E

λ‖E‖1+ < Y k
1 , X − X̄Zk+1 − E >

+
µk

2
(‖X − X̄Zk+1 − E‖2F )

= arg min
E

λ

µk
‖E‖1

+
1

2
‖E − (X − X̄Zk+1 + Y k

1 /µ
k)‖2F

= S λ

µk
[X − X̄Zk+1 + Y k

1 /µ
k]. (12)

Generally, we outline the optimization process in Algo-
rithm 1.

Algorithm 1 Solving Problem (4) by Inexact ALM
Input: Feature Matrix X , parameter λ and α
1: Initialize: Z0 = 0, J0 = 0, E0 = 0, Y 0

1 = 0, Y 0
2 = 0,

µ0 = 10−5, µmax = 108, ρ = 1.1, ε = 10−6

2: While not converged do
3: Jk+1 = arg minJ L(Zk, Ek, J, Y k

1 , Y
k
2 , µ

k) of (7)
4: Zk+1 = arg minZ L(Z,Ek, Jk+1, Y k

1 , Y
k
2 , µ

k) of (9)
5: Ek+1 = arg minE L(Zk+1, E, Jk+1, Y k

1 , Y
k
2 , µ

k) of
(12)

6: update the multipliers:
Y k+1
1 = Y k

1 + µk(X − X̄Zk+1 − Ek+1)

Y k+1
2 = Y k

2 + µk(Zk+1 − Jk+1)
7: update µ:
µk+1 = min(ρµk, µmax)

8: check the convergence conditions:
‖X−X̄Zk+1−Ek+1‖∞ < ε and ‖Zk+1−Jk+1‖∞ < ε

9: End While
Output: Z,E

Classification Based on LR-CBDS
We use a linear classifier for classification as in DSLR
(Zhang, Jiang, and Davis 2013). Multivariate ridge regres-
sion model is used to obtain a linear classifier W ∗ based on
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the representations Z̄ of training images and class label ma-
trix H . The formulation to learn the linear classifier is as
follows,

W ∗ = arg min
W
‖H −WZ̄‖2F + γ‖W‖2F , (13)

where γ is the weight of regularization term. Formulation
(13) is a convex problem, and it has closed form solution as
follows,

W ∗ = HZ̄T (Z̄Z̄T + γI)−1. (14)
Then the class label for a testing image i can be obtained as
follows,

k∗ = arg max
k

W ∗ẑi, (15)

where k∗ is corresponding to the classifier with largest out-
put.

Experiments and Comparisons
We evaluate our approach on three public databases: the
Extended Yale B database (Georghiades, Belhumeur, and
Kriegman 2001) (Lee, Ho, and Kriegman 2005), the AR
database (Martinez and Benavente. 1998) and the ORL
database (Samaria and Harter 1994). We deal with the case
that both training and testing images are corrupted, including
illumination changes, occlusions, uniform distributed noises
and block noises. Extensive experiments are performed to
validate the effectiveness of our method. We repeat each ex-
periment 10 times and report the average accuracy. Our ap-
proach is compared with several related works, including SR
(Wright et al. 2009a), SVM (Ma et al. 2012), RPCA (Wright
et al. 2009b), LLC (Wang et al. 2010), LRSI (Chen, Wei, and
Wang 2012) , DLRD SR (Ma et al. 2012), DSLR (Zhang,
Jiang, and Davis 2013). For fair comparison, we directly cite
results of comparison methods reported in DSLR on the Ex-
tended Yale B database and AR database. and we cite results
of comparison methods reported in DLRD SR on the ORL
database. All the experiments are performed on matlab with
computer configuration as follows, CPU: i5-2400 3.10GHz
RAM:14.0GB.

Extended Yale B Database
The Extended Yale B database consists of 2414 frontal-face
images of 38 individuals. The images were taken under dif-
ferent poses and illumination conditions with size 192×168.
For each person, there are about 59-64 images. We test
our approach on the down-sampled images with sample
rate 1/2, 1/4, 1/8, and the corresponding feature dimension
is 8064, 2016 and 504. Following the protocol in DSLR
(Zhang, Jiang, and Davis 2013), we first randomly select Nc

images for each person as training images (Nc = 8, 32),
and the rest as testing images. For the case of 8 training im-
ages per class, the testing image set is randomly divided into
four batches and each batch is dealt with parallelly to take
advantage of classwise block-diagonal structure of training
images. Comparison of different methods on Extended Yale
B database is listed in Table 1.

Experimental results show that our approach outperforms
DSLR, LRSI, RPCA, SR and LLC in both cases. It outper-
forms the state-of-art method DSLR by 1.5% improvement

Representation of the first 10 classes testing images

Figure 1: (a) Decomposition results of testing images;
the top four images are original images with illumination
changes, while the middle four images are the low-rank re-
covery images and the bottom four images are correspond-
ing to sparse noises; (b) Representations of testing images
from the first ten classes have classwise block-diagonal
structure.

with 8 training images per person, and 5.4% improvement
with 32 training images per person on average. Our approach
improves obviously in the case of 32 training images per per-
son, since face images with illumination changes usually lie
in low-dimensional subspace, and feature matrix with suf-
ficient training images exhibits good low-rank property. By
taking advantage of classwise block-diagonal structure, our
approach has better classification capability and is robust to
illumination changes.

