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Abstract

Our objective is to boost the state-of-the-art performance
in MaxSAT solving. To this end, we employ the instance-
specific algorithm configurator ISAC, and improve it with the
latest in portfolio technology. Experimental results on SAT
show that this combination marks a significant step forward
in our ability to tune algorithms instance-specifically. We then
apply the new methodology to a number of MaxSAT prob-
lem domains and show that the resulting solvers consistently
outperform the best existing solvers on the respective prob-
lem families. In fact, the solvers presented here were inde-
pendently evaluated at the 2013 MaxSAT Evaluation where
they won six of the eleven categories.

Introduction

MaxSAT is the optimization version of the Satisfiability
(SAT) problem. It can be used effectively to model prob-
lems in several domains, such as scheduling, timetabling,
FPGA routing, design and circuit debugging, software pack-
age installation, bioinformatics, probabilistic reasoning, etc.
From the research perspective, MaxSAT is also of particular
interest as it requires the ability to reason about both opti-
mality and feasibility. Depending on the particular problem
instance being solved, it is more important to emphasize one
or the other of these inherent aspects.

MaxSAT technology has significantly progressed in the
last years, thanks to the development of several new core al-
gorithms and the very recent revelation that traditional MIP
solvers like Cplex can be extremely well suited for solving
some families of partial MaxSAT instances (Ansotegui and
Gabas 2013). Given that different solution approaches work
well on different families of instances, (Matos et al. 2008)
used meta-algorithmic techniques developed in CP and SAT
to devise a solver portfolio for MaxSAT. Surprisingly, and in
contrast to SAT, until 2013 this idea had not led to the de-
velopment of a highly efficient MaxSAT solver that would
dominate, e.g., the yearly MaxSAT Evaluations (Argelich et
al. 2012).

We describe the methodology that led to a MaxSAT port-
folio that won six out of eleven categories at the 2013
MaxSAT Evaluation. In particular, we develop an instance-
specifically tuned solver for every version of MaxSAT

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that outperforms all existing solvers in their respective do-
mains. We do this for regular MaxSAT (MS), Partial (PMS),
Weighted (WMS), and Weighted Partial (WPMS) MaxSAT.
The method we apply to obtain these solvers is a portfo-
lio tuning approach (ISAC+ ) which generalizes both tuning
of individual solvers as well as combining multiple solvers
into one solver portfolio. As a side-effect of our work on
MaxSAT, we found a way to improve instance-specific algo-
rithm configuration (ISAC) (Kadioglu et al. 2010) by com-
bining the original methodology with one of the latest and
most efficient algorithm portfolio builders to date.

The next section formally introduces our target prob-
lem, MaxSAT. Then, we review the current state-of-the-art
in instance-specific algorithm configuration and algorithm
portfolios. We show how both techniques can be combined
and empirically demonstrate on SAT that our improved
method works notably better than the original method and
other instance-specific algorithm tuners. We then apply the
new technique to MaxSAT. Finally, in extensive experiments
we show that the developed solvers significantly outperform
the current state-of-the-art in every MaxSAT domain.

MaxSAT

Problem Definition Let us begin by formally stating the
problem:

A weighted clause is a pair (C,w), where C is a clause
and w is a natural number or infinity, indicating the penalty
for falsifying the clause C. A Weighted Partial MaxSAT
formula (WPMS) is a multiset of weighted clauses ϕ =
{(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m� ,∞)}
where the first m clauses are soft and the last m� clauses
are hard. Here, a hard clause is one that must be satisfied,
while also satisfying the maximum combined weight of
soft clauses. A Partial MaxSAT formula (PMS) is a WPMS
formula where the weights of soft clauses are equal. The set
of variables occurring in a formula ϕ is noted as var(ϕ).

A (total) truth assignment for a formula ϕ is a func-
tion I : var(ϕ) → {0, 1}, that can be extended to literals,
clauses, SAT formulas. For MaxSAT formulas is defined as
I({(C1, w1), . . . , (Cm, wm)}) =

�m
i=1 wi (1−I(Ci)). The

optimal cost of a formula is cost(ϕ) = min{I(ϕ) | I :
var(ϕ) → {0, 1}} and an optimal assignment is an assign-
ment I such that I(ϕ) = cost(ϕ).

