Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

Finding the k-Best Equivalence Classes of
Bayesian Network Structures for Model Averaging

Yetian Chen and Jin Tian
Department of Computer Science
Towa State University
Ames, IA 50011, USA
{yetianc, jtian} @iastate.edu

Abstract

In this paper we develop an algorithm to find the k-
best equivalence classes of Bayesian networks. Our al-
gorithm is capable of finding much more best DAGs
than the previous algorithm that directly finds the k-best
DAGs (Tian, He, and Ram 2010). We demonstrate our
algorithm in the task of Bayesian model averaging. Em-
pirical results show that our algorithm significantly out-
performs the k-best DAG algorithm in both time and
space to achieve the same quality of approximation.
Our algorithm goes beyond the maximum-a-posteriori
(MAP) model by listing the most likely network struc-
tures and their relative likelihood and therefore has im-
portant applications in causal structure discovery.

Introduction

Directed graphical models, i.e., Bayesian networks (BN),
have been widely used in various tasks for probabilistic in-
ference and causal modeling (Pearl 2000; Spirtes, Glymour,
and Scheines 2000). One major challenge in these tasks is to
learn the structure of the model from data. Model selection
approach seeks out a BN structure G that maximizes certain
score metric, e.g., the posterior probability P(G|D) given
observed data D, and subsequent inference proceeds con-
ditionally on this single model. This maximum-a-posteriori
(MAP) structure, however, may provide inadequate sum-
mary in cases where a large number of distinct DAGs are
equally probable. This often happens in domains where the
amount of data is small relative to the size of the model
(Friedman and Koller 2003). In this situation, if what we
are interested in is learning model structure or causal rela-
tionships between variables, the MAP model may give un-
warranted conclusions.

Bayesian model averaging (BMA) provides a princi-
pled solution to model-uncertainty problem by integrating
all possible models weighted by their respective posterior
probabilities. Formally, for any hypothesis of interest h,
we compute the posterior probability of h as P(h|D)
> P(h|G,D)P(G|D). Then we can draw conclusions on
h based on P(h|D). For example, if we are interested in
some structural feature f (e.g., f(G) = 1 if such feature ex-

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2431

ists in DAG G, f(G) = 0 otherwise), we compute posterior
probability of f as P(f|D) =", f(G)P(G|D).

However, the exact computation of these posteriors re-
quires summation over all possible DAGs, the number of
which is super-exponential O(n!2™("~1)/2) with respect
to the number of nodes n. Thus, full Bayesian model av-
eraging is often intractable in practice. Although the re-
cently developed dynamic programming (DP) aglorithms
successfully reduced the computation to exponential time
and space, they have certain limitations. For example, the
algorithms in (Koivisto and Sood 2004; Koivisto 2006;
Tian and He 2009) can estimate modular features such as
arcs in exponential time and space, but fail in cases where
non-modular features such as paths (ancestor relations) are
concerned. To deal with non-modular features such as ances-
tor relations, the fastest algorithm takes O(n3™) time (Parvi-
ainen and Koivisto 2011).

Instead of doing full Bayesian model averaging, there are
several approaches developed to approximate the exhaustive
enumeration. The central idea is to select a representative
set of DAGs G, and estimate the posterior as P(h|D)
> ceg P(h|G,D)P(G|D)/> " qeg P(G|D). Among these
approaches are a group of methods based on Markov Chain
Monte Carlo (MCMC) technique, which provides a princi-
pled way to sample DAGs from their posterior distribution
P(G|D) (Madigan, York, and Allard 1995; Friedman and
Koller 2003; Eaton and Murphy 2007; Ellis and Wong 2008;
Grzegorczyk and Husmeier 2008; Niinimaki et al. 2011; Ni-
inim#ki and Koivisto 2013). However, MCMC-based meth-
ods suffer from the problem of no guarantee on the approx-
imation quality in finite runs (the Markov chains may not
mix and converge in finite runs).

Another approach proposes to construct G with a set of
high-scoring DAGs. In particular, (Tian, He, and Ram 2010)
studied the idea of using the k-best DAGs for model aver-
aging. The estimation accuracy could be monotonically im-
proved by spending more time to compute for larger k, and
the model averaging over these k-best models achieved good
accuracy in structural discovery. As they showed experimen-
tally, one main advantage of constructing k-best models over
sampling is that MCMC method exhibited a non-negligible
variability across different runs because of the randomness
nature of MCMC, while the k-best method always gave con-
sistent estimation due to its deterministic nature.

~
~

One issue with the k-best DAG algorithm (we will call
it kBestDAG) is that the best DAGs found actually coalesce
into a fraction k of Markov equivalence classes, where the
DAGs within each class represent the same set of conditional
independence assertions and determine the same statistical
model. It is therefore desirable if we are able to directly find
the k-best equivalence classes of Bayesian networks.

Searching in the equivalence class (EC) space has been
studied in (Madigan et al. 1996; Chickering 2002a; 2002b;
Castelo and Kocka 2003). The potential advantages of using
the EC space instead of DAG space include: (1) The cardi-
nality of EC space is smaller than DAG space; (2) Search-
ing in the EC space improves the efficiency of search be-
cause moves within the same EC can be avoided. The first
advantage does not alleviate substantially the learning com-
plexity as showed in (Gillispie and Perlman 2001) that the
ratio of the number of DAGs to the number of equivalence
classes reaches an asymptote around 3.7 with as few as ten
nodes. Searching in the EC space may also suffer from over-
head due to compulsory additional operations, e,g., convert-
ing DAGs to its equivalence class partial DAG representa-
tion and vice versa (Chickering 2002b).

