
Tree-Based On-Line Reinforcement Learning

André da Motta Salles Barreto
Laboratório Nacional de Computação Cientı́fica

Petrópolis, RJ, Brazil

Abstract

Fitted Q-iteration (FQI) stands out among reinforce-
ment learning algorithms for its flexibility and ease of
use. FQI can be combined with any regression method,
and this choice determines the algorithm’s statistical
and computational properties. The combination of FQI
with an ensemble of regression trees gives rise to an al-
gorithm, FQIT, that is computationally efficient, scal-
able to high dimensional spaces, and robust to noise.
Despite its nice properties and good performance in
practice, FQIT also has some limitations: the fact that
an ensemble of trees must be constructed (or updated)
at each iteration confines the algorithm to the batch sce-
nario. This paper aims to address this specific issue.
Based on a strategy recently proposed in the literature,
called the stochastic-factorization trick, we propose a
modification of FQIT that makes it fully incremental,
and thus suitable for on-line learning. We call the result-
ing method tree-based stochastic factorization (TBSF).
We derive upper bounds for the difference between the
value functions computed by FQIT and TBSF, and also
show in which circumstances the approximations co-
incide. A series of computational experiments is pre-
sented to illustrate the properties of TBSF and to show
its usefulness in practice, including a medical problem
involving the treatment of patients infected with HIV.

1 Introduction
Batch reinforcement-learning algorithms learn a decision
policy based on a fixed set of sample transitions. Among
them, fitted Q-iteration (FQI) stands out for its flexibility and
ease of use. Probably because of this, FQI has been adopted
by researches and practitioners, and today it is possible to
find several reports of successful applications of the algo-
rithm (Ernst, Geurts, and Wehenkel 2005; Riedmiller 2005;
Ernst et al. 2006; Kalyanakrishnan and Stone 2007).

FQI can be combined with any regression method, and
this choice determines the algorithm’s statistical and com-
putational properties. In their original work, Ernst, Geurts,
and Wehenkel (2005) suggest the use of an ensemble of
regression trees. The authors point out several advantages
of these models, such as their computational efficiency,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their scalability to high dimensional spaces, and their ro-
bustness with respect to irrelevant variables, outliers, and
noise. The combination of FQI with regression trees (FQIT)
has also been extensively tested in practice, in general
with very good results (Ernst, Geurts, and Wehenkel 2005;
Ernst et al. 2006).

Despite its nice properties and good performance in prac-
tice, FQIT also has some limitations: the fact that an ensem-
ble of trees must be constructed (or updated) at each iteration
confines the algorithm to the batch scenario. This paper aims
to address this specific issue. Based on a strategy recently
proposed in the literature, called the stochastic-factorization
trick, we propose a modification of FQIT that makes its com-
putational complexity independent of the number of sample
transitions. The resulting method, tree-based stochastic fac-
torization (TBSF), is significantly faster than its precursor
and can be used on-line.

We derive TBSF and analyze it theoretically and empir-
ically. We prove that the distance between the approxima-
tions computed by FQIT and TBSF is bounded. We also
show empirically that, since our algorithm can process more
sample transitions in the same amount of time, it can match
FQIT’s performance using less computation.

2 Reinforcement Learning
We consider the basic framework of reinforcement learn-
ing: an agent interacts with an environment and selects ac-
tions in order to maximize the amount of reward received in
the long run (Sutton and Barto 1998). As usual, we assume
that this interaction can be modeled as a Markov decision
process (MDP, Puterman, 1994). An MDP is a tuple M ≡
(S,A, P a, ra, γ), where S is the state space and A is the (fi-
nite) action set. For each action a ∈ A, P a(·|s) is the next-
state distribution upon taking action a in state s. The reward
received at transition s a−→ s′ is given by Ra(s, s′). Usually,
one is interested in the expected reward resulting from the
execution of a in s, that is, ra(s) = Es′∼Pa(·|s){Ra(s, s′)}.
The discount factor γ ∈ [0, 1) gives smaller weights to re-
wards received further in the future.

The algorithm presented in this paper can be applied to
MDPs with continuous and discrete state spaces, and in both
cases the strategy will be to derive a discrete model. When
both the state and action spaces are finite, an MDP can be

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2417

represented in matrix form: each function P a becomes a ma-
trix Pa ∈ R|S|×|S|, with paij = P a(sj |si), and each function
ra becomes a vector ra ∈ R|S|, with rai = ra(si).1

The goal of the agent is to find an optimal policy, that is,
a mapping π∗ : S 7→ A that maximizes the expected sum of
discounted rewards. When the MDP is finite, dynamic pro-
gramming can be used to find an optimal policy π∗ ∈ A|S|
in polynomial time (Littman, Dean, and Kaelbling 1995).
Starting from Q0 = 0, the value-iteration update rule,
Qt+1(si, a) = ra(si)+γ

∑|S|
j=1 p

a
ij maxb∈AQt(sj , b), with

t > 0, gives the optimal t-step action-value function, from
which the t-step policy can be obtained by selecting any
π(t)(si) ∈ argmaxaQt(si, a). As t → ∞ the function
Qt(si, a) approaches Q∗(si, a), the value function associ-
ated with all optimal policies π∗.