The Weighted Partial MaxSAT problem for a Weighted
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Partial MaxSAT formula ϕ is the problem of finding an op-
timal assignment.

Solvers Among the state-of-the-art MaxSAT solvers, we
find two main approaches: branch-and-bound-based algo-
rithms (Heras, Larrosa, and Oliveras 2007; Argelich and
Manyà 2007; Darras et al. 2007; Lin, Su, and Li 2008;
Ansotegui and Gabas 2013) and SAT-based solvers (Fu and
Malik 2006; Marques-Silva and Planes 2007; Ansotegui,
Bonet, and Levy 2009; Manquinho, Marques-Silva, and
Planes 2009). From the annual results of the international
MaxSAT Evaluation (Argelich et al. 2012), we can see that
SAT-based solvers clearly dominate on industrial and some
crafted instances, while branch-and-bound solvers dominate
on random and some families of crafted instances.

In this setting, employing multiple solution techniques
is well motivated. Consequently, in (Matos et al. 2008) a
MaxSAT portfolio was devised and tested in a promising
but limited experimental evaluation. In particular, (Matos et
al. 2008) used SATzilla’s 2009 approach to build a portfolio
of solvers for MaxSAT. The proposed portfolio was then ap-
plied on some pure MaxSAT instances, i.e., formulae where
all clauses have weight 1 (which implies that there are no
hard clauses). The format of these instances is exactly the
DIMACS CNF format. Therefore, (Matos et al. 2008) could
use existing SAT instance-features to characterize the given
MaxSAT instances. The particular features used were prob-
lem size features, balance features, and local search probe
features. The extension to partial and weighted MaxSAT in-
stances, which would have required the definition of new
features, was left for future work. To our best knowledge
this is the only study of MaxSAT portfolios. In particular,
there has been no dominant algorithm portfolio in the an-
nual MaxSAT Evaluations (Argelich et al. 2012).

We will devise instance-specific solvers for each of the
MaxSAT domains. These will be based on algorithm tuning
and algorithm portfolios. Therefore, in the next two sections
we develop the technology that we will then later use to de-
vise a novel solver for MaxSAT.

Meta-Algorithms

Just as we observed for MaxSAT, in the practice of com-
binatorial search algorithms there is oftentimes no single
solver that performs best on every single instance family.
Rather, different algorithms and even different parametri-
sations of the same solver excel on different instance fam-
ilies. This is the underlying reason why algorithm port-
folios have been so successful in SAT (Xu et al. 2008;
Kadioglu et al. 2011), CP (O’Mahony et al. 2008), and
QBF (Pulina and Tacchella 2007). Namely, all these portfo-
lio builders select and schedule solvers instance-specifically.

In the literature, we find two meta-algorithmic approaches
for making solvers instance-specific. The first are algorithm
portfolio builders for given sets of solvers, the second are
instance-specific tuners for parametrized solvers. In the fol-
lowing, we will review the state-of-the-art in both related
areas.

Algorithm Portfolios

The first approach on algorithm selection that really stood-
out was SATzilla-2007 (Xu et al. 2008). In this approach, a
regression function is trained to predict the performance of
every solver in the given set of solvers based on the features
of an instance. When faced with a new instance, the solver
with the best predicted runtime is run on the given instance.
The resulting SAT portfolios excelled in the SAT Competi-
tions in 2007 and in 2009 and pushed the state-of-the-art in
SAT solving.

Meanwhile, more performant algorithm portfolio builders
have been developed. For a while the trend was towards
more highly biased regression and classification models (Sil-
verthorn and Miikkulainen 2010). Then, the simple k-
nearest neighbor (k-NN)-based portfolio 3S (Balint et al.
2012) won in the 2011 SAT Competition. 3S is notable be-
cause it was the first portfolio that excelled in different cat-
egories while using the same solver and training base for all
categories: random, combinatorial, and industrial (SATzilla
had won multiple categories earlier, but by entering a differ-
ent portfolio tailored for each instance category). This was
achieved by using a low-bias ((Kadioglu et al. 2011) call
it “non-model based”) machine learning approach for se-
lecting the primary solver used to tackle the given instance.
Namely, 3S uses a cost-sensitive k-NN approach for this pur-
pose.