In this paper, we developed an algorithm called kBestEC
to find the k-best Markov equivalence classes of Bayesian
nework structures. kBestEC has slightly greater time com-
plexity than kBestDAG, but has the same space complex-
ity as kBestDAG. Since space complexity is the bottleneck
of the algorithms with current computer, kBestEC is capa-
ble of finding much more best DAGs than kBestDAG. We
tested kBestEC on the task of BMA to compute the poste-
rior probabilities of edge structure features on several data
sets from the UCI Machine Learning Repository as well as
synthetic data sets. Our experiments showed that kBestEC
significantly outperformed the kBestDAG algorithm in both
time and space usages to achieve the same quality of ap-
proximation. Thus, in the problem of searching for the k-
best DAGs, benefits from working in EC space significantly
outweigh the overhead.

Our algorithm provides a useful tool for reseachers in-
terested in learning model structures or discovering causal
structures. For example, biologists are interested in re-
covering gene regulation networks from data. Recovering
the MAP network alone often does not give the full pic-
ture. There may exist a number of equally probable DAGs
(or equivalence classes) with distinct structures when the
amount of data is small relative to the size of the model.
For example, in our experiments (shown in Table 1, and Fig-
ure S2 in supplemental materials (Chen and Tian 2014)),
there exist 10 equivalence classes having the same best score
for Tic dataset; the MAP network of Vote dataset is just
2.4 times more likely than the 10th-best equivalence class.
Our algorithm should be a very useful tool for understand-
ing model structures in these situations by listing the most
likely models and their relative likelihood.

Preliminaries
Formally, a Bayesian network is a DAG that encodes a
joint probability distribution over a set of random variables
V = {v1, ..., v, } with each node of the graph representing a

2432

variable in V. In this paper we will use nodes and variables
interchangeably. And we let Pa$ C V' \ {v} denote the par-
ent set of any node v in G. In the problem of learning BNs
from a data set D, which consists of complete ¢.i.d samples
from the joint distribution P(V"), we seek a BN that best ex-
plains the data D, evaluated by some scoring function, e.g.,
In P(G, D). In this paper, we assume decomposable score
such that

score(G : D)

(D

= ZUGV score,(Pal : D),
where score(G : D) will be written as score(G) for short
in the following discussion.

Now we give a few of definitions and theorems that de-
scribe the semantics and properties of BNs. .
Definition 1 (Verma and Pearl 1990) Two DAGs are
equivalent if they represent the same set of conditional
independence assertions among the set of variables.

Definition 2 A v-structure in a DAG G is an ordered
triple of nodes (u,v,w) such that G contains the directed
edges u — v and w — v and v and w are not adjacent in G.

Theorem 1 (Verma and Pearl 1990) Two DAGs G and

G are equivalent if and only if they have the same skeletons
and the same v-structures.

Definition 3 [Score equivalence]

Let score(G) be some scoring function that is decompos-
able. We say that it satisfies score equivalence if for all
equivalent DAGs G and G we have score(G) = score(G')
for any data set D.

Score equivalence is the nature of several common scoring
functions such as MDL, BDe and BIC. As a result, the set
of equivalent DAGs are indistinguishable by these scoring
functions. Thus, our goal is to find “a best”, instead of “the
best”. However, finding a best BN is NP-hard (Chickering,
Geiger, and Heckerman 1995). Recently, a family of DP
algorithms have been developed to find the optimal BN in
time O(n2™) and space O(2™) (Singh and Moore 2005;
Silander and Myllyméki 2006). The central idea exploits the
fact that a DAG must have a sink s. Considering any s € V,
the best DAG over V' with s as sink can be constructed by
piecing together the best DAG G, , over V/ \ {s} and the
best parent set Pa* C V' \ {s} assuming G\ g5y 1s already
known. Then we choose the best sink s that optimizes this
construction. Applying this idea to all W C V results in a
DP algorithm that finds the best DAG for all 2™ possible W
recursively.

Later, (Tian, He, and Ram 2010) generalized the algo-
rithm to recursively find the k-best DAGs and proposed to
make inference by averaging over these DAGs. Instead of
considering a single best DAG, their algorithm maintains a
list of k-best DAGs for each node set W C V. However,
these k-best DAGs are redundant in the sense that they coa-
lesce into only a fraction k of equivalence classes and from
one DAG we can efficiently infer other members in its class.
Thus, it is desirable if we are able to directly find the k-best

equivalence classes. In next section, we present such an al-
gorithm.

Finding the £-best Equivalence Classes of
Bayesian Networks

The following definitions will be useful in the development
of our algorithm.

Definition 4 [Score for sub-graph Gy, W C V]

For any decomposable score, define score(Gy)
> vew Scorey(PaSW) for any DAG Gy over any node set

W CV, where PavGW is the parent set of v in Gyy.