In reinforcement learning it is assumed that the MDP is
unknown, and the agent must learn a policy based on transi-
tions sampled from the environment. If the process of learn-
ing a decision policy is based on a fixed set of sample tran-
sitions, we call it batch reinforcement learning. In on-line
reinforcement learning the computation of a decision policy
takes place concomitantly with the collection of data.

3 Fitted Q-Iteration
Fitted Q-iteration (FQI) is a batch reinforcement-learning
algorithm proposed by Ernst, Geurts, and Wehenkel (2005)
based on the works by Gordon (1995) and Ormoneit and
Sen (2002). Let Sa ≡ {(sai , rai , ŝai)}, i = 1, 2, ..., na, be
sample transitions associated with action a ∈ A, where
sai , ŝ

a
i ∈ S and rai ∈ R. FQI keeps an approximation

Q̂ : S × A 7→ R which is successively updated in the
following way. Starting from Q̂0 = 0, at each iteration
t > 0 a training set Ht ≡ {[(sai , a),Qt(s

a
i , a)]} composed

of n =
∑

a∈A na input-output pairs is constructed, with
Qt(s

a
i , a) = rai + γmaxb Q̂t−1(ŝi, b). Then, a regression

procedure uses this training set to compute the next approx-
imation, Q̂t = fit(Ht).

The combination of the function approximator Q̂(s, a)
with the regression method fit(·) gives rise to different in-
stances of FQI. Here we will focus on approximators of
the form Q̂(s, a) =

∑
b∈A

∑nb

j=1 κ
a(s, sbj)Q̂(sbj , a), where

κa(s, sbj) : S × S 7→ R can be intuitively seen as a mea-
sure of the similarity between s and sbj . We will assume that
κa(s, sbj) = 0 if a 6= b, which simplifies the expression
above to

Q̂(s, a) =

na∑
j=1

κa(s, saj)Q̂(saj , a). (1)

When Q̂t(s, a) satisfies (1) it is fully defined by the values
of the states sai ; hence, FQI’s regression step reduces to up-
dating these values:

Q̂t+1(sai , a) = Qt+1(sai , a) = rai + γmaxb Q̂t(ŝ
a
i , b).

(2)
1Throughout the paper vectors will be denoted by small bold-

face letters and matrices will be denoted by capital boldface letters.

Combining (2) and (1), we can see that

Q̂t(ŝ
a
i , b) =

nb∑
j=1

κb(ŝai , s
b
j)
[
rbj + γmax

c
Q̂t−1(ŝbj , c)

]
.

(3)
It is well known that if

κb(ŝai , s
b
j) ≥ 0 and

nb∑
j=1

κb(ŝai , s
b
j) = 1, (4)

then Q̂t converges to a fixed point as t→∞ (Gordon 1995;
Ormoneit and Sen 2002). This is easy to see if we recast FQI
as the solution of a derived MDP as follows. Let Ŝ be the set
composed of the n states ŝai . Define

R̂a(ŝbi , ŝ
c
j) = rcj and P̂ a(ŝcj |ŝbi) = κa(ŝbi , s

c
j). (5)

Comparing (3) and (5), it is easy to see that FQI
is equivalent to value iteration in the MDP M̂ ≡
(Ŝ, A, P̂ a, r̂a, γ) = (Ŝ, A, P̂a, r̂a, γ), where r̂a(ŝbi) =∑

c∈A
∑nc

j=1 κ
a(ŝbi , s

c
j)r

c
j =

∑na

j=1 κ
a(ŝbi , s

a
j)raj .

Antos, Munos, and Szepesvári (2007) have analyzed the
finite-sample performance of FQI for the case in which
the class of policies is restricted and the regression proce-
dure fit(·) is a weighted least-squares method. Farahmand
et al. (2009) provide similar analysis for the scenario where
the least-squares problem is regularized. Here we will focus
on the version of FQI originally proposed by Ernst, Geurts,
and Wehenkel (2005), which we discuss next.

Fitted Q-Iteration Using Trees
Ernst, Geurts, and Wehenkel (2005) suggest that the approx-
imation Q̂(s, a) be represented by an ensemble of regression
trees. Besides all the advantages discussed in Section 1, en-
sembles of trees can be defined in order to satisfy (1) and (4).