The latest SATzilla (Xu et al. 2012) now also uses a low-
bias machine learning approach that relies on cost-sensitive
decision forests and voting. For every pair of solvers in
its portfolio, a forest of binary decision trees is trained to
choose what is the better choice for the instance at hand. The
decisions of all trees are then aggregated and the solver with
the highest score is used to solve the given instance. This
portfolio clearly dominated the 2012 SAT Challenge (Com-
petition 2012) where it performed best on both industrial and
combinatorial instances. Moreover, the SATzilla-all portfo-
lio, which is identical for all three categories, came in second
in both categories.

In 2013, a new portfolio builder was introduced (Malit-
sky et al. 2013). This tool, named CSHC, is based on cost-
sensitive hierarchical clustering of training instances. CSHC
combines the ability of SATzilla-2012 to handle large and
partly uninformative feature sets (difficult for 3S as the dis-
tance metric is corrupted) with 3S’ ability to handle large
sets of base solvers (difficult for SATzilla-2012 as it trains
a random forest for each pair of solvers). CSHC was also
shown to outperform both 3S and SATzilla-2012 and it won
two categories in the 2013 SAT Competition.

Algorithm Tuning

Portfolio approaches are very powerful in practice, but there
are many domains that do not have the plethora of high-
performance solvers. Often, though, there exists at least one
solver that is highly parameterized. In such cases, it may be
possible to configure the parameters of the solver to gain the
most benefit on a particular benchmark.

The fact that there are often subtle non-linear interactions
between parameters of sophisticated state-of-the-art algo-
rithms makes manual tuning very difficult. Consequently, a

2595



Algorithm 1: Instance-Specific Algorithm Configuration

ISAC-Learn(A, T, F, κ)

(F̄ , s, t) ← Normalize(F )
(k, C, S) ← Cluster
(T, F̄ , κ)
for all i = 1, . . . , k do

Pi ← GGA(A,Si)
Return (k, P, C, s, t)

ISAC-

Run(A, x, k, P, C, d, s, t)
f ← Features(x)
f̄i ← 2(fi/si)− ti ∀ i
i ← mini(||f̄ − Ci||)
Return A(x, Pi)

number of automated algorithm configuration and parameter
tuning approaches have been proposed over the last decade.
These approaches range from gradient-free numerical opti-
mization (Audet and Orban 2006), to gradient-based opti-
mization (Coy et al. 2001), to iterative improvement tech-
niques (Adenso-Diaz and Laguna 2006), to iterated local
search techniques like ParamILS (Hutter et al. 2009), and to
population-based local search approaches like the Gender-
based Genetic Algorithm (GGA) (Ansotegui, Sellmann, and
Tierney 2009).

In light of the success of these (one-configuration-fits-
all) tuning methods, a number of studies explored how to
use them to effectively create instance-specific tuners. Hy-
dra (Xu, Hoos, and Leyton-Brown 2010), for example, uses
the parameter tuner ParamILS (Hutter et al. 2009) to it-
eratively tune the solver and add parameterizations to a
SATzilla portfolio that optimizes the final performance.

The ISAC Method

With the objective to boost performance in MaxSAT, we ex-
ploit an approach called Instance-Specific Algorithm Con-
figuration (ISAC) (Kadioglu et al. 2010) that we recap in de-
tail in this section. ISAC has been previously shown to out-
perform the regression based SATzilla-2009 approach and,
when coupled with the parameter configurator GGA, ISAC
outperformed Hydra (Xu, Hoos, and Leyton-Brown 2010)
on several standard benchmarks.

ISAC is an example of a low-bias approach. Unlike sim-
ilar approaches, such as Hydra (Xu, Hoos, and Leyton-
Brown 2010) and ArgoSmart (Nikolic, Maric, and Janici
2009), ISAC does not use regression-based analysis. Instead,
it computes a representative feature vector that character-
izes the given input instance in order to identify clusters of
similar instances. The data is therefore clustered into non-
overlapping groups and a single solver is selected for each
group based on some performance characteristic. Given a
new instance, its features are computed and it is assigned to
the nearest cluster. The instance is then solved by the solver
assigned to that cluster.

More specifically, ISAC works as follows (see Algo-
rithm 1). In the learning phase, ISAC is provided with a pa-
rameterized solver A, a list of training instances T , their cor-
responding feature vectors F , and the minimum cluster size
κ. First, the gathered features are normalized so that every
feature ranges from [−1, 1], and the scaling and translation
values for each feature (s, t) are memorized. This normal-

ization helps keep all the features at the same order of mag-
nitude, and thereby keeps the larger range values from being
given more weight than the lower ranging values.

