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Abstract

A method for inferring causal directions based on
errors-in-variables models where both the cause vari-
able and the effect variable are observed with measure-
ment errors is concerned in this paper. The inference
technique and estimation algorithms are given. Some
experiments are included to illustrate our method.

Introduction
Causal discovery is an essential topic in artificial intelli-
gence. Inferring the correct causal direction between two
correlated variables is the most basic but nontrivial problem
in this field. Generally speaking, causal directions can be de-
cided by the properly designed experiments. However, when
such controlled experiments are impossible to be performed,
it is necessary to discover the causal relationships from the
observed data sets.

Various models are proposed to infer the causal direc-
tions between two observed data sets in recent years. Most
of these models assume that at least one of the variables in
a causal-effect pair is accurately measured (Janzing et al.
2012; Hoyer et al. 2008). However, observations with mea-
surement errors for both the input and output of a natural
system are common and make the problems more difficult.

In several other models (Shimizu et al. 2006; Zhang and
Luo 2013), though all the variables are observed with er-
rors, the noises contaminate the input cause variables and
affect the models’ output. Thus, asymmetries are introduced
in these models by this assumption, and the cause effect di-
rections can be inferred by these asymmetries.

In our point of view, many natural processes are more like
the errors-in-variables models where both the causal and ef-
fect variables are observed with the measurement noises and
the measurement noises are not input to the natural systems,
just as show in (1)-(3). Thus, investigating the causal rela-
tionship in the EIV models is meaningful. In addition, since
the input noise does not affect the output, this symmetric
nature of the EIV model also makes it a challenging task.
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An EIV model can be described as:

y(i) = f(x(i)) (1)

yo(i) = y(i) + ey(i) (2)

xo(i) = x(i) + ex(i) (3)

where {xo(i), yo(i)} i = 1...N is the observed data set.
In this work, we will focus on the causal direction infer-

ence in EIV models.

Inference Analysis
Many natural systems can be described as (1). The output
variable y bares the information of the input variable x and
the information of the transfer function f . If the probability
density function of x is px(x), the pdf of y can be written as:

py(y) = px(g(y))|g′(y)| (4)

where function g is the inverse function of f , x(i) =
g(y(i)) = f−1(y(i)). In some of the following discussions,
the index variable i will be omitted for simplicity.

When the distribution of the cause variable x and the
transfer function f are chosen independently, the distribu-
tion of the effect variable y and the derived function of g
will be correlated. This can be intuitively observed from (4).
Thus, the causal direction can be decided by comparing the
degrees of correlations.

Note that if f is linear, the asymmetry between the two
directions will disappear because both f ′(x) and g′(y) are
constant. In this work, we restrict our discussion on non-
linear or piecewise linear transfer functions. In addition, we
assume that ex and ey have zero means and normal distri-
butions, and are independent with the corresponding actual
variables. Measurement noises which are consistent with
these assumptions occur quite often in practice.

In the following subsections we will investigate: 1)how to
calculate the correlation between functions; 2)how to obtain
the transfer functions, and 3)how to estimate the pdf of the
actual variables under measurement noises.

Let f1(t) and f2(t) be defined and integrable in the ob-
servation interval [a, b]. The interval can be determined by
the maximum and minimum value of the observations. The
correlation coefficient ρ can be calculated as:

ρ(f1, f2) = 〈f̄1(t), f̄2(t)〉 (5)
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where 〈·, ·〉 is the inner product operator and the values of
the functions are normalized in the interval [a, b] by f̄(t) =
(f(t)−mean(f(t)))/‖f(t)−mean(f(t))‖2.

In order to infer the causal direction, we chose f1(t) =
|f ′(t)|, f2(t) = px(t) for ρin, and f1(t) = |g′(t)|, f2(t) =
py(t) for ρout. The causal directions can be determined by
the fact that |ρin| < |ρout|.