We present visualization of some decomposition results of
testing images in Figure 1(a). The top four images shows the
original images, while the middle four images and the bot-
tom four images are corresponding to the low-rank recovery
term X̄Z and the sparse error term E. It turns out that illu-
mination changes can be removed as sparse noises. Figure
1(b) shows representations of the first ten class testing sam-
ples corresponding to the first ten class reconstruction bases.
It is obtained with 32 training samples per class at sample
rate 1/4. The testing samples are mainly represented by the
bases of corresponding class. The learnt representation has
classwise block-diagonal structure, and shows strong identi-
fication capability.

Furthermore, we evaluate the computation time in Table 2
with 32 training samples per class at sample rate 1/8. Table
2 shows that our approach is more efficient than DSLR and
LRSI. Methods of LRSI and DSLR handle the face recogni-
tion problem as a two step approach. First, a noise-free dic-
tionary is learnt based on the structure information among

Table 1: Recognition accuracy on Extended Yale B
No. per Class Nc=8 Nc=32
Sample Rate 1/8 1/4 1/2 1/8 1/4 1/2
LR-CBDS 80.2 83.9 84.5 97.1 99.1 99.3

DSLR 76.6 83.7 83.8 89.9 93.6 95.7
LRSI 73.3 80.9 80.8 89.5 93.3 94.5
RPCA 74.6 78.3 80.2 85.6 90.7 94.1

SR 79.3 83.0 83.8 87.2 89.5 90.7
LLC 65.7 70.6 76.1 76.4 80.0 85.6
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training images. Then, sparse representation based classi-
fication method is adopted for face recognition based on
the learnt dictionary (LRSI), or low-rank matrix recovery
is performed to the testing images and the training images
separately with the learnt dictionary and a linear classifier
is adopted for recognition (DSLR). The dictionary learning
process is highly time-consuming. The average computation
time of DSLR and LRSI to update dictionary in each iter-
ation is 289s and 72s. Generally, the final iteration number
R1 of DSLR is larger than 10, and the iteration number R2

of LRSI is larger than R1. Compared with DSLR and LRSI,
our approach avoids the time-consuming dictionary learning
process. Furthermore, our approach learns representations of
training images and testing images simultaneously and use
a linear classifier for classification, which is more efficient
during testing process.

AR Database
The AR database contains over 4000 face images of 126 in-
dividuals. For each individual, there are 26 images taken in
two separate sessions under different illumination and ex-
pression changes. For each session, there are 13 images, in
which 3 images are obscured by sunglasses, 3 images are
obscured by scarves and the remaining 7 unobscured im-
ages are of different illumination and expression changes.
Each image is with 165 × 120 pixels. Following the proto-
col in DSLR (Zhang, Jiang, and Davis 2013), we convert the
color images to gray scale and down-sample at rate 1/3, then
the feature dimension of a sample is 2200. Experiments are
performed under three different scenarios.

Sunglasses: In this scenario, we consider the obscured
images due to occlusion of sunglass and unobscured images
of illumination and expression changes. 7 unobscured im-
ages and 1 obscured image with sunglasses (randomly cho-
sen) at session 1 are used for training (8 training images
per class), and the remaining unobscured images and im-
ages with sunglasses from both sessions are used for testing
(12 testing images per class). Sunglasses occlude about 20%
area of the face image.

Scarf: In this scenario, we consider the obscured images
due to occlusion of scarf and unobscured images of illumi-
nation and expression changes. 7 unobscured images and 1
obscured image with scarf (randomly chosen) at session 1
are used for training (8 training images per class), and the
rest are used for testing (12 testing images per class). Scarf
occludes about 40% area of the face image.

Mixed (Sunglasses+Scarf): In this scenario, we consider
the obscured images with sunglasses and scarf, and the un-
obscured images of illumination and expression changes.
7 unobscured images, 2 corrupted images (one image with
sunglass and one with scarf) at session 1 are used for train-
ing (9 training images per class), and the rest are used for

Table 2: Computation time on Extended Yale B database
Method LR-CBDS DSLR LRSI

Dictionary learning (s) - 289×R1 72×R2

Testing time (s) 0.435 0.527 3.354
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Figure 2: Recognition accuracy on AR database with differ-
ent levels of pixel corruption.

testing (17 testing images per class).
The comparison of different methods on AR database is

listed in Table 3. Our approach achieves the best result and
outperforms the state-of-art method by 7.1% for the sun-
glasses scenario, 9.5% for the scarf scenario, and 10.4% for
the mixed scenario. Our approach shows robustness to oc-
clusions, illumination and expression changes.