Next, the instances are clustered based on the normalized
feature vectors. Clustering is advantageous for several rea-
sons. First, training parameters on a collection of instances
generally provides more robust parameters than one could
obtain when tuning on individual instances. That is, tuning
on a collection of instances helps prevent over-tuning and al-
lows parameters to generalize to similar instances. Secondly,
the parameters found are “pre-stabilized,” meaning they are
shown to work well together.

ISAC uses g-means (Hamerly and Elkan 2003) for clus-
tering. Robust parameter sets are obtained by not allowing
clusters to contain fewer than a manually chosen threshold,
a value which depends on the size of the data set. In our case,
we restrict clusters to have at least 50 instances. Beginning
with the smallest cluster, the corresponding instances are re-
distributed to the nearest clusters, where proximity is mea-
sured by the Euclidean distance of each instance to the clus-
ter’s center. The final result of the clustering is a number of
k clusters Si, and a list of cluster centers Ci. Then, for each
cluster of instances Si, favorable parameters Pi are com-
puted using the instance-oblivious tuning algorithm GGA.

When running algorithm A on an input instance x, ISAC
first computes the features of the input and normalizes them
using the previously stored scaling and translation values for
each feature. Then, the instance is assigned to the nearest
cluster. Finally, ISAC runs A on x using the parameters for
this cluster.

Portfolio Tuner

Note how ISAC solves a core problem of instance-specific
algorithm tuning, namely the selection of a parametrization
out of a very large and possibly even infinite pool of possible
parameter settings. In algorithm portfolios we are dealing
with a small set of solvers, and all methods devised for algo-
rithm selection make heavy use of that fact. Clearly, this ap-
proach will not work when the number of solvers explodes.

ISAC overcomes this problem by clustering the train-
ing instances. This is a key step in the ISAC methodology
as described in (Kadioglu et al. 2010): Training instances
are first clustered into groups and then a high-performance
parametrization is computed for each of the clusters. That is,
in ISAC clustering is used both for the generation of high-
quality solver parameterizations, and then for the subsequent
selection of the parametrization for a given test instance.

Beyond Cluster-Based Algorithm Selection

While (Malitsky and Sellmann 2012) showed that cluster-
based solver selection outperforms SATzilla-2009, this
alone does not fully explain why ISAC often outperforms
other instance-specific algorithm configurators like Hydra.
Clustering instances upfront appears to give us an advantage
when tuning individual parameterizations. Not only do we
save a lot of tuning time with this methodology, since the
training set for the instance-oblivious tuner is much smaller
than the whole set. We also bundle instances together, hop-
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ing that they are somewhat similar and thus amenable for
being solved efficiently with just one parametrization.

Consequently, we want to keep clustering in ISAC. How-
ever, and this is the core observation in this paper, once
the parameterizations for each cluster have been computed,
there is no reason why we would need to stick to these clus-
ters for selecting the best parametrization for a given test
instance. Consequently, we propose to use an alternate state-
of-the-art algorithm selector to choose the best parametriza-
tion for the instance we are to solve.

To this end, after ISAC finishes clustering and tuning the
parameters of existing solvers on each cluster, we can then
use any algorithm selector to choose one of the parametri-
sations, independent of the cluster an instance belongs to!
For this final stage, we can use any efficient algorithm se-
lector. In our experiments, we will use CSHC. We name the
resulting approach Portfolio Tuner (ISAC+ ).

Comparison of ISAC+ with ISAC and Hydra

Before we return to our goal of devising new cutting-edge
solvers for MaxSAT, we want to test the ISAC+ methodol-
ogy in practice and compare it with the best instance-specific
algorithm configurators to date, ISAC and Hydra.

We use the benchmark set from (Xu, Hoos, and Leyton-
Brown 2010) where Hydra was first introduced. In partic-
ular, there are two non-trivial sets of instances: Random
(RAND) and Crafted (HAND).