Definition 5 [Graph growth operator &]

For any Gw, v € V \ W, Pa, C W, define
Gwuwy = Gw @ Pay as an operation growing Gw
10 Gwugvy S-t. Gwygoy contains all edges in Gy and the
directed edges from Pa, to v.

Proposition 1 For any decomposable score func-
tion that satisfies score equivalence, we have
score(Gw) score(Gy,) if Gw and Gy are equiv-
alent over node set W C V.

The proof of Proposition 1 is given in supplemental
materials (Chen and Tian 2014). Proposition 1 says the
score equivalence actually holds for DAGs over any subset
W C V. This property allows us to recursively construct
top equivalence classes over all W C V.

Now we outline the algorithm for finding the k-best equiv-
alence classes given in Algorithm 1. It has three logical
steps:

1. Compute the family scores Score,(Pa,) for all n2"~1
(v, Pa,,) pairs (lines 1-3);

2. Find the k-best parent sets in candidate set C' for all C' C
V\ {v} forall v € V (lines 4-6);

3. Recursively find the k-best equivalence classes over all
node sets W C V (in lexicographic order) (lines 7—13).

The first two steps follow naturally from those steps in (Si-
lander and Myllyméki 2006) and (Tian, He, and Ram 2010)
and we will use their algorithms.

We will use the idea of DP to find the k-best equivalence
classes recursively for all W C V, while the kBestDAG al-
gorithm in (Tian, He, and Ram 2010) finds the k-best DAGs
recursively. However working in the equivalence class space
requires more careful treatment. It is not immediately clear
that the idea of exploiting sink will work in the equivalence
class space.

For anode set W C V., let ECY,, i € {1,...,k} denote
the top k equivalence classes over W. For each ECY;,, we
use a DAG over W, denoted as G, to represent the whole
equivalence class.! For each W C V, we keep track of k

! An alternative way to represent a EC is called completed par-
tially DAG (CPDAG), consisting of a directed edge for every com-
pelled edge and an undirected edge for every reversible edge in
the EC (Chickering 2002a). We choose DAG over CPDAG be-
cause: (1) encoding a DAG is space more efficient than encoding a

2433

DAGs, G%W, ..., G each of them comes from one of the top

k equivalence classes. Now assume we have identified such
k-best ECs GW\{ pooes GW\{ } for all s € . Finding the

k-best ECs Giy, ..., GY,, for W takes two sub-steps:

3a. Foreach s € W, identify the k-best ECs G%/Vys, s
over W with s as a sink (line 10 in Algorithm 1).
Let G}y, ...,GY, be the k-best nonequivalent DAGs
among Ugew {k-best ECs G%,V’s, e G"ius over W with
s as a sink} (line 11 in Algorithm 1).

In 3a, to find the k-best ECs GWS,.. GWS, let

bestPas(C,j) denote the j-th best parent set for node
s in the set of candidate parents C. Define function
valuew, s(i,) by

k
GWs

3b.

valuew s(i, 7)
score(G@V\{S}) + scores(bestPas (W \ {s},7)).

2

Algorithm 1 Finding the k-best Equivalence Classes

1: forallv € V do

Compute score, (Pay) for all Pa, CV \ {v}.

: end for

: forallv € V do

Find the k-best parent sets {best Pa,(C, 1),

i =1, ..., k} in parent candidate set C' for all

C C V \ {v} recursively.

: end for

: for all W C V in lexicographic order do

A priority queue best DAGs(W') with size limit of
k, initialized to &. The elements in best D AGs(W')
is denoted by Gy, € {1, ..., k}.

9: for all s € W do

NREWD

I -N

10: Find the k-best G‘I/V,S, e G"},’S with s as a sink
from {G@V\{S} @ bestPas(W \ {s},7) :
i=1,.,kj=1,..k}

11: Foralli € {1,..., k}, insert Giy,, into queue
best DAGs(W) if
score(Gly,,) > min{score(Gy),i =1,...,k}
and G%/V,s is not equivalent to any DAG in
best DAGs(W).

12: end for

13: end for

14: return best DAGs(V)

We can find the k-best scores among {valuew,s(2,7) : 4,7 €
{1, ...,k}} by performing a best-first search with root node
(1, 1) ‘and children of (i,7) being (i+ 1, 7) and (4,5 + 1)

suggested in (Tian, He, and Ram 2010). Let GWS, Gws

denote the k& DAGs GW\{S} @ bestPas,(W \ {s},J)

corresponding to the k-best scores. Now do they represent
the k-best ECs? In other words, can some of these DAGs
be equivalent to each other, or are there other DAGs having
better scores than these DAGs? One concern is that in

CPDAG, which makes significant difference when we have to keep
k2™ networks in memory; (2) growing a DAG using & results in
a valid DAG while growing CPDAG using & results in a PDAG
which need be converted to a CPDAG with extra effort.

constructing Gy, ., ..., G¥, . we only use one representative
DAG G@V\ (s} from its corresponding EC. Is it safe to ignore

other DAGs equivalent to Gy, (., ? The following theorem

guarantees that Gy, ..., G%, . indeed represent the k-best
ECs. ' 7

Theorem 2 The k DAGs corresponding to the k-best
scores output by the best-first search represent the k-best
ECs over W with s as a sink.

