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Introduction
Robots performing service tasks such as cooking and clean-
ing in human-centric environments require knowledge of
certain environmental states in order to complete tasks suc-
cessfully. For example, storage locations of specific ingre-
dients and utensils are needed for cooking; dirtiness of par-
ticular regions of space may be required for efficient clean-
ing. Typically these task-critical states cannot be directly ob-
served, and must be estimated by using (noisy) perception
and prior domain knowledge. Bayesian filtering solves such
estimation problems for a wide variety of state characteris-
tics: given a particular set of variables (uncertain states) to be
estimated, Bayesian filtering techniques most likely already
exist in that particular regime. While much effort has gone
into developing various estimators, less attention has been
placed on why the particular estimation problem arises.

In this work, I argue that state estimation should no longer
be treated as a black box. Estimating large sets of variables is
computationally costly; just because a technique exists to es-
timate the values of certain variables does not justify its ap-
plication. For robots whose ultimate mission is to complete
tasks, only variables that are relevant to successful comple-
tion should be estimated. Returning to cooking and clean-
ing, while cooking, a robot should not prioritize estimating
cleanliness of its surroundings. Similarly, while cleaning a
specific room, not only should a robot not be concerned with
estimating variables used in the cooking task, it should not
even estimate cleanliness of other rooms.

Of course, the selection of relevant variables is not so
clear-cut in practice. Lack of cleanliness in the kitchen en-
vironment may lead to food contamination during cooking.
Yet, as argued earlier, we want to avoid estimating all un-
certain variables at once. Instead, I propose to initially only
track a minimal set of directly-relevant variables, and grad-
ually increase the sophistication of models on-demand, in a
local fashion. This estimator refinement process is triggered
by violations in expectations of task success. With respect
to state estimation, if observed empirical quantities differ
significantly from the current probabilistic model, then this
indicates the model must be improved. In the remainder, I
demonstrate this through a proof-of-concept case study.
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A Tale of Two Estimators
Previously, I have developed two different estimators for the
world modeling problem, the estimation of objects’ states
within the world. Abstractly, on the level of object attributes,
a system exists that takes black-box attribute detections,
such as object type and pose, and estimates the objects that
are present (including their number, which is unknown) and
their attribute values (Wong, Kaelbling, and Lozano-Pérez
2013). Although this gives an elegant ‘semantic’ view of
objects as clusters in joint-attribute space, it ignores crucial
information related to the geometric realization of objects,
such as their physical extent in space. In particular, low-
level observations on whether specific ‘voxels’ of space are
occupied/free cannot be easily incorporated on the object-
attribute level. Such observations are traditionally tracked
using occupancy grids (Moravec and Elfes 1985), and we
developed a second estimator that attempts to fuse object-
attribute estimates with geometric occupancy grids (Wong,
Kaelbling, and Lozano-Pérez 2014). More details on the es-
timators are provided in the complementary material.1

The latter estimator can be viewed as a refinement of the
former, because it fuses extra observations with the former
model. The drawback of doing so is computational com-
plexity: because the method reasons over grids of space,
its representation scales with the volume of space covered,
which, under discretization, typically results in many more
grid cells compared to the number of objects seen. More-
over, the number of observations that need to be handled
differs greatly as well; for example, each image of a scene
with several objects on a table will only result in several
attribute detections, but the each image pixel generates an
occupancy observation (or more). Ideally, we would track
only the coarse object-attribute estimates (and only objects
with relevant attribute values), and if the estimate is not suf-
ficiently accurate (e.g., too much uncertainty), nearby occu-
pancy information is incorporated via the finer estimator.

The above behavior emerges from a attention-mismatch-
refinement framework, wherein a small subset of task-
relevant variables are estimated, and only upon differing
from expected task outcomes (e.g., success) is the estima-
tor incrementally refined by expanding the model class (with
finer models and/or including more variables).

1http://people.csail.mit.edu/lsw/papers/aaai2014-models.pdf
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(a) Task: Locate red (striped) objects in 1-D with 4 objects (b) Initial task-relevant estimator: Red (striped) objects only

(c) Naı̈ve estimator: Estimate all variables (d) After refinement: Includes task-correlated variables

Figure 1: Locating unknown red (striped) objects in a 1-D domain (line). Curves above objects represent Gaussian distributions
on the object’s centroid. Shaded boxes below the line show a discretized occupancy grid, where darker shades indicate greater
probabilities of being occupied. Different estimators keep track of different sets of variables; those not shown are ignored.

Case Study: 1-D Colored Intervals Domain
As a proof-of-concept, consider the domain and task de-
picted in Figure 1(a). The task is to locate (to some specified
uncertainty tolerance) red (striped) objects on the real line,
given a list of ‘images’ as input, each containing a small set
of noisy attribute (location, length, and color) detections and
a larger set of occupancy observations. The naı̈ve solution is
to run all estimators on all the observations, as depicted in
Figure 1(c). Since the task is to locate only red objects, this
approach, while sound, is inefficient, especially if the do-
main is significantly larger and contains few red objects.

Instead, consider the estimator in Figure 1(b). Only ob-
jects whose color attribute is red with high probability are
given attention; the rest is discarded/ignored. This is con-
ceivably the minimal estimator for the task. However, these
observations are very noisy (e.g., the output of an entire
object detection pipeline) and lead to large variance in the
posterior attribute distribution, above the required tolerance.
The performance of this estimator is therefore mismatched
for the task, and therefore estimator refinement is necessary.

The refinement process involves adding new variables to
the estimator and estimating their values based on a buffer of
lazily-stored recent observation values. Variables are ranked
and added (up to a threshold) based on a probabilistic con-
dition detailed in the complementary material. This leads to
the addition of two sets of variables. The first set, for the
left red object, is a subset of occupancy grid cells; their pri-
mary purpose is to distinguish the boundary of the object
more finely. The second set, for the right red object, is more
interesting: not only does it include associated occupancy
grid cells, it also includes the attribute-level variables of the
nearby blue object. This latter variable is helpful because of
the domain constraint that objects cannot overlap each other,
which correlates the states of the two objects. Incorporating
these new variables in the refined estimator sufficiently re-
duces the variance for successful task completion.

For details, please refer to the complementary material:
http://people.csail.mit.edu/lsw/papers/aaai2014-models.pdf

Future Directions
Apart from determining which variables to include in re-
finement, when to trigger this process is also important.
Currently this is determined by ad-hoc thresholds (for the
level of mismatch); ultimately they should be automati-
cally learned from task performance. Possible techniques for
handling this issue include execution monitoring (Petters-
son 2005), Bayesian optimization (Snoek, Larochelle, and
Adams 2012), and metareasoning (Cox and Raja 2011).

The presented framework should in principle work for
any hierarchy of estimators and models. Possible candi-
dates for testing this include using grammars that generate
increasingly-complex models (Grosse, Salakhutdinov, and
Tenenbaum 2012), and a recent approach that uses a hier-
archical decomposition of variables to produce a partition of
variables with varying fineness (Steinhardt and Liang 2014).
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