Let T a be a set of |T a| trees T a
i associated with action

a ∈ A. Each T a
i partitions the state space inma

i sets T a
ij . The

value associated with partition T a
ij at iteration t is simply the

average of the values of states sal that belong to T a
ij , that is:

v̂t(T
a
ij) =

∑na

l=1 I{sal ∈ T a
ij}Qt(s

a
l , a)∑na

l=1 I{sal ∈ T a
ij}

, (6)

where I{true} = 1 and I{false} = 0 is the indicator func-
tion. We define

∑na

l=1 I{sal ∈ T a
ij} = |T a

ij |. Recall that,
when using an ensemble of trees, the value of a state ŝai is
the average value of all partitions ŝai belongs to, that is:

Q̂t(ŝ
a
i , b) =

1

|T b|
∑|Tb|

l=1

∑mb
l

u=1 I{ŝai ∈ T b
lu}v̂(T b

lu)

=
1

|T b|

|Tb|∑
l=1

mb
l∑

u=1

1

|T b
lu|

I{ŝai ∈ T b
lu}

∑nb
j=1 I{sbj ∈ T b

lu}Qt(s
b
j , b).

(7)

There are several methods available to build a regression
tree T a based on a training setH (see Ernst, Geurts, and We-
henkel’s article and references therein, 2005). If we assume
that the structure of the trees is fixed throughout FQIT’s it-
erations, then we can look at them as just a specific way of

2418

defining κb(ŝai , s
b
j). Comparing (1), (2), and (7), we see that

when using an ensemble of trees

κb(ŝai , s
b
j) =

1

|T b|

|T b|∑
l=1

mb
l∑

u=1

1

|T b
lu|
I{ŝai ∈ T b

lu and sbj ∈ T b
lu}.

(8)
It is clear that κb(ŝai , s

b
j) ≥ 0. Also, if ŝai ∈ T b

lu, the summa-
tion

∑nb

j=1 I{ŝai ∈ T b
lu and sbj ∈ T b

lu} = |T b
lu|. Since there

are |T b| such summations, we have
∑nb

j=1 κ
b(ŝai , s

b
j) = 1.

Therefore, κb(ŝai , s
b
j) satisfies (4).

The fact that each FQI iteration involves solving a regres-
sion problem with n training examples makes it impracti-
cal for larger domains, depending on the choice of regres-
sion method fit(·) and the computational resources avail-
able. Moreover, even if Q̂ is updated through a simple rule
like (2), the computational complexity of each FQI iteration
will necessarily depend on n, which clearly precludes the
use of the algorithm as an on-line method. In the next section
we discuss a possible way to circumvent these limitations.

4 Tree-Based Stochastic Factorization
In order to derive our algorithm we will resort to the
“stochastic-factorization trick,” an idea introduced by Bar-
reto and Fragoso (2011) and later explored by Barreto, Pre-
cup, and Pineau (2011; 2012) in reinforcement learning.

Given a finite MDP M ≡ (S,A,Pa, ra, γ), let Pa =
DaKa be |A| factorizations in which Da ∈ Rn×m and
Ka ∈ Rm×n are stochastic matrices. Also, let Dar̄a = ra

for all a. Then, if we swap the factors Da and Ka, we
obtain another transition matrix P̄a = KaDa that retains
some basic properties of Pa (Barreto and Fragoso 2011).
The insight is that, instead of solving M , one can solve
M̄ ≡ (X̄, A, P̄a, r̄a, γ), where X̄ is a set of m states that
will be defined shortly. Based on the optimal value func-
tion of M̄ , Q̄∗, an approximation of Q∗ can be computed as
Q̃(si, a) =

∑m
j=1 dijQ̄

∗(x̄j , a). When m � n, replacing
M with M̄ significantly reduces memory usage and com-
puting time.

The stochastic-factorization trick can be applied to any
finite MDP. Since when (1) and (4) hold FQI is equiva-
lent to the solution of a discrete MDP M̂ , as discussed in
Section 3, in principle the technique described above can
be used with any approximator Q̂ that has these proper-
ties. Note though that, depending on the choice of Q̂, it
is not clear how to efficiently compute DaKa = P̂a and
Dar̄a = r̂a (see (5)). One possible strategy is to select a set
of m representative states s̄l ∈ S and use the approximation
κb(ŝai , s

b
j) ≈

∑m
l=1 κ(ŝai , s̄l)κ

b(s̄ls
b
j) (Barreto, Precup, and

Pineau 2011). Although this is a valid strategy in general,
it only provides an approximate factorization of the MDP.
Besides, one has to find a way to appropriately define the
representative states s̄l. We now show that, in contrast, in
the particular case in which Q̂ is represented by an ensem-
ble of trees, it is possible to determine an exact factorization
of the MDP M̂ without any computation.