Furthermore, we evaluate our algorithm on the AR
database with uniform noises. Following the protocol in
DSLR (Zhang, Jiang, and Davis 2013), 7 unobscured images
with illumination and expression changes from session 1 are
used for training, and the other 7 unobscured images from
session 2 are used for testing. A percentage of randomly
chosen pixels from both training images and testing images
are replaced with samples from a uniform distribution over
[0, Vmax], where Vmax is the largest possible pixel value in
the image. The recognition accuracy under different levels of
corruption is shown in Figure 2. Our approach outperforms
the state-of-art method by 3.5% improvement on average.
Specially, our approach is robust to severe noises, and out-
performs DSLR by 7.6% improvement with 35% uniform
noises.

Figure 3(a) shows image decomposition examples with
10% uniform noises. Our approach separates uniform noises
from the original images into the sparse error component.
Figure 3(b) shows representations of testing images of the
first ten classes, corresponding to the reconstruction bases

Table 3: Recognition accuracy on AR database
Scenario Sunglasses Scarf Mixed

LR-CBDS 94.4 92.9 92.8
DSLR 87.3 83.4 82.4
LRSI 84.9 81.3 81.0
RPCA 83.2 75.8 78.9

SR 86.8 83.2 79.2
LLC 65.3 59.2 59.9
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Figure 3: (a) Decomposition results of testing images on AR
database; the top four images are original images with 10%
uniform noises, while the middle four images are the low-
rank recovery images and the bottom four images are cor-
responding to uniform noises and expression changes; (b)
Representations of testing images from the first ten classes
on AR database have classwise block-diagonal structure.

of the first ten classes. Representations of testing images
have classwise block-diagonal structure, which increases the
inter-class differences. Experimental results show that class-
wise block-diagonal structure is critical for the face recog-
nition problem, especially when both training images and
testing images are badly corrupted. Table 4 shows that our
approach is more efficient than DSLR and LRSI in the sun-
glasses scenario. Moreover, the iteration numberR2 of LRSI
during dictionary learning process improves obviously with
the increase of class number.

ORL Database
The ORL database contains 400 images of 40 individuals.
the images were taken at different time, with lighting varia-
tions, facial expression changes. All the images were taken
against a dark homogeneous background with the individ-
ual in an upright, frontal position. Following the protocol in
DLRD SR (Ma et al. 2012), all the images are cropped to
the size 28 × 23. For each individual, half images are ran-
domly chosen as the training samples, and the rest are used
as testing samples. A randomly located block of each image
is replaced with an unrelated random image. Experiments
are performed under different levels of block corruption,
which is measured by the area proportion between the block
and the whole image. Comparison of different methods on
ORL database is listed in Table 5. Our approach achieves
comparable performance with the state-of-art method with
small percent block corruption, but our approach shows
high robustness to the severe corruption and outperforms
DLRD SR by 2.9% improvement with 50% corruption.

Figure 4(a) shows image decomposition examples with

Table 4: Computation time on AR database
Method LR-CBDS DSLR LRSI

Dictionary learning (s) - 167×R1 76 ×R2

Testing time (s) 0.223 0.261 13.500

Figure 4: (a) Decomposition results of testing images on
ORL database; the top five images are original images with
10% block corruption, while the middle five images are the
low-rank recovery images and the bottom five images are
corresponding to sparse noises including block corruption
and facial expression changes; (b) Representations of test-
ing images from the first ten classes on ORL database have
classwise block-diagonal structure.

10% block occlusion. Our approach separates block occlu-
sion and facial expression changes from the original im-
ages into the sparse noise component, and basic pattern for
each person is left in the recovery image for robust recogni-
tion. Figure 4(b) shows representations of the testing images
from the first ten classes, corresponding to the reconstruc-
tion bases of the first ten classes. Representations of testing
images have classwise block-diagonal structure, which dom-
inates the difference between different classes.

Conclusions

In this paper, we propose a generic semi-supervised frame-
work to learn low-rank representations with classwise block-
diagonal structure, which have strong identification capabil-
ity for face recognition. It learns robust representations of
training images and testing images simultaneously, which
leverages the global data structure over the whole database.
Moreover, by taking classwise block-diagonal structure into
consideration, the proposed approach is robust even when
training images and testing images are badly corrupted. Ex-
tensive experiments on three public databases indicate that
the proposed approach achieves superior performance. Fur-
thermore, the proposed approach can be applied but not lim-
ited to the face recognition problem. It can be extended to
general classification problems to capture classwise struc-
ture information.

Table 5: Recognition accuracy on ORL database
Noise Percent 0 10 20 30 40 50

LR-CBDS 96 94.3 91.4 86.5 79.4 72.8
DLRD SR 95.9 94.4 91.1 86 76.7 69.9

RPCA 89.3 88 83 76.6 72 66.2
SR 95.2 91.7 86 75.8 61.8 54

SVM 94.6 88.5 80.6 71.6 57.3 42
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