Following the previously established methodology, we
start our portfolio construction with 11 local search solvers:
paws (Thornton et al. 2008), rsaps (Hutter, Tompkins, and
Hoos 2002), saps (Tompkins, Hutter, and Hoos 2007), ag-
wsat0 (Wei, Li, and Zhang 2007b), agwsat+ (Wei, Li, and
Zhang 2007c), agwsatp (Wei, Li, and Zhang 2007a), gnov-
elty+ (Pham and Gretton 2007), g2wsat (Li and Huang
2005), ranov (Pham and Anbulagan 2007), vw (Prestwich
2005), and anov09 (Hoos 2002). We augment these solvers
by adding six fixed parameterizations of SATenstein to this
set, giving us a total of 17 constituent solvers.

We clustered the training instances of each dataset and
added GGA trained versions of SATenstein for each cluster,
resulting in 11 new solvers for Random and 8 for Crafted.
We used a timeout of 50 seconds when training these
solvers, but employed a 600 seconds timeout to evaluate the
solvers on each respective dataset. The times were measured
on dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem
processors and 24 GB of DDR-3 memory (1333 GHz).

In Table 1a we show the test performance of various
solvers on the HAND benchmark set (342 train and 171
test instances). We conduct 5 runs on each instance for each
solver. When referring to a value as ‘Average’, we give the
mean time it takes to solve only those instances that do not
timeout. The value ‘PAR1’ includes the timeout instances
when computing the average. ‘PAR10’, then gives a penal-
ized average, where every instance that times out is treated
as having taken 10 times the timeout to complete. Finally,
we present the number of instances solved and the corre-
sponding percentage of solved instances in the test set.

The best single solver (BS) is one of the SATenstein pa-
rameterizations tuned by GGA and is able to solve about

Table 1: SAT Experiments

(a) HAND

Average PAR1 PAR10 Solved %Solved
BS 28.71 289.3 2753 93 54.39
Hydra 19.80 260.7 2503 100 58.48
ISAC-GGA 18.79 297.5 2887 89 52.05
ISAC-MSC 18.24 273.4 2642 96 56.14
ISAC+ 22.09 251.9 2395 103 60.23
VBS 16.40 228.0 2186 109 64.33

(b) RAND

Average PAR1 PAR10 Solved %Solved
BS 27.37 121.0 1004 486 83.64
Hydra 20.88 75.7 586.9 526 90.53
ISAC-GGA 22.11 154.4 1390 448 77.11
ISAC-MSC 27.47 79.7 572.3 528 90.88
ISAC+ 24.77 71.1 506.3 534 91.91
VBS 15.96 61.2 479.5 536 92.25

54% of all instances. Hydra solves 58% while ISAC-GGA
(using only SATenstein) solves only 52%. Using the whole
set of solvers for tuning, ISAC-MSC solves about 56% of all
instances, which is worse than always selecting the best base
solver. Of course, we only know a posteriori that this pa-
rameterization of SATenstein is the best solver for this test
set. However, ISAC’s performance is still not convincing.
By augmenting the approach using a final portfolio selec-
tion stage, we can boost performance. ISAC+ solves ∼ 60%
of all test instances, outperforming all other approaches and
closing almost 30% of the GAP between Hydra and the Vir-
tual Best Solver (VBS), an imaginary perfect oracle that al-
ways correctly picks the best solver and parametrization for
each instance which marks an upper bound on the perfor-
mance we may realistically hope for.

The second benchmark we present here is RAND. There
are 581 test and 1141 train instances in this benchmark. In
Table 1b we see that the best single solver (BS – gnovelty+)
solves ∼ 84% of the 581 instances in this test set. Hydra
improves this to ∼ 91%, roughly equal in performance to
ISAC-MSC. ISAC+ improves performance again and leads
to almost 92% of all instances solved within the timelimit.
The improved approach outperforms all other methods, and
ISAC+ closes over 37% of the gap between the original
ISAC and the VBS.

Note that using portfolios of the untuned SAT solvers only
is in general not competitive as shown in (Xu, Hoos, and
Leyton-Brown 2010) and (Kadioglu et al. 2010). To verify
this finding we also ran a comparison using untuned base
solvers only. On the SAT RAND data set, for example, we
find that CSHC using only 17 base solvers can only solve
520 instances, which is not competitive.