Estimate Algorithms
Regression is a core research topic in many research fields.
The regression for EIV models encounters extra difficulties.
Since the derived functions of f and g are needed, a para-
metric model with explicit formulations are more suitable
for our task. We expand the function f in basis functions
ϕd, and let f(x) =

∑n
d=0 θdϕd(x). For EIV model the pa-

rameter vector θ can be obtained by:

min
θ
J1 = θT (Eϕ(xo)ϕ(xo)

T )θ(θTCθ)−1 (6)

where ϕ(xo) = [yo, ϕ0(xo), ..., ϕd(xo)]
T , and θ =

[−1, θ0, ..., θd]
T . An explicit estimator for the polynomial

basis was proposed in (Vajk and Hetthéssy 2003). This al-
gorithm requires a known covariance matrix C which can
be determined by σ2

ex and σ2
ey in our model. From (2)

and (3), we can obtain the probability density function by:
pxo

(x) =
∫
px(x− ε)pε(ε)dε. The pdf of xo is the convolu-

tion of pdf of x and ex. The deconvolution can be calculated
by the pdfs’ characteristic functions:

φx(t) = φxo(t)/φex(t) (7)

where the characteristic function φx(t) = Eeitx can be cal-
culated by FFT. Since we have assumed a zero mean gaus-
sian density, the rest problem is how to obtain the variances
of the noises ex and ey .

A noise variance estimate criterion based on instrumen-
tal variable for linear dynamic EIV models is proposed in
(Diversi, Guidorzi, and Soverini 2006). This criterion can be
extended to polynomial nonlinear models as:

min
σ2
ex

J2 = θT (E(ϕ̃ϕ̄T )T )E(ϕ̃ϕ̄T )θ (8)

s.t.σ2
ey = Ryy −Ryx(Rxx − Eϕ(ex)ϕ(ex)T )−1RTyx

where Ryx = Eyo[ϕ1(xo), ..., ϕd(xo)], Ryy = Eyoy
T
o and

Rxx = E[ϕ1(xo), ..., ϕd(xo)]
T [ϕ1(xo), ..., ϕd(xo)] can be

calculated directly. ϕ̄ = [y, ϕ0(x), ..., ϕd(x)]T , and ϕ̃ =
[ϕd+1(x), ..., ϕd+q(x)]T is the instrumental variable. Note
that although the accurate values of x, y and ex are not avail-
able, E(ϕ(ex)ϕ(ex)T ) and Eϕ̃ϕ̄T can be presented by the
observation xo, yo and σ2

ex , σ
2
ey , so σ2

ex is the only indepen-
dent variable in (8).

Algorithm and Experiments
We propose an EM style algorithm in this work to solve (6)
and (8) together as follow:

Step 1. Select the model order n and the length of the
instrumental variable q. Initialize the values of the optimiza-
tion variables in (6) and (8).

Step 2. Solve (6), get the result of θ(t) at tth step.
Step 3. Solve (8), and get σ2

ex(t). While |σ2
ex(t)/σ2

ex(t −
1)− 1| > δ, go back to Step 2.

Step 4. Calculate the pdf px(x) using (7)
Step 5. Calculate ρxy by (5)
Step 6. Exchange x and y, do Step 2 to Step 5 again to

calculate ρyx.
Step 7. If |ρxy| < |ρyx|, the causal direction is x causes y,

and if |ρyx| < |ρxy|, the causal direction is y causes x.
In this experiment, we compare the method in this paper

with the entropy based IGCI method proposed in (Janzing et
al. 2012). The data is from second order polynomial models.
θd is randomly generated between [0,2]. The input data x is
generated by a uniform distributed between -0.5 and 1.5. σ2

ex

and σ2
ey are equally selected from 0.1 to 0.3. The percentage

of successful causal direction inference for both methods are
shown in the fig.1. The method proposed in this paper gives
better results for data with measurement errors.
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Figure 1: Experiment Result of EIVCI (EIV Causal Infer-
ence) and the IGCI method.
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