Stochastic Factorization
In order to derive our algorithm we will need two assump-
tions:

(i) FQIT builds the ensembles of trees at iteration t = 1
using any algorithm and then keeps the structure of the
trees fixed for t > 1. This means that the partitions
T a
ij remain the same throughout the execution of the

algorithm, although their values v̂(T a
ij) may change.

(ii) The number of partitions in the ensembles T a is the
same for all a, that is,

∑|Ta|
l=1 m

a
l = m, a ∈ A.

As mentioned before, Assumption (i) is needed to guarantee
that the approximations Q̂(ŝa, b) are updated through (2).
Changing the structure of the trees from one iteration to an-
other corresponds to defining a new MDP M̂t at each itera-
tion t, and thus the guarantee of convergence to a fixed point
is lost. We will discuss how to relax Assumption (i) later.
Assumption (ii) is necessary to guarantee that the MDP M̄
is well defined, as will become clear shortly.

In order to facilitate the exposition, we will refer to sai as
sj , with j =

∑a−1
b=1 nb + i (the same for rai and ŝai). Simi-

larly, we will use T̄ a
k to refer to T a

ij , with k =
∑i−1

l=1 m
a
l + j.

Finally, we introduce the function act : {1, 2, ..., n} 7→
{1, 2, ..., |A|} as act(i) = 1+{max a such that

∑a
b=1 nb <

i}—that is, act(i) is the action associated with si, ri, and ŝi.
Using these definitions and (5) and (8) we can write

p̂a
ij =

m∑
l=1

1

|Ta|
I{ŝi ∈ T̄a

l }
1

|T̄a
l |

I{act(j) = a and sj ∈ T̄a
l }.

Thus, if we define the elements of Da and Ka as

daij =
1

|T a|
I{ŝi ∈ T̄ a

j } and

kaij =
1

|T̄ a
i |
I{act(j) = a and sj ∈ T̄ a

i },
(9)

it is clear that DaKa = Pa for all a. In order to have a
complete factorization of the MDP M̂ , it remains to find
vectors r̄a such that Dar̄a = r̂a for all a ∈ A. We know
from (5) that r̂a(ŝi) =

∑n
j=1 κ

a(ŝi, sj)rj , which implies
that r̂a = P̂ar (r ∈ Rn is the vector composed of the sam-
pled rewards). Now, if we define r̄a = Kar, we can write
r̂a = P̂ar = DaKar = Dar̄a, and we have an exact fac-
torization of M̂ .

Once we have determined Da, Ka, and r̄a, we can apply
the stochastic-factorization trick to the MDP M̂ . Let P̄a =
KaDa for all a ∈ A. From (9), we have

p̄a
ij =

1

|Ta||T̄a
i |

∑n
l=1 I{act(l) = a and sl ∈ T̄a

i and ŝl ∈ T̄a
j }. (10)

Thus, we simply count the number of transitions in Sa that
started in T̄ a

i and divide it by the number of transitions that
started in this partition and ended in T̄ a

j . Since the states si
and ŝi simultaneously belong to |T a| partitions T̄ a

i , in order
to obtain p̄aij this fraction must be further divided by |T a|.
As for the rewards, from the definition of r̄a we have

r̄ai =
1

|T̄ a
i |

n∑
j=1

I{act(j) = a and sj ∈ T̄ a
i }raj , (11)

2419

which is simply the average of the rewards raj associated
with states sj that belong to T̄ a

i . We see an interesting in-
version here: while in the MDP M̂ the reward function
R̂a(ŝi, ŝj) = rj is defined by the end-state ŝj , as shown
in (5), here r̄ai only depends on the initial states si.

Because of Assumption (ii), we know that P̄a ∈ Rm×m

and r̄a ∈ Rm×m for all a ∈ A. Thus, we can define the MDP
M̄ ≡ (X̄, A, P̄a, r̄a, γ). Note that, unlike Barreto, Precup,
and Pineau (2011), we do not explicitly define X̄ ⊂ S as
a set of representative states. In the particular case in which
the trees in all ensembles T a have the same structure—that
is, T a

i and T b
i partition S in the same way—we can think of

the partitions T̄i as the states of M̄ . In general, though, the
states x̄i ∈ X̄ are not subsets of S.

Algorithm
As discussed, when Assumption (i) holds, FQIT builds the
MDP M̂ at iteration t = 1 and then solves it iteratively
through value iteration. Based on (10) and (11) we can de-
fine an algorithm that does the same using M̄ instead of M̂ .
At any iteration t, the value function Q̂t(ŝi, a) computed by
FQIT, given by (7), can be approximated as Q̃t(ŝi, a) =∑m

j=1 d
a
ijQ̄t(x̄j , a). More generally, from the definition of

Da in (9) we see that the action-values of a state s not
necessarily in the sets Sa can be computed as Q̃t(s, a) =
1/|T a|

∑m
j=1 I{s ∈ T̄ a

j }Q̄t(x̄j , a). We call the proposed al-
gorithm tree-based stochastic factorization (TBSF).