Proof. We first prove that these k& DAGs are mutually
nonequivalent. For any G7y, . and Gy, ., p,q € {1,....k},
p # g, we have two different cases. '
Case I Giy,s and Gy, are constructed from Gy ¢y
and G{,V\{s} respective;lyz Gll/[/:\{s}""’ G sy Over W\ {s}
are nonequivalent. This implies that any two of them, say,
G%,V\ (s} and G{/V\ (s} Are either have different skeletons

or have the same skeleton but different v-structures. Since
adding parents Pas for s changes neither the skeleton nor

any v-structures in Gy, and G%V\{S}, Gy, and GYy, |
must either have different skeletons or have the same skele-
ton but different v-structures. Therefore, G€V cand G%V , are
not equivalent.

Case 2: G, and G, , are constructed from the same
G%,V\ (s} but with different parent sets for s. Since two differ-
ent parent sets for s have different nodes, the sets of edges re-
spectively added to Gy, 1 to construct Gy, and G, are
different. As a result, G, , and GY, . have different skele-
tons. Therefore, they are not equivalent.

Now we prove that the output G%MS, .‘.,G’IiV’S are the
k-best over W with s as a sink. All we have to show
is that for each equivalence class EC{/V\{S}, it is safe
to keep just one DAG G{,V\ (s} while discarding others.
That is, using another member G’ %V\ (s}> We are unable
to construct a DAG G’y
that score(G'w,) > score(Gjy,) and it is nonequiva-

I;V\{s} (&) Pas SU.Ch

lent to any of G%MS, ...,G"iv_s. Assume we can construct
such G'w s, then we can construct an equivalent DAG by
Gw,s = G%,V\{s} ® Pas. By Proposition 1, score(Gw,s)

score(G'w,s) > score(G’fMS). Best-first search guarantees

that this Gy, is in the list of Gy, ..., Gy, . This contra-

dicts the assumption that Gy, is nonequivalent to any of
1 k

Gwss - Gy s

Thus, Theorem 2 holds. O

After 3a, we have the k-best ECs over W with s as a sink for
each s € W. 2 In 3b, we identify Giy, ..., G% as the k-best
DAGs from Ugew {k-best Gy, ..., Gy, over W with s as
a sink} that are mutually nonequivalent. For this purpose, we
need explicitly check the equivalence of two DAGs if they
are constructed from distinct sink s, s’. We first compare the

There may be less than k such DAGs for W when || is small,
but the number reaches k very rapidly as W grows.

2434

scores. If the scores are not equal, two DAGs are nonequiva-
lent. Otherwise, we need check whether they are equivalent.
The algorithm for checking the equivalence of two DAGs is
ommited here, yet included in the supplemental materials.

Theorem 3 The k DAGs G4, ..., G¥ output by Algorithm 1
represent the k-best ECs over V.

Proof. For each W C V, {Gw over W}= Usew {Gw
over W with s as a sink}, therefore the k-best nonequiva-
lent DAGs over W are the k-best among Ugcy{ k-best ECs
Gy ...,G{},’S over W with s as a sink}. Thus, for each
W CV,Gly,..,GY, obtained from Step 3b represent the

k-best ECs over W. By induction, G, ..., G¥, output from
Algorithm 1 represent the k-best ECs over V. O

Algorithm 2 EnumEquivalentD AGs(Gy)

1: list < {Gv}

2: REV < FindReversibleEdges(Gv)
3: for each subset CE C REV do

4 Construct a new G'V by reversing edges CE in Gy
5 if CHECKACYCLICITY(G/V): true then

6: flag <true
7
8
9

for each v participating in some edge of CE do

if CheckV Struc(v, Gv, G/V) = false then
flag +false and break

end if
11: end for
12: if flag = true then
13: list.add(GY)
14: end if
15: end if
16: end for

17: return list

Now we give a theoretical discussion on the run-time and
space complexity of the algorithm. Step 1 takes O(n2" 1)
time and O(2"~!) space. Step 2 takes O(klogk(n —
1)2772) time and O(k2"~ ') space in the worst case. Do-
ing a best-frst search to find the k-best elements from space
{(i,7) : i,5 € {1,...,k}} takes O(klogk) time. Check-
ing the equivalence of two DAGs has a worst-case run-
time of O(|W|d%,), where dy is the maximum size of

parents in Gy and G/W. Thus, the worst-case run-time
for step 3 is Doy _; (i) [W(klogk + k[W|d,)

O(n2" k(logk + ”TdQ)), where d is the maximum size of
the parents computed in Step 2. > The worst space complex-
ity is O(k2™) since we have to memorize no more than k
DAGs foreach W C V.4

For the same k, step 3 for finding the k-best ECs is

log k+nd? /2
log k+nd/2

times slower in the worst case than step 3 in

3Checking whether two DAGs Gy and G;V are the same has
a run-time of O(|W|dw). Therefore the run-time for kBestDAG
algorithm is O(n2" 'k(log k + %)).

*We say worst space because for small WW’s, there may exist
less than k equivalence classes.

kBestDAG for finding the k-best DAGs. Thus, kBestEC has
slightly larger time complexity than kBestDAG. Both algo-
rithms have the same space requirement.

