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Abstract

We describe a data complexity approach to kernel se-
lection based on the behavior of polynomial and Gaus-
sian kernels. Our results show how the use of a Gaus-
sian kernel produces a gram matrix with useful local in-
formation that has no equivalent counterpart in polyno-
mial kernels. By exploiting neighborhood information
embedded by data complexity measures, we are able to
carry out a form of meta-generalization. Our goal is to
predict which data sets are more favorable to particu-
lar kernels (Gaussian or polynomial). The end result is
a framework to improve the model selection process in
Support Vector Machines.

Introduction

Kernel methods have gained increased popularity in the ma-
chine learning community in recent years; one key strength
underlying these methods is the ability to map the origi-
nal training points into a higher dimensional feature space,
thereby facilitating the job of a low capacity (linear) learn-
ing machine. Mapping points into high dimensional spaces
has proved an effective strategy for classification in learn-
ing algorithms like Support Vector Machines (SVM), mainly
because the mapping does not imply an increase in the com-
plexity of the classifier, and because it is possible to rely on
an artifice known as the kernel trick, that obviates a precise
definition of the mapping functions.

The recent success of kernel classification methods has
prompted the design of several techniques that aim to im-
prove performance; but only a few studies have focused on
understanding the role that the kernel function plays in them.
Such information is stored in the gram matrix, or kernel ma-
trix. A kernel matrix has size n x n, where n represents the
number of elements in the data set; each entry stands as the
dot product of a pair of training elements mapped into a high
dimensional space. Past work proposes extracting proper-
ties from this matrix to perform kernel selection (Chen et al.
2006; You, Hamsici, and Martinez 2011), using three main
metrics: Fisher’s Discriminant, Bregman’s Divergence, and
Homoscedasticity.

Our study focuses on two of the most used kernel func-
tions: the polynomial and the Gaussian kernels. We analyze
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their behavior to extract information that can be instrumental
during the kernel selection process within SVM; our strat-
egy is to attend to the relationship between kernel behavior
and data complexity measures (Ho and Basu 2002), and to
capture such relationship in a simple decision tree model.

Kernel Functions

We can clearly state that kernel functions focus on local
neighborhoods around one argument vector, and disregard
the effects of points lying far away. In contrast, polynomial
kernels give equal weight to all examples in a training sam-
ple, and as such exhibit global behavior. The global vs lo-
cal distinction in kernel behavior can be made more evident
through an artificial problem. Assume a sample drawn from
two overlapped bivariate Gaussian distributions (each of size
n = 1000); each Gaussian corresponds to a different class
(positive or negative). An illustration of such artificial set-
ting is shown in Figure 1-left. We will refer to three different
reference points to evaluate the behavior of the kernel func-
tions: points A and B, with high class posteriors, and point
C with low class posteriors. If we fix one of the three points
above as the first argument in the kernel function, and use
all other points along the horizontal line from left to right
as the second argument, we would observe the plots shown
in Figure 1-middle (polynomial kernel) and Figure 1-right
(Gaussian kernel). This information can be exploited to pre-
dict the success or failure of a kernel function based on data
set characteristics.

Data Complexity Measures in Kernel Selection

To begin, we try to capture the different degrees of data lo-
cality based on the clusterability of the data using 7'1 mea-
sure (obtained from data complexity library DCol). T'1 cap-
tures the ratio of clusters to the size of the dataset (clusters
are hyper-spheres built through an iterative process using a
symmetrical relationship function). A value of 71 = 1 indi-
cates each training element is a cluster, pointing to the diffi-
culty of finding local neighborhoods.

Another data complexity measure, L2 — N3 (Ocegueda-
Hernandez and Vilalta 2013), computes the expected perfor-
mance gain (Neighborhood Expected Gain N EG) when a
local based classifier (Nearest Neighbor) is preferred over a
global classifier (linear classifier).
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Figure 1: Left. Artificial data set with positive class in red (+) and negative class in blue (x). Middle and Right. The behavior
of the polynomial and Gaussian kernel functions when applied to the artificial data set in combination with three different
reference points: A (black solid line), B (red dashed line), and C (green dotted line).
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Figure 2: Decision tree model that predicts a kernel family
based on data complexity metrics.

Our approach to kernel selection using data complexity
measures generates a simple decision tree model (see Fig-
ure 2) using 7'1 and N EG. We selected data sets with two
classes, no missing data, and numeric attributes. After com-
puting 7'1 and N EG, we trained our decision tree model
to predict the kernel family with best classification perfor-
mance (see Table 1).

Conclusions

Despite the popularity of kernel methods, there is not yet
a mechanism in place that can serve to guide the selection
of the kernel function. The goal of this study is to analyze
the behavior of polynomial and Gaussian kernels in SVMs,
and determine the kernel function that seems best suited for
a specific task. To achieve this goal, we analyzed and char-
acterized data sets using data complexity measures. Our ap-
proach is guided by the performance of SVMs on several
real world dataset, by metrics capturing data properties, and
by an estimate of the performance gain of a local classifier
over a linear classifier.
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Dataset Tl NEG Predicted kernel Best kernel
Arcene 1 -0.14 Polynomial Polynomial
Haberman 0.931 -0.068 Gaussian Gaussian
Hill Valley 1 0.08 Gaussian Gaussian
Tonosphere 0.946 | -0.014 Gaussian Gaussian
Musk 0.999 0.025 Gaussian Gaussian
Spambase 0.961 0.082 Gaussian Gaussian
SPECTF 1 -0.101 Polynomial Polynomial
Blood 0.985 -0.187 Gaussian Gaussian
Breast Cancer 0.998 0.002 Gaussian Gaussian
Bank Marketing 1 -0.013 Polynomial Gaussian
Census Income 0.998 -0.028 Gaussian Gaussian
Voting Records 1 -0.048 Polynomial Polynomial
Credit Approval | 0.995 | -0.049 Gaussian Gaussian
Bands 1 0.09 Gaussian Gaussian
Echocardiogram | 0.968 0.177 Gaussian Polynomial
Fertility 0.98 -0.01 Gaussian Gaussian
Hepatitis 1 -0.038 Polynomial Polynomial
Sonar 1 0.058 Gaussian Gaussian
Tic-tac-toe 1 0.021 Gaussian Gaussian

Table 1: Values of data complexity measures T1 and NEG,
and the predicted kernel given by our approach. The last col-
umn shows the actual bets approach; bold labels indicate a
difference with our prediction.
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