Maximum Satisfiability

In the preceding section we demonstrated the potential effec-
tiveness of the new ISAC+ approach on SAT problems. We
now apply this methodology to our main target, the MaxSAT
problem. In order to apply the ISAC+ methodology, we ob-
viously first need to address how MaxSAT instances can be
characterized.
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Feature Computation

As we aim to tackle the variety of existing MaxSAT prob-
lems, we cannot rely directly on the instance features used
in (Matos et al. 2008) which considered instances where all
clauses are soft with identical weights. We therefore com-
pute the percentage of clauses that are soft, and the statistics
of the distribution of weights: avg, min, max, stdev). The re-
maining 32 features we use are a subset of the standard SAT
features based on the entire formula, ignoring the weights.
Specifically, these features cover statistics like the number of
variables, number of clauses, proportion of positive to neg-
ative literals, the number of clauses a variable appears in on
average, etc. We also experimented with plain SAT features
and found that this was not competitive compared to the pro-
posed MaxSAT features above.

Solvers

To apply ISAC+ we also need a parametrized MaxSAT
solver that we can tune. In the past three years, SAT-
based MaxSAT solvers have become very efficient at solv-
ing industrial MaxSAT instances, and perform well on most
crafted instances. Also, with annual MaxSAT Evaluations
since 2006, there have been a number of diverse methodolo-
gies and solvers proposed. akmaxsat_ls (Kuegel 2012), for
example, is a branch-and-bound algorithm with lazy dele-
tion and a local search for an initial upper bound. This solver
dominated the randomly generated partial MaxSAT prob-
lems in the 2012 MaxSAT Evaluations (Max 2012). The
solver also scored second place for crafted partial MaxSAT
instances. Alternatively, solvers like ShinMaxSAT (Honjyo
and Tanjo 2012) and sat4j (Berre 2006) tackle weighted
partial MaxSAT problems by encoding them to SAT and
then resolving them using a dedicated SAT solver. Finally,
there are solvers like WPM1 (Ansotegui, Bonet, and Levy
2009) or wbo1.6 (Manquinho, Marques-Silva, and Planes
2009) that are based on iterative identification of unsatis-
fiable cores and are well suited for unweighted Industrial
MaxSAT.

One of the few parametrized highly efficient partial
MaxSAT solvers is qMaxSAT (Koshimura et al. 2012)
which is based on SAT. qMaxSAT searches for the opti-
mum cost(ϕ) from k =

�m
i=1 wi to some value smaller

than cost(ϕ). Each subproblem is solved by employing the
underlying SAT solver glucose. qMaxSAT inherits its pa-
rameters from glucose: rnd-init, -luby, -rnd-freq, -var-dec,
-cla-decay, -rinc and -rfirst (Audemard and Simon 2012).
The particular version of qMaxSAT, qMaxSATg2, that we
use in our evaluation was the winner for the industrial partial
MaxSAT category at the MaxSAT 2012 Evaluation.

Numerical Results

Now, we have everything in place to run the ISAC+
methodology and devise a new MaxSAT solver; the pri-
mary objective of this study. We conducted our experimen-
tation on the same environment as the MaxSAT Evalua-
tion 2012 (Argelich et al. 2012): operating system Rocks
Cluster 4.0.0 Linux 2.6.9, processor AMD Opteron 248 Pro-
cessor 2 GHz, memory 0.5 GB and compilers GCC 3.4.3 and
javac JDK 1.5.0.

Table 2: Fixed-Split MaxSAT

(a) PMS Crafted

Average PAR1 PAR10 Solved %Solved
BS 187.9 473.1 3339 107 82.31
ISAC-GGA 115.2 478.1 3967 102 78.46
ISAC-MSC 56.2 190.3 1436 120 92.31
ISAC+ 60.7 87.5 332.9 128 98.46
VBS 40.7 40.7 40.7 130 100

(b) PMS Industrial

Average PAR1 PAR10 Solved %Solved
BS 64.0 186.5 1327 158 92.94
ISAC-GGA 64.0 186.6 1330 158 92.94
ISAC-MSC 108.9 208.4 1161 160 94.12
ISAC+ 56.7 138.7 865.2 162 95.29
VBS 45.4 45.4 45.4 170 100

(c) PMS Crafted + Industrial

Average PAR1 PAR10 Solved %Solved
BS 88.2 316.4 2476 260 86.7
ISAC-GGA 90.5 312.7 2418 261 87.0
ISAC-MSC 100.5 242.1 1592 275 91.7
ISAC+ 38.3 126.4 895.9 285 95.0
VBS 43.3 43.3 43.3 300 100

We split our experiments into two parts. We first show
the performance of ISAC+ on partial MaxSAT instances,
crafted instances, industrial instances, and finally combin-
ing both. In the second set of experiments we train solvers
for MaxSAT (MS), Weighted MaxSAT (WMS), Partial
MaxSAT (PMS), and Weighted Partial MaxSAT (WPMS).
In these datasets we will combine instances from the crafted,
industrial and random subcategories.