Bayesian Model Averaging Using the %-best
Equivalence Classes

We have presented an algorithm to obtain the k-best DAGs
G, ...,G% representing the k-best equivalence classes
ECY,, ..., ECE. One application of our algorithm is to com-
pute the posterior of hypothesis of interests with BMA. If the
application is to evaluate class-invariant structural features
such as Markov blanket or to predict new observations, the
problem can generally be formulated as computing the pos-
terior of the hypothesis h by

" w;P(h|Gi,, D)P(Gi,, D)
S wiP(GY, D)

P(h|D) = by N E)

where w; is a weight we assign to each equivalence class
ECY,. For example, if we want to treat each equivalence
class as a single statistical model (Madigan et al. 1996;
Castelo and Kocka 2003), we simply set w; = 1. If we’d
like model averaging over original DAG space, we set w;
|ECY|, i.e, the number of DAGs in equivalence class ECY,.
If the application is to evaluate structural features such
as an arrow u© — v or a path u ~» v that is not necessar-
ily class-invariant, we have to enumerate the DAGs in each
equivalence class in order to compute the posterior

Zf:l P(§/7D) ZGEEC(’, P(h|G,D)
i |ECY|P(GY,, D)

P(h|D) = “)

Algorithm 2 sketches an algorithm to enumerate all
DAGs in an equivalence class and to compute |ECY,| in the
mean time. Given a DAG Gy, we first determine the set of
reversible edges, i.e., their directions vary among the equiva-
lent DAGs (line 2). (Chickering 1995) provided a O(|E¢g,, |)
algorithm to find all compelled edges, i.e, their directions are
invariant among the DAGs in an EC. We slightly modified
this algorithm so that it outputs the set of reversible edges
REV in Gy . All possible DAGs equivalent to Gy can be
enumerated by reversing all possible edge combinations in
REV . If the generated “DAG” passes the test of acyclicity
and v-structures, it is a DAG equivalent to G'y. The over-
all algorithm takes O((|V|+|Eg,, |[+|Eq, [?)2/#*V]) in the
worst case. Note here we implemented a straightforward al-
gorithm for enumerating all DAGs in an EC. Its run-time is
negligible compared with the time for finding the k-best ECs
due to the fact that the number of DAGs in an EC is pretty
small.

Experiments
We implemented Algorithm 1 in C++ . To see how it per-
forms, we consider the problem of computing the posteriors

SkBestEC is available at http://www.cs.iastate.edu/~jtian/
Software/AAAI-14-yetian/KBestEC.htm

2435

for all n(n—1) possible directed edges using Eq. (4) by enu-
merating all DAGs in each EC. We used BDe score (Hecker-
man and Chickering 1995) for score;(Pa;) with a uniform
structure prior P(G) and equivalent sample size 1. We com-
pare the performances of our kBestEC algorithm with the
kBestDAG algorithm, in terms of run-time, memory usage
and quality of approximation. For approximation quality, we
define cumulative posterior probability density of the set of
DAGs in G used to perform model averaging by

A = Zceg P(G|D) = M

P(D)

We used the algorithm in (Tian and He 2009) to compute
the exact P(D) value. Note that A < 1 and the larger of A,
the closer of the estimation to the full Bayesian model aver-
aging. In practice, it is often reasonable to make predictions
using a collection of the best models discarding other mod-
els that predict the data far less well, even though the large
amount of models with very small posteriors may contribute
substantially to the sum such that A is much smaller than
1 (Madigan and Raftery 1994). Therefore, we introduce an-
other measure for the quality of estimation. We define the
relative ratio of the posterior probability of the MAP struc-
ture Gpr 4 p over the posterior of the worst structure G v
in the k-best ECs or DAGs by

\ — P(Gypap|D) P(Gprap,D)
P(Gumin|D) P(Gumin, D)’

Note that both A and A measures were used in (Tian, He,
and Ram 2010).

&)

(6)

kBestEC v.s. kBestDAG

We tested both algorithms on datasets from the UCI Ma-
chine Learning Repository as well as several synthetic
datasets. All experiments were performed on a desktop with
2.4 GHz Intel Duo CPU and 4 GB of memory. The results
are presented in Table 1. Besides k£, A and A, we list the
number of variables n, sample size m, combined run-time
T,y for finding the k-best parent sets and finding the k-
best ECs (or DAGs) (lines 4-14 in Algorithm 1), combined
run-time 7, for enumerating DAGs (Algorithm 2) (0 for
kBestDAG algorithm) and computing the posteriors, overall
run-time 7', total number of DAGs stored in memory |G/,
memory usage M (in MB), number of DAGs covered by the

k-best ECs |G|, and the average |DAG]

EC
times are measured in seconds. e

Our first observation is that, for all datasets, the running
time 7, spent in enumerating all DAGs in k ECs is insignif-
icant compared to the time for finding the k-best parent sets
and ECs T),,, and the total time 7". The total running time is
dominated either by computing the local scores or by finding
the k-best parent sets and the k-best ECs.

