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Abstract
A key strategy for speeding up computation is to run in paral-
lel on multiple cores. However, on hard combinatorial prob-
lems, exploiting parallelism has been surprisingly challeng-
ing. It appears that traditional divide-and-conquer strategies
do not work well, due to the intricate non-local nature of the
interactions between the problem variables.
In this paper, we introduce a novel way in which parallelism
can be used to exploit hidden structure of hard combinatorial
problems. We demonstrate the success of this approach on
minimal set basis problem, which has a wide range of appli-
cations in machine learning and system security, etc. We also
show the effectiveness on a related application problem from
materials discovery.
In our approach, a large number of smaller sub-problems are
identified and solved concurrently. We then aggregate the in-
formation from those solutions, and use this to initialize the
search of a global, complete solver. We show that this strat-
egy leads to a significant speed-up over a sequential approach.
The strategy also greatly outperforms state-of-the-art incom-
plete solvers in terms of solution quality. Our work opens up a
novel angle for using parallelism to solve hard combinatorial
problems.

Introduction
Exploiting parallelism and multi-core architectures is a nat-
ural way to speed up computations in many domains. Re-
cently, there has been great success in parallel computation
in fields such as scientific computing and information re-
trieval (Dean and Ghemawat 2008). Over the past decade,
we have also witnessed tremendous improvements in combi-
natorial search, especially in fields such as Satisfiability test-
ing (SAT) and Mixed Integer Programming (MIP) (Le Berre
and Simon 2005) . These dramatic improvements are largely
due to a set of sophisticated heuristics that have been devel-
oped, including complex branching rules, fast propagation,
clause learning, and rapid restarts. These techniques allow
modern solvers to uncover and exploit the inner structure of
combinatorial problems, and lead to dramatic speedups in
many domains (Williams, Gomes, and Selman 2003). Ex-
ploiting parallelism to boost combinatorial search, however,
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remains a largely open research problem. A natural approach
is to use the divide-and-conquer approach, where the search
space is divided into sub-spaces, and each sub-space is allo-
cated to a parallel node (Chu, Stuckey, and Harwood 2008).
While this strategy looks very natural, it has had limited
success in the context of combinatorial search, mainly be-
cause of the complex, non-local interactions between vari-
ables and constraints. For example, in SAT solving it re-
mains an open problem to define an efficient mechanism
for effectively sharing and communicating clauses learned
by different processes (Katsirelos et al. 2013), which is one
of the key factors in modern day solvers’ efficiency. This
issue is so problematic that to date, the most successful
parallel combinatorial solvers avoid any sort of communi-
cation, and are based on the portfolio idea. That is, they
run a portfolio of solvers (of different type or with differ-
ent randomization) in parallel, so that they can terminate as
soon as one of the algorithms completes. (Xu et al. 2008;
Malitsky et al. 2011).

In this paper, we revisit the problem of exploiting par-
allelism to boost combinatorial search, taking a novel an-
gle which utilizes parallelism to uncover hidden structure
of hard combinatorial problems. We focus on a specific
NP-complete problem called the set basis problem, which
is an important problem with many applications, ranging
from roles-based access control systems (Vaidya, Atluri,
and Warner 2006), secure broadcasting (Shu, Lee, and Yan-
nakakis 2006), text and user preference mining (Miettinen et
al. 2008) to computational biology (Nau et al. 1978).

We introduce a novel parallel scheme, in which paral-
lelism is used as a prepossessing step to identify a promising
portion of search space to be explored by a complete sequen-
tial solver. Our approach leverages a nice dual property of
the set basis problem. In our new scheme, the original prob-
lem is first decomposed into a series of easier sub-problems
by relaxing some of the constraints. These sub-problems are
then solved concurrently using a set of parallel processes.
Next, the solutions to these sub-problems are aggregated to
obtain a good initial guess for the solution of the original
problem. A global sequential solver then searches for a so-
lution in an iterative deepening manner, starting from the
promising portion of the search space identified in the pre-
vious phase.

We empirically show that a global solver, when initial-
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Instance Solution Quality Run-time for
HPe Fast-Miner ASSO Complete Complete Method

No. k k′ E% k′ E% k′ E% k′ E% Parallel Sequential
A1 8 65 0 8 100 8 26.56 8 0 37.82 12029.14
A2 8 86 0 8 100 8 18.18 8 0 191.5 3878.4
A3 10 41 0 10 96.67 10 25 10 0 14.46 37857.41
A4 10 47 0 10 100 10 18.92 10 0 2633.06 15438.26
A5 10 58 0 10 100 10 52 10 0 199.82 21678.42
A6 12 51 0 12 96.3 12 25 12 0 395.49 65792.00
A7 12 63 0 12 100 12 38.46 12 0 6389.8 93111.72
A8 12 93 0 12 100 12 51.06 12 0 3942.67 > 48 hours

Table 1: Comparison of different methods on classic set basis problems. k is the optimal number of bases in these instances.
In the solution quality block, we show the number of bases k′ returned and the error rate E% for incomplete method HPe,
FastMiner and ASSO and the complete method. k′ > k means more bases are used than optimal. E% > 0 means the coverage
is not perfect. In the run-time block, Parallel and Sequential show the times (in seconds) to solve the instance using the complete
method, with and without the parallel scheme, respectively.

ized with proper information obtained by solving the sub-
problems, takes much less wall-clock time (typically, by sev-
eral orders of magnitude) to find the exact solution. For ex-
ample in table 1, it takes about 400 seconds to solve A6
with the parallel scheme, but over 18 hours sequentially. We
also show our strategy greatly outperforms state-of-the-art
incomplete solvers in terms of solution quality. We compare
our solver with HPe from (Ene et al. 2008), FastMiner from
(Vaidya, Atluri, and Warner 2006) and ASSO from (Mietti-
nen et al. 2008). As seen from table 1, HPe often requires far
more bases than optimal, and the bases found by FastMiner
and ASSO cannot cover the set exactly.

While the set basis problem has many natural applica-
tions, our research is motivated by a relatively new appli-
cation in the field of combinatorial materials discovery (Le
Bras et al. 2011). In this domain, the set basis problem is
used to find a succinct explanation of a large set of mea-
surements (X-ray diffraction patterns) that are represented
in a discrete way as sets. Mathematically, this corresponds
to a generalized version of the set basis problem extended
with extra constraints. Our parallel solver can be applied to
this generalized version of the set-basis problem as well, and
we demonstrate significant speed-ups on a set of challenging
benchmarks (see table 2).

We believe that our work opens up a novel angle for using
parallelism to solve hard combinatorial problems.
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