Partial MaxSAT We used three benchmarks in our nu-
meric analysis obtained from the 2012 MaxSAT Evaluation:
(i) the 8 families of partial MaxSAT crafted instances with a
total of 372 instances, (ii) the 13 families of partial MaxSAT
industrial instances with a total of 504 instances, and the
mixture of both sets. This data was split into training and
testing sets. Crafted had 130 testing and 242 training, while
Industrial instances were split so there awere 170 testing and
334 training. Our third dataset merged Crafted and Industrial
instances and had 300 testing and 576 training instances.

The solvers we run on the the partial MaxSAT industrial
and crafted instances were: QMaxSat-g2 (this is the solver
we tune), pwbo2.0, QMaxSat, PM2, ShinMaxSat, Sat4j,
WPM1, wbo1.6, WMaxSatz+, WMaxSatz09, akmaxsat, ak-
maxsat_ls, iut_rr_rv and iut_rr_ls. More details can be found
in (Argelich et al. 2012).

For each of these benchmark sets we built an instance-
specifically tuned MaxSAT solver by applying the ISAC+
methodology. We use a training set (which is always distinct
from the test set on which we report results) of instances
which we cluster. For each cluster we tune a parametrization
of qMaxSAT-g2. Then we combine these parameterizations
with the other MaxSAT solvers described above. For this set
of algorithms, we train an algorithm selector using CSHC.
Finally, we evaluate the performance of the resulting solver
on the corresponding test set.

In Table 2a we show the test performance of various
solvers. BS shows the performance of the single best un-
tuned solver from our base set. It solves 82% of all 130 in-
stances in this set. ISAC-GGA, which instance-specifically
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tunes only qMaxSAT without using other solvers, solves
78%. In ISAC-MSC (Malitsky and Sellmann 2012) we in-
corporate also other high-performance MaxSAT solvers.
Performance jumps, ISAC-MSC solves over 92% of all in-
stances within our timelimit of 1,800 seconds.

ISAC+ does even better. It solves over 98% of all in-
stances, closing the gap between ISAC-MSC and VBS by
almost 80%! Compared to the previous state of the art (BS),
we increase the number of solved instances from 107 to 128.
Seeing that, in this category, at the 2012 MaxSAT Evaluation
the top five solvers were ranked just 20 instances apart, this
improvement is very significant. In Table 2b we see exactly
the same trend, albeit a bit less pronounced: ISAC+ closes
about 20% of the gap between ISAC and the VBS.

In the subsequent experiment, we built a MaxSAT solver
that excels on both crafted and industrial MaxSAT instances.
Table 2c shows the results. The single best solver for this
mixed set of instances is the default QMaxSat-g2, and it
solves about 87% of all instances within 1,800 seconds. It
is worth noting that this was the state-of-the-art in partial
MaxSAT before we conducted this work. Tuning qMaxSAT-
g2 instance-specifically (ISAC-GGA) we improve perfor-
mance only slightly. ISAC-MSC works clearly better and
is able to solve almost 92% of all instances. However, the
best performing approach is once more ISAC+ which solves
95% of all instances in time, closing the gap between per-
fect performance and the state-of-the-art in partial MaxSAT
before we conducted this study by over 60%.

Partial / Weighted MaxSAT The previous experiments
were conducted on the particular train/test splits. In this
section we conduct a 10-fold cross validation on the four
categories of the 2012 MaxSAT Evaluation (Argelich et
al. 2012). These are plain MaxSAT instances, weighted
MaxSAT, partial MaxSAT, and weighted partial MaxSAT.
The results of the cross validation are presented in Tables 3a
– 3d. Specifically, each data set is broken uniformly at ran-
dom into non overlapping subsets. Each of these subsets
is then used as the test set (one at a time) while the in-
stances from all other folds are used as training data. The ta-
bles present the average performance over 10-folds. Further-
more, all experiments were run with a 2,100 second time-
out, on the same machines we used in the previous section.
We use the the following solvers: akmaxsat_ls, akmaxsat,
bincd2, WPM1-2012, pwbo2.1, wbo1.6-cnf, QMaxSat-g2,
ShinMaxSat, WMaxSatz09, and WMaxSatz+. We also em-
ploy the highly parameterized solver QMaxSat-g2.