For the same k, BMA over k-best ECs has significantly
better approximation quality than BMA over the k-best
DAGs (see A values). This is straightforward since k ECs
cover more than £ DAGs and absorb more posterior prob-
ability density. |G| records the number of DAGs covered
by the k-best ECs. Further, we see that kBestEC did spend

ratio % All run-

Table 1: Experimental Results

kBestEC kBestDAG
Data n m k |Tpn To T |Gul M A A Ge| Gl|T,, T. T |Gu] M A A
Asia 8 500 1 [0.008 0.00I 7.17 256 0.05 0.0IT 1 3 3 10.006 0 7.11 256 0.05 0.0036 1
3 0.0080 7.12 750 0.12 0.011 1
10 0.06 0.01 7.20 2255 0.35 0.064 4.5 43 4.3 [0.02 0.01 7.13 2283 0.36 0.022 2.3
43 0.1 0.0l 7.22 8502 1.31 0.064 4.5
100 |0.65 0.04 7.81 16981 2.61 0.225 17.2 467 4.67|027 002 7.4 17793 2.74 0.101 6.9
467 3.1 007 10.3 77614 11.9 0.225 17.2
1000/11.8 0.4 19.3 106631 16.5 0.525 129 4694 4.69|10.9 0.13 18.1 132503 20.4 0.316 28.2
4694 209 0.65 217 476045 73.6 0.525 129
le+4|528 3.8 539 875329 135 0.805 1602 44864 4.49|887 1.28 896 969503 150 0.628 270
Tic 10958 1 [0.03 0.01 7.79 1024 0.16 0.059 1 7 7 10.04 0.01 7.81 1024 0.16 0.0084 I
7 0.1 0.01 7.81 6922 1.06 0.059
10 10.43 0.01 8.16 9777 1.50 0.563 1 67 6.7 |0.06 0.01 7.9 9826 1.51 0.084 1
67 1.44 0.01 9.17 59952 9.17 0.563 1
100 [5.18 0.07 13.1 86213 13.2 0.759 1005 673 6.73|2.4 0.02 10.3 87936 13.4 0.694 3.6
673 12.6 0.07 51 545247 83.3 0.759 1005
1000|102 0.73 111 677869 104 0.759 b5.le+7 7604 7.6 [85.3 0.2 93.3 753873 115 0.759 2.2e+4
7604 4226 0.8 4237 4967225 759 0.759 5.le+7
Syn-T 15 100 I [1.2 0.02 182 32768 5.01 1.69¢5 I 7 7 0.8 0.0l I8.2 32768 5.0 4.23¢-6 1
4 3.0 00120 130919 20 1.69e-5 1
10 [26.2 0.06 43.2 326696 49.9 3.34e-4 1.9 114 11.4]10.4 0.01 27.5 326801 49.9 4.14e-5 1.1
100 |497 0.1 514 3224431 492 1.65e-3 4.4 1084 10.8|321 0.02 338 3230906 493 3.03e-4 1.9
114 390 0.02 407 3681594 562 3.34de-4 1.9
Syn-2 15 200 T [0.96 0.04 24.7 32768 5.01 1.65¢:3 1 I3 I3 [0.77 0.01 24.5 32768 5.0 1.27¢4 1
10 |26.8 0.3 50.8 326696 49.9 0.0129 2.5 185 18.5/10.3 0.01 34.0 326801 49.9 1.27e-3 1
13 15.2 0.01 39.0 424742 64.8 1.65¢-3 1
100 |512 2.28 538 3224431 492 0.0483 10.3 1808 18.1|331 0.01 355 3230906 493 0.0081 1.9
185 811 0.03 836 5967226 911 0.0129 2.5
Vote 174351 621 0.09 172 131072 20.0 0.0125 1 3 3 3.8 001 172 131072 20.0 0.0042 1
3 10.5 0.01 177 393180 60 0.0125 1
10 [122 1 289 1309470 200 0.0871 24 30 3 |51 0.0l 218 1309606 200 0.0376 1.3
30 270 0.01 437 3924566 599 0.0871 2.4
100 |2684 5.34 2865 13031570 1988 0.302 10.8 318 3.18/1946 0.02 2150 13041226 1990 0.172 4.3

more time for the same & as it requires extra overhead to
respect equivalence. Both algorithms consume almost the
same memory, which is consistent with the theory. An inter-
esting observation is that kBestEC sometimes used slightly
less memory than kBestDAG (see Asia k = 1000, k = le4,
Tic k = 1000). This can be explained by comparing |G|,
the total number of DAGs stored in memory. kBestEC has
smaller |Gps| than kBestDAG. This is because for small
W C V, we usually have less than k distinct DAGs, and
much less than k£ ECs to be stored. The effect is additive
and in some cases causes big saving in both memory and
time. For example, in case of Asia k = le4, |G| is signifi-
cantly smaller for kBestEC than that for kBestDAG, such that
kBestEC (T = 539 seconds) even ran faster than kBestDAG
(T = 896 seconds).

Now we compare the two algorithms under the assump-
tion that the same quality of approximation is achieved, i.e.,
they find the same number of DAGs, and therefore achieving
the same A values. In order to achieve the same A as using
k-best ECs, we have to run kBestDAG for a larger k' = |Gy |
(the number of DAGs in the k-best ECs). With the same
A, we observed that kBestDAG required significantly more
time and memory. This is consistent with theoretical predic-
tion of time ratio Wm and space ratio % And for
some A that kBestEC could easily achieve with the available
resource, kBestDAG failed. In particular, for Syn-2 dataset,
BMA over the top 100 ECs is equivalent to a BMA over
the top 1808 DAGs. The former used only 492 MB memory,
while the latter requires about 9 GB by estimation. Thus,
kBestEC significantly outperformed kBestDAG in space and
time usage to achieve the same quality of approximation.