One immediate advantage of replacing FQIT with TBSF
is the potential reduction on the computational cost. Let ηmin

denote the minimum number of points required to split a
node during the construction of the trees (see Section 6).
Each iteration of FQIT involves the construction (or up-
date) of |A| ensembles of trees, each one requiring at least
O(|T a|na log(na/ηmin)) operations, and the improvement
of the current decision policy, which is O(n|A|). In con-
trast, TBSF executes O(|T a|na log(na/ηmin)) operations
only once per action, to build P̄a and r̄a, and then performs
only O(m2|A|) operations in each iteration—assuming the
worst-case scenario where the matrices P̄a are dense. As
one can see, when m � n, replacing FQIT with TBSF can
result in significant gains in terms of computation.

There is however a stronger reason to adopt TBSF in-
stead of FQIT. Suppose that at iteration t a new batch of
sample transitions Sa

2 ≡ {(sai , rai , ŝai)} becomes available,
with a ∈ A. One way of incorporating the new data into
FQIT’s approximation is to set Q̂t(ŝ

a
i , a) = 0 for all states

ŝai ∈ Sa
2 and then proceed normally from there. However,

since FQIT’s mechanics require that all transitions used in
the approximation are available, as shown in (2), there is an
inbuilt limit on the amount of data that this algorithm can
process. This is why FQIT is inherently a batch-mode al-
gorithm. In contrast, TBSF can extract the information con-
tained in the sample transitions and then discard them, which
means that it can also be used in the on-line regime.

Let S1 ≡ Sa and S2 ≡ Sa
2 (we drop the “a” superscript in

the sets Sa and Sa
2 to improve readability). Let P̄S1 and r̄S1

be matrix P̄a and vector r̄a computed by TBSF through (10)

and (11) using only the na transitions in S1. We assume that
we have already discarded the data in S1 and want to com-
pute P̄S1∪S2 and r̄S1∪S2 from P̄S1 , r̄S1 , and S2.

To have an algorithm that is as general as possible, we
consider the possibility that the ensembles change with the
new data, either because new partitions are added to the trees
already in the ensemble or because new trees are added al-
together. We denote the two ensembles by T S1 and T S1∪S2 .
We also define m′i as the number of partitions associated
with the ith tree of T S1∪S2 and set m′ =

∑|TS1∪S2 |
i=1 m′i.

If m′ > m, we set r̄al = 0 and p̄alj = p̄ajl = 0 for
l = m+ 1,m+ 2, ...,m′, j = 1, 2, ...,m′, and all a ∈ A.

We start by rewriting (10) as p̄S1
ij = zS1

ij /(|T S1 |zS1
i),

where zS1
i =

∑na

l=1 I{sl ∈ T a
i } and zS1

ij =
∑na

l=1 I{sl ∈
T a
i and ŝl ∈ T a

j } (note that act(l) = a for all l). Then, if
we define the variables zS2

i and zS2
ij in an analogous way, we

have
p̄S1∪S2
ij = (zS1

ij + zS2
ij)/

[
|T S1∪S2 |(zS1

i + zS2
i)
]
. (12)

In order to avoid keeping zS1
ij for all i, j, we rewrite (12) as

p̄S1∪S2
ij =

p̄S1
ij |T S1 |zS1

i + zS2
ij

|T S1∪S2 |(zS1
i + zS2

i)
. (13)

Similarly, if we define bS1
i =

∑na

j=1 I{sj ∈ T S1
i }rj and

proceed in the same way as above starting from (11), we
arrive at the update rule

r̄S1∪S2
i =

r̄S1
i zS1

i + bS2
i

zS1
i + zS2

i

. (14)

Since zS2
i , zS2

ij , and bS2
i are computed based on S2, and

|T S1∪S2 | is readily available, in order to have an incre-
mental algorithm we only have to keep |T S1 | and zS1

i for
i = 1, 2, ...,m. Note that, when T S1 = T S1∪S2 , the model
computed through (13) and (14) is the same that would be
built if the transitions in S1 ∪ S2 were used all at once.

Algorithm 1 shows a generic step by step description of
TBSF. As one can see, several variations of the algorithm
are possible. If the variable itmax defined in line 3 is set to 1,
TBSF reduces to a batch method; otherwise it is incremental.
If itmax > 1 and the distribution µ is updated based on Q̃—
line 8—TBSF is an on-line method. If in addition n = 1,
we have an algorithm that does not store sample transitions
(line 4). Finally, if in line 5 new trees or new partitions are
created with it > 1, we have an adaptive method (this is
akin to relaxing Assumption (i) for FQIT). It is also trivial
to modify the algorithm for the scenario where the sample
transitions are given.