The MS data set has 600 instances, split among random,
crafted and industrial. Each fold has 60 test instances. Re-
sults in Table 3a confirm the findings observed in previous
experiments. In this case, ISAC-MSC struggles to improve
over the best single solver. At the same time ISAC+ nearly
completely closes the gap between BS and VBS.

The partial MaxSAT dataset is similar to the one used in
the previous section, but in this case we also augment it with
randomly generated instances bringing the count up to 1086
instances. The Weighted MaxSAT problems consist of only
crafted and random instances creating a dataset of size 277.
Finally, the weighted partial MaxSAT problems number 718.

Table 3: MaxSAT Cross-Validation

(a) MS MIX has 60 test instances per fold.

Average PAR1 PAR10 Solved % Solved
BS 117.0 600.5 5199 45.4 75.7
ISAC-MSC 146.3 603.3 4887 47.2 78.7
ISAC+ 134.5 487.7 3952 49.0 81.7
VBS 115.9 473.8 3876 49.2 82.0

(b) PMS MIX has 108 test instances per fold.

Average PAR1 PAR10 Solved % Solved
BS 68.0 822.3 7834 68.0 63.0
ISAC-MSC 100.1 328.3 2398 96.1 89.0
ISAC+ 98.4 232.7 1713 99.6 92.2
VBS 69.9 206.2 1476 100.8 93.3

(c) WMS MIX has 27 test instances per fold.

Average PAR1 PAR10 Solved % Solved
BS 50.2 302.7 2633 23.7 87.9
ISAC-MSC 65.6 323.5 2653 23.7 87.9
ISAC+ 58.8 184.3 1349 25.3 93.8
VBS 58.6 184.3 1349 25.3 93.8

(d) WPMS MIX has 71 test instances per fold.

Average PAR1 PAR10 Solved % Solved
BS 56.3 632.1 5949 51.1 72.0
ISAC-MSC 47.1 229.0 1914 64.7 91.1
ISAC+ 54.6 168.6 1511 66.0 92.9
VBS 15.5 131.8 1185 67.1 94.5

All in all, we observe that ISAC+ always outperforms the
original ISAC methodology significantly, closing the gap be-
tween ISAC-MSC and the VBS by 90%, 74%, 100%, and
52%. More importantly for the objective of this study, we
massively improve the prior state-of-the-art in MaxSAT. The
tables give the average performance of the single best solver
for each fold (which may of course differ from fold to fold)
in the row indexed BS. Note this value is better than what
the previous best single MaxSAT solver had to offer. Still,
on plain MaxSAT, ISAC+ solves 8% more instances, 58%
more on partial MaxSAT, 6% more on weighted MaxSAT,
and 29% more instances on weighted partial MaxSAT in-
stances within the timeout. This is a significant improvement
in our ability to solve MaxSAT instances in practice.

These results were independently confirmed at the 2013
MaxSAT Evaluation where our portfolios, built based on the
methodology described in this paper, won six out of eleven
categories and came in second in another three.

Conclusion

We have introduced an improved instance-specific algo-
rithm configurator by adding a portfolio stage to the exist-
ing ISAC approach. Extensive tests revealed that the new
method consistently outperforms the best instance-specific
configurators to date. The new method was then applied to
partial MaxSAT, a domain where portfolios had never been
used in a competitive setting. We devised a method to ex-
tend features originally designed for SAT to be exploited to
help characterize weighted partial MaxSAT instances. Then,
we built three instance-specific partial MaxSAT solvers for
crafted and industrial instances, as well as a combination of
those. Moreover, we conducted 10-fold cross validation in
the four categories of the 2012 MaxSAT evaluation. Based
on this work we entered our solvers in the 2013 MaxSAT
Competition, where they won six out of eleven categories
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and came second in another three. These results indepen-
dently confirm that our solvers mark a significant step in
solving weighted/partial MaxSAT instances efficiently.
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