A systematic comparison on 7T}, of two algorithms when

2436

they find the same number of DAGs is presented in Figure

. Tpn kpestpac(k') ;o .
1. It plots the ratio B r— for k' = |G|, against

log, k for all five data sets. A red dashed horizontal line is
drawn for where the ratio is 1. The figure clearly shows that
kBestEC' is more efficient than kBest D AG in finding the
same number of DAGs.

45 T ST S S S
40
35 .
30 g Vot
54 Y L

Ton kBestDAG(K) Ton kBestec(K)

Figure 1: Comparison of run-times of two algorithms to
achieve the same A values.

Structural Discovery

One important application of our algorithm is in (causal)
structural discovery. To evaluate the performance of the al-
gorithm, we randomly generated several network structures
over 15 variables and used both kBestDAG and kBestEC to
estimate the posteriors of all 210 edges. We also compare
them to posteriors computed from exact method (Tian and

He 2009). The detailed results are presented in Figure S1 in
the supplemental materials (Chen and Tian 2014). It shows
the accuracy for model averaging over the k-best ECs is sig-
nificantly better than that over the k-best DAGs as expected.

Another observation concerns about the reliability of us-
ing MAP model for structural inference. We first examine
the \ value (Table 1). For Tic data set, the top 10 ECs are
all equally probable. For data set Syn-1, the MAP equiva-
lence class is only 1.9 times more probable than the 10-th
best equivalence class, and only 4.4 times more probable
than the 100-th best equivalence class. Similar results can
be observed on Syn-2 and Vote data sets. This reflects that
in many cases there are a significant number of distinct mod-
els explaining the data equally well and using MAP model
for structure inference or causal reasoning is not reliable.
Our algorithm will be a handy tool in understanding model
structures in this kind of situation. A detailed comparison of
the top 10 ECs for Tic data set is presented in Figure S2 in
the supplemental materials (Chen and Tian 2014). It shows
these 10 ECs agree only on one edge and disagree on other
edges (even the skeleton). Further, most of the edges have
probability below 0.5, indicating the high uncertainty on the
network structure.

Conclusions and Future Work

In this paper we developed an algorithm to find the k-best
equivalence classes of Bayesian networks. It is the first ap-
proach to our knowledge for finding the k-best equivalence
classes. We show that our algorithm is significantly more
efficient than the previous algorithm that directly finds the
k-best DAGs (Tian, He, and Ram 2010). Our algorithm has
applications in BMA and causal structure discovery.

Both kBestDAG and kBestEC are based on the DP algo-
rithm. Recently, alternative approaches to finding the opti-
mal BN have been proposed and shown being competitive
or faster than the DP algorithm. These approaches include
A* search (Yuan, Malone, and Wu 2011; Yuan and Mal-
one 2012; Malone and Yuan 2012; 2013) and Integer Lin-
ear Programming (ILP) (Jaakkola et al. 2010; Cussens 2011;
Bartlett and Cussens 2013). The A* search based algorithm
URLearning formulates the learning problem as a short-
est path finding problem and employs A* search algorithm
to explore the search space. A potential future work is to
explore the feasibility of generalizing the A* based algo-
rithm to find the k-best DAGs or ECs. ILP based algorithm
GOBNILP casts the structure learning problem as a linear
program and solves it using the SCIP framework (Cussens
2011). In such setting, it is possible to rule out specific BNs
with linear constraints. This allows GOBNILP to iteratively
find the top £ BNs in deccreasing order of score (Bartlett
and Cussens 2013). Thus, another future work is to compare
kBestDAG, kBestEC with GOBNILP in finding the k-best
BNs.

Acknowledgments

We thank the anonymous reviewers for valuable comments.

2437

References

Bartlett, M., and Cussens, J. 2013. Advances in Bayesian net-
work learning using integer programming. In Proceedings of
the 29th Conference on Uncertainty in Artificial Intelligence
(UAI-13), 182-191.

Castelo, R., and Kocka, T. 2003. On inclusion-driven learn-
ing of Bayesian networks. The Journal of Machine Learning
Research 4:527-574.

Chen, Y., and Tian, J. 2014. Supplemental materials to this pa-
per. http://www.cs.iastate.edu/~jtian/papers/AAAI-14-Yetian-
Supplement.pdf.

Chickering, D. M.; Geiger, D.; and Heckerman, D. 1995.
Learning Bayesian networks: Search methods and experimental
results. In Proceedings of the Fifth International Workshop on
Artificial Intelligence and Statistics, 112—128.

Chickering, D. M. 1995. A transformational characterization of
equivalent Bayesian network structures. In Proceedings of the
Eleventh conference on Uncertainty in artificial intelligence,
87-98.

Chickering, D. M. 2002a. Learning equivalence classes of
Bayesian-network structures. Journal of Machine Learning Re-
search 2:445-498.

Chickering, D. M. 2002b. Optimal structure identification with
greedy search. Journal of Machine Learning Research 3:507—
554.