5 Theoretical Analysis
In this section we analyze some properties of TBSF. We will
focus on the batch version of the algorithm, that is, the case
in which itmax = 1 in Algorithm 1. We will assume that As-
sumptions (i) and (ii) hold, and compare the approximation
Q̂t computed by FQTI after t iterations with the approxima-
tion Q̃t computed by TBSF after t applications of the value-
iteration update rule in M̄ (line 7 of Algorithm 1). Our first
result depends on the following assumption:

2420

Algorithm 1 TBSF

1: Input: fit . Algorithm to construct the trees
µ . Distribution over S ×A

2: Output: Approximate value function Q̃
3: for it← 1, 2, ..., itmax do
4: Collect n transitions based on µ and store in Sa

5: T a ← fit(Sa) for all a ∈ A . Construct or grow
6: Update M̄ using (13) and (14)
7: Apply t iterations of value iteration to Q̄
8: Modify µ based on Q̃(s, a) . Optional
9: Sa ← ∅ for all a ∈ A . Discard transitions

(iii) The number of trees in the ensembles is the same, that
is, |T a| = |T | for all a ∈ A.

Note that the structure of the trees can differ. Let r̄+ be the
vector whose elements are r̄+

i = maxa∈A r̄
a
i . Analogously,

let r̄− be the vector with entries r̄−i = mina∈A r̄
a
i . Let R̄+

max

be the sum of the |T | largest elements of r̄+ and let R̄−min be
the sum of the |T | smallest elements of r̄−. Then, we can
show the following:

Proposition 1 For t > 0, |Q̂t(ŝi, a) − Q̃t(ŝi, a)| ≤
1

|T |
γ − γt

1− γ
(
R̄+

max − R̄−min

)
for any ŝi and any a.

The proof of Proposition 1 is in the supplementary ma-
terial (Barreto 2014). Note that the derived bound corre-
sponds to the maximum difference between the values of
two states belonging to an MDP whose rewards are re-
stricted to [R̄−min/|T |, R̄+

max/|T |]. This reflects the special
structure of the MDPs M̂ and M̄ imposed by the trees; in
the general case the interval above would be replaced by
[mina,i r̄

a
i ,maxa,i r̄

a
i], which is a superset of its counterpart.

For the next results we will need an extra assumption:

(iv) The |T | trees in the ensembles have the same structure,
that is, T a

i and T b
i define the same partitioning of the

state space, for any i, a, and b.

From the definition of Da in (9) we know that Assump-
tion (iv) implies that Da = D for all a ∈ A. In this
case, the transformation computed by TBSF reduces to Sorg
and Singh’s (2009) concept of soft homomorphism, and
all results by these authors apply. In particular, we know
that if, for any i, I{ŝi ∈ T̄j and ŝi ∈ T̄l} implies that
π̄∗(x̄j) = π̄∗(x̄l), where π̄∗ is the optimal policy of M̄ ,
then the value functions computed by FQIT and TBSF co-
incide (see Sorg and Singh’s Corollary 2, 2009). As a con-
sequence, if a single tree is used in the ensembles the differ-
ence |Q̃t(ŝi, a)− Q̂t(ŝi, a)| is zero.

Still assuming that (iv) holds, we can show the follow-
ing result. Let r̄dif be the vector whose elements are r̄dif

i =
maxa r̄

a
i − mina r̄

a
i . Let R̄dif be the sum of the |T | largest

elements of r̄dif and let R̄+
min be the sum of the |T | smallest

elements of r̄+. Then,

Proposition 2 For t > 0, 0 ≤ Q̃t(ŝi, a) − Q̂t(ŝi, a) ≤
1
|T |

[
γR̄dif + (γ2−γt)

(1−γ)

(
R̄+

max − R̄+
min

)]
for any ŝi and any a.

The proof of Proposition 2 is also in the supplementary ma-
terial (Barreto 2014). Note that increasing the number |T |
of trees in the ensembles has two effects on our bounds. If
on one hand it decreases the scalar 1/|T | multiplying the
right-hand side of the bounds, on the other hand it may also
increase R̄+

max- R̄−min, R̄dif , and R̄+
max- R̄+

min, since the num-
ber of partitions T̄i grows. The overall effect of increasing
|T | will depend on the structure of the trees.

6 Experiments
We compare the performance of our algorithm with that
of FQIT combined with Geurts, Ernst, and Wehenkel’s
extra-trees algorithm (2006). This combination generated
the best results in the extensive empirical evaluation per-
formed by Ernst, Geurts, and Wehenkel (2005). When com-
bined with the extra-trees algorithm FQIT has four parame-
ters; in our experiments we used 200 iterations, dim(S) can-
didate cut points to build the trees, and varied |T | and ηmin

(during the construction of the trees, a node is split only if it
contains at least ηmin points—hence, this parameter can be
seen as an indirect way of setting the number of partitions).

