
Tightening Bounds for Bayesian Network Structure Learning

Xiannian Fan, Changhe Yuan
Graduate Center and Queens College

City University of New York
365 Fifth Avenue, New York 10016

{xfan2@gc, change.yuan@qc}.cuny.edu

Brandon Malone
Helsinki Institute for Information Technology

Department of Computer Science
Fin-00014 University of Helsinki, Finland

brandon.malone@cs.helsinki.fi

Abstract

A recent breadth-first branch and bound algorithm (BF-
BnB) for learning Bayesian network structures (Mal-
one et al. 2011) uses two bounds to prune the search
space for better efficiency; one is a lower bound cal-
culated from pattern database heuristics, and the other
is an upper bound obtained by a hill climbing search.
Whenever the lower bound of a search path exceeds the
upper bound, the path is guaranteed to lead to subop-
timal solutions and is discarded immediately. This pa-
per introduces methods for tightening the bounds. The
lower bound is tightened by using more informed vari-
able groupings when creating the pattern databases, and
the upper bound is tightened using an anytime learn-
ing algorithm. Empirical results show that these bounds
improve the efficiency of Bayesian network learning by
two to three orders of magnitude.

Introduction
This paper considers the problem of learning an optimal
Bayesian network structure for given data and scoring func-
tion. Exact algorithms have been developed for solving
this problem based on dynamic programming (Koivisto and
Sood 2004; Ott, Imoto, and Miyano 2004; Silander and Myl-
lymaki 2006; Singh and Moore 2005; Malone, Yuan, and
Hansen 2011), integer linear programming (Cussens 2011;
Jaakkola et al. 2010) and heuristic search (Yuan, Malone,
and Wu 2011; Malone et al. 2011; Malone and Yuan 2013).
This paper focuses on the heuristic search approach, which
formulates BN learning as a shortest path problem (Yuan,
Malone, and Wu 2011; Yuan and Malone 2013) and applies
various search methods to solve it, e.g., breadth-first branch
and bound (BFBnB) (Malone et al. 2011). BFBnB uses two
bounds, a lower bound and an upper bound, to prune the
search space and scale up Bayesian network learning. When-
ever the lower bound of a search path exceeds the upper
bound, the path is guaranteed to lead to suboptimal solutions
and is discarded immediately. With the help of disk space
for storing search information, BFBnB was able to scale to
larger data sets than many existing exact algorithms.

In this paper, we aim to tighten the lower and upper
bounds of BFBnB. The lower bound is calculated from

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a pattern database heuristic called k-cycle conflict heuris-
tic (Yuan and Malone 2012). Its main idea is to relax the
acyclicity constraint between groups of variables; acyclic-
ity is enforced among the variables within each group. A
naive grouping based on the ordering of variables in a data
set was used previously. Intuitively, a more informed group-
ing that minimizes correlation between the variables in dif-
ferent groups and maximizes the correlation within each
group should provide a tighter lower bound. We investigate
various approaches for achieving that, including constraint-
based methods and topological ordering-based methods.

Any Bayesian network structure can serve as an upper
bound because it is guaranteed to have an equal or worse
score than the optimal structure (we consider the minimiza-
tion problem in this paper, i.e., the lower the score, the bet-
ter). The upper bound originally used in BFBnB was a sub-
optimal solution found by a beam search-based hill climb-
ing search (Malone, Yuan, and Hansen 2011). Although ef-
ficient, the hill climbing method method may provide poor
upper bounds. We also investigate approaches for finding
better upper bounds.

Background
This section provides an overview of Bayesian network
structure learning, the shortest-path formulation and the BF-
BnB algorithm.

Bayesian Network Structure Learning
We consider the problem of learning a Bayesian network
structure from a dataset D = {D1, ..., DN}, where Di

is an instantiation of a set of random variables V =
{X1, ..., Xn}. A scoring function is given to measure the
goodness of fit of a network structure to D. The problem is
to find the structure which optimizes the score. We only re-
quire that the scoring function is decomposable. Many com-
monly used scoring functions, including MDL , BIC , AIC ,
BDe and fNML, are decomposable. For the rest of the paper,
we assume the local scores, score(Xi|PAi), where PAi is
a parent set of Xi, are computed prior to the search.

Shortest Path Formulation
The above structure learning problem was recently formu-
lated as a shortest-path problem (Yuan, Malone, and Wu

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2439



Figure 1: The order graph for four variables

2011; Yuan and Malone 2013). Figure 1 shows the implicit
search graph for four variables. The top-most node with the
empty variable set is the start node, and the bottom-most
node with the complete set is the goal node.

An arc from U to U ∪ {X} in the graph represents gen-
erating a successor node by adding a new variable X to an
existing set of variables U; the cost of the arc is equal to
the score of the optimal parent set for X out of U, and is
computed by considering all subsets of U, i.e.,

BestScore(X,U) = min
PAX⊆U

score(X|PAX).

In this search graph, each path from the start to the goal
corresponds to an ordering of the variables in the order of
their appearance, so the search graph is also called as order
graph. Each variable selects optimal parents from the vari-
ables that precede it, so combining the optimal parent sets
yields an optimal structure for that ordering. The shortest
path gives the global optimal structure.

Breadth-First Branch and Bound
Malone et al. (2011) proposed to use breadth-first search to
solve the shortest path problem. They observed that the or-
der graph has a regular layered structure, and the successors
of any node only appear in the very next layer. By search-
ing the graph layer by layer, the algorithm only needs the
layer being generated in RAM. All nodes from earlier layers
are stored on disk, and nodes from the layer being expanded
are read in from disk one by one. Furthermore, nodes from
the layer being generated are written to disk as RAM fills;
delayed duplicate detection methods are used to remove un-
necessary copies of nodes (Korf 2008).

The basic breadth-first search can be enhanced with
branch and bound, resulting in a breadth-first branch and
bound algorithm (BFBnB). An upper bound ub is found in
the beginning of the search using a hill climbing search. A
lower bound called f -cost is calculated for each node U by

summing two costs, g-cost and h-cost, where g-cost stands
for the shortest distance from the start node to U, and h-
cost stands for an optimistic estimation on how far away
U is from the goal node. The h-cost is calculated from a
heuristic function. Whenever f > ub, all the paths extend-
ing U are guaranteed to lead to suboptimal solutions and
are discarded immediately. The algorithm terminates when
reaching the goal node. Clearly the tightness of the lower
and upper bounds has a high impact on the performance of
the algorithm. We study various approaches to tightening the
bounds.

Tightening Lower Bounds
This section focuses on tightening the lower bounds of BF-
BnB. We first provide a brief review of the k-cycle conflict
heuristic, and then discuss how it can be tightened.

K-Cycle Conflict Heuristic
The following simple heuristic function was introduced
in (Yuan, Malone, and Wu 2011) for computing lower
bounds for A* search.

Definition 1 Let U be a node in the order graph. Its heuris-
tic value is

h(U) =
∑

X∈V\U

BestScore(X,V\{X}). (1)

The above heuristic function allows each remaining vari-
able to choose optimal parents from all the other vari-
ables. Therefore it completely relaxes the acyclicity con-
straint of Bayesian networks to allow cycles between vari-
ables in the estimation. The heuristic was proven to be