Cussens, J. 2011. Bayesian network learning with cutting
planes. In Proceedings of the 27th Conference on Uncertainty
in Artificial Intelligence (UAI-11):, 153-160.

Eaton, D., and Murphy, K. 2007. Bayesian structure learning
using dynamic programming and MCMC. In Proceedings of
the 23th Conference on Uncertainty in Artificial Intelligence.

Ellis, B., and Wong, W. H. 2008. Learning causal Bayesian net-
work structures from experimental data. Journal of the Ameri-
can Statistical Association 103(482).

Friedman, N., and Koller, D. 2003. Being Bayesian about net-
work structure. a Bayesian approach to structure discovery in
Bayesian networks. Machine learning 50(1-2):95-125.

Gillispie, S. B., and Perlman, M. D. 2001. Enumerating markov
equivalence classes of acyclic digraph dels. In Proceedings of
the Seventeenth conference on Uncertainty in artificial intelli-
gence, 171-1717.

Grzegorczyk, M., and Husmeier, D. 2008. Improving the struc-
ture MCMC sampler for Bayesian networks by introducing a
new edge reversal move. Machine Learning 71(2-3):265-305.

Heckerman, D., and Chickering, D. M. 1995. Learning
Bayesian networks: The combination of knowledge and statis-
tical data. In Machine Learning, 20-197.

Jaakkola, T.; Sontag, D.; Globerson, A.; and Meila, M. 2010.
Learning Bayesian network structure using lp relaxations. In
International Conference on Artificial Intelligence and Statis-
tics, 358-365.

Koivisto, M., and Sood, K. 2004. Exact Bayesian structure dis-
covery in Bayesian networks. The Journal of Machine Learning
Research 5:549-573.

Koivisto, M. 2006. Advances in exact Bayesian structure dis-
covery in Bayesian networks. In Proceedings of the 22nd Con-
ference in Uncertainty in Artificial Intelligence.

Madigan, D., and Raftery, A. E. 1994. Model selection and
accounting for model uncertainty in graphical models using oc-
cam’s window. Journal of the American Statistical Association
89(428):1535-1546.

Madigan, D.; Andersson, S.; Perlman, M.; and Volinsky, C.
1996. Bayesian model averaging and model selection for
markov equivalence classes of acyclic digraphs. In Commu-
nications in Statistics: Theory and Methods, 2493-2519.

Madigan, D.; York, J.; and Allard, D. 1995. Bayesian graphical
models for discrete data. International Statistical Review/Revue
Internationale de Statistique 215-232.

Malone, B., and Yuan, C. 2012. A parallel, anytime, bounded
error algorithm for exact Bayesian network structure learning.
In Proceedings of the Sixth European Workshop on Probabilis-
tic Graphical Models (PGM-12).

Malone, B., and Yuan, C. 2013. Evaluating anytime algorithms
for learning optimal Bayesian networks. In Proceedings of the
29th Conference on Uncertainty in Artificial Intelligence (UAI-
13).

Niinimiki, T., and Koivisto, M. 2013. Annealed impor-
tance sampling for structure learning in Bayesian networks. In
23rd International Joint Conference on Artificial Intelligence
(IJCAI-13).

Niiniméki, T. M.; Parviainen, P.; Koivisto, M.; et al. 2011. Par-
tial order MCMC for structure discovery in Bayesian networks.
In Proceedings of the Twenty-Seventh Conference Conference
on Uncertainty in Artificial Intelligence (UAI-11).

Parviainen, P., and Koivisto, M. 2011. Ancestor relations in the
presence of unobserved variables. In Machine Learning and
Knowledge Discovery in Databases. 581-596.

Pearl, J. 2000. Causality: models, reasoning and inference,
volume 29. Cambridge Univ Press.

Silander, T., and Myllymaéki, P. 2006. A simple approach for
finding the globally optimal Bayesian network structure. In
Proceedings of the 22th Conference on Uncertainty in Artificial
Intelligence, 445-452.

Singh, A. P, and Moore, A. W. 2005. Finding optimal Bayesian
networks by dynamic programming. Technical report, CMU-
CALD-05-106, Carnegie Mellon University.

Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
prediction, and search, volume 81. The MIT Press.

Tian, J., and He, R. 2009. Computing posterior probabilities
of structural features in Bayesian networks. In Proceedings of
the Twenty-Fifth Conference on Uncertainty in Artificial Intel-
ligence, 538-547.

Tian, J.; He, R.; and Ram, L. 2010. Bayesian model averaging
using the k-best Bayesian network structures. In Proceedings
of the Twenty-Sixth Conference on Uncertainty in Artificial In-
telligence.

Verma, T., and Pearl, J. 1990. Equivalence and synthesis of
causal models. In Proceedings of the Sixth Annual Conference
on Uncertainty in Artificial Intelligence, 255-270.

Yuan, C., and Malone, B. 2012. An improved admissible
heuristic for learning optimal Bayesian networks. In Proceed-
ings of the 28th Conference on Uncertainty in Artificial Intelli-
gence (UAI-12).

Yuan, C.; Malone, B.; and Wu, X. 2011. Learning optimal
Bayesian networks using a* search. In Proceedings of the

2438

Twenty-Second international joint conference on Artificial In-
telligence, 2186-2191.