We also combined TBSF with the extra-trees algorithm,
and the same parameters were used to build the trees. Since
the extra-trees algorithm does not allow a precise control of
the size of the trees, we used trees with the same structure
for all actions. As in this case it does not make sense to build
the trees based on Q1, the criterion used to select the cut-
points was simply the difference on the cardinality |T̄i| of
the resulting partitions. To serve as a reference, we evalu-
ated a version of FQIT that used a fixed ensemble of trees
constructed in the exact same way, referred to as “FQIT-F”.

We first use the mountain car task as a proof of con-
cept (Singh and Sutton 1996). In this case, an exploration
policy that selects actions uniformly at random was used to
collect a batch of n sample transitions. The algorithms’s re-
sults, shown in Figure 1, correspond to the performance of
the greedy policy computed using this data.2

As shown in the figure, the algorithms’s performance im-
proves with |T | and n, as expected. In general, TBSF’s re-
sults are intermediate between FQIT’s and FQIT-F’s. The
good performance of FQIT suggests that adapting the struc-
ture of the trees at each iteration may play an important role.
This ability comes at a price, though: as shown in Figure 1,
FQIT’s run time is orders of magnitude greater than TBSF’s.
This opens the possibility of using the latter to process larger
amounts of data, as we explore next.

We revisit one of the most successful applications of
FQIT: an important medical problem which we will refer
to as the HIV domain (Adams et al. 2004; Ernst et al. 2006).
Despite the effectiveness of drug cocktails in maintaining
low HIV viral loads, there are several complications asso-
ciated with their long-term use. This has attracted the inter-
est of the scientific community to the problem of optimizing
drug-scheduling strategies. The problem can be formulated
as a reinforcement-learning task in which the actions corre-
spond to the types of cocktail that should be administered.

2See the supplementary material for similar experiments with
the puddle-world task (Barreto 2014).

2421

●

●

●

●
●

●

●

0 5 10 15 20 25 30

0
.1

0
.2

0
.3

0
.4

|T|

R
e
tu

rn

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
5
0

1
0
0

1
5
0

2
0
0

|T|
S

e
c
o
n
d
s

●

●

●

●

●

●

●● FQTI
FQTI−F
TBSF

●

●

●

●

●

●

2000 4000 6000 8000 10000 12000

0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

n

R
e
tu

rn

●

●

●

●

●

●

●

●

●

●

●

●

2000 4000 6000 8000 10000 12000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

n

S
e
c
o
n
d
s

●

●

●

●

●

●

Figure 1: Results on the mountain-car task. All the algorithms used ηmin = 30 to build the trees. In the first two plots n = 10000
and in the last two |T | = 30. Policies were evaluated on a set of 25 states evenly distributed over [−1.00,−0.07]× [0.15, 0.02].
Shadows represent one standard error over 50 runs.

The problem has a 6-dimensional state space and 4 actions.
Following Ernst et al. (2006), we performed our experi-

ments using a realistic model that describes the interaction
of the immune system with HIV (Adams et al. 2004). We
also adopted the protocol proposed by these authors to col-
lect data: starting from a batch of 6000 transitions generated
by a random policy, corresponding to the treatment of 30 pa-
tients, the algorithms computed an initial approximation of
the problem’s value function. Based on this approximation,
a 0.15-greedy policy was used to collect a second batch of
6000 transitions, which was merged with the first. This pro-
cess was repeated for 10 rounds.

As one can see, this strategy for collecting transitions fits
well with the on-line version of TBSF. Therefore, instead of
merging the successive batches, we used Algorithm 1 and
simply discarded the data after each round. Since in this
case the difference between FQIT’s and TBSF’s computa-
tional cost is even bigger, we repeated the experiment with
the latter assuming that we had more data available—first
from 300 and then from 600 patients. In all other aspects
FQIT and TBSF were configured as before.

The results of the experiment are shown in Figure 2. As
one can see, when FQIT and TBSF use the same amount
of data the former outperforms the latter by a large margin.
This is expected, since TBSF was used with a fixed ensem-
ble of trees built based solely on the first batch of transitions.
However, when the number of transitions used by TBSF in-
creases, so does the quality of the resulting policies, which
eventually start to be competitive with FQIT’s. When using
ηmin = 10 with the augmented datasets, TBSF is still faster
than FQIT and produces policies of about the same quality.

7 Conclusion
In this paper we applied the stochastic-factorization trick to
FQIT. The resulting algorithm, TBSF, inherits many desir-
able properties of its precursor: it is simple to implement,
flexible, scalable to high-dimensional spaces, and robust to
noise. The main difference between FQIT and TBSF is in the
way they construct their models: while the former builds an
MDP whose states are the n end-states in the sample transi-
tions, the latter constructs an MDP whose size is the number

0 5 10 15 20

2
e

+
0

6
5

e
+

0
6

2
e

+
0

7
5

e
+

0
7

2
e

+
0

8

Hours

R
e

tu
rn

 (
lo

g
)

Random Policy

50

10

10

100

50

10

200

100

200
100

200

100
50

200

FQIT(30 patients)
TBSF(30 patients)
TBSF(300 patients)
TBSF(600 patients)

Figure 2: Results on the HIV domain. The algorithms were
run with |T | = 30; the numbers beside each rectangle
is ηmin. Policies were evaluated for 5000 days starting
from a state representing an unhealthy condition of the pa-
tients (Ernst et al. 2006). The length of the rectangles’s edges
represents one standard error over 50 runs.

m of partitions in the ensembles of trees. This has two con-
sequences. First, whenm� n TBSF is orders of magnitude
faster than FQIT. Second, TBSF can be used on-line.

We showed that the distance between the value functions
computed by FQIT and TBSF is bounded. Empirically, we
verified that FQIT tends to outperform the non-adaptive ver-
sion of TBSF, especially if the latter is used on-line. How-
ever, since TBSF’s computational cost is significantly lower
than FQIT’s, it can process more data in the same amount
of time, which can result in better performance. Besides, in
problems that are inherently on-line TBSF is a natural can-
didate to replace FQIT. An interesting direction for future
research would be to study the adaptive version of TBSF.

2422

Acknowledgments
The author would like to thank the anonymous reviewers for
their comments and suggestions.

References
Adams, B.; Banks, H.; Kwon, H.; and Tran, H. 2004. Dy-
namic multidrug therapies for HIV: optimal and STI con-
trol approaches. Mathematical Biosciences and Engineering
1(2):223–41.
Antos, A.; Munos, R.; and Szepesvári, C. 2007. Fitted Q-
iteration in continuous action-space MDPs. In Advances in
Neural Information Processing Systems (NIPS), 9–16.
Barreto, A. M. S., and Fragoso, M. D. 2011. Computing
the stationary distribution of a finite Markov chain through
stochastic factorization. SIAM Journal on Matrix Analysis
and Applications 32:1513–1523.
Barreto, A. M. S.; Precup, D.; and Pineau, J. 2011. Rein-
forcement learning using kernel-based stochastic factoriza-
tion. In Advances in Neural Information Processing Systems
(NIPS), 720–728.
Barreto, A. M. S.; Precup, D.; and Pineau, J. 2012. On-
line reinforcement learning using incremental kernel-based
stochastic factorization. In Advances in Neural Information
Processing Systems (NIPS), 1484–1492.
Barreto, A. M. S. 2014. Tree-based on-line reinforcement
learning: Supplementary material. Available on-line.
Ernst, D.; Stan, G.; Gonçalves, J.; and Wehenkel, L. 2006.
Clinical data based optimal STI strategies for HIV: a rein-
forcement learning approach. In Proceedings of the IEEE
Conference on Decision and Control (CDC), 124–131.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research 6:503–556.
Farahmand, A. M.; Ghavamzadeh, M.; Szepesvári, C.; and
Mannor, S. 2009. Regularized fitted Q-iteration for plan-
ning in continuous-space Markovian decision problems. In
Proceedings of the American Control Conference, 725–730.
Geurts, P.; Ernst, D.; and Wehenkel, L. 2006. Extremely
randomized trees. Machine Learning 36(1):3–42.
Gordon, G. J. 1995. Stable function approximation in dy-
namic programming. In Proceedings of the International
Conference on Machine Learning (ICML), 261–268.
Kalyanakrishnan, S., and Stone, P. 2007. Batch reinforce-
ment learning in a complex domain. In Proceedings of the
International Joint Conference on Autonomous Agents and
Multiagent Systems, 650–657.
Littman, M. L.; Dean, T. L.; and Kaelbling, L. P. 1995. On
the complexity of solving Markov decision problems. In
Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 394–402.
Ormoneit, D., and Sen, S. 2002. Kernel-based reinforcement
learning. Machine Learning 49 (2–3):161–178.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc.

Riedmiller, M. 2005. Neural fitted Q-iteration—first ex-
periences with a data efficient neural reinforcement learn-
ing method. In European Conference on Machine Learning
(ECML), 317–328. Springer.
Singh, S. P., and Sutton, R. S. 1996. Reinforcement learning
with replacing eligibility traces. Machine Learning 22(1–
3):123–158.
Sorg, J., and Singh, S. 2009. Transfer via soft homomor-
phisms. In Autonomous Agents & Multiagent Systems/Agent
Theories, Architectures, and Languages, 741–748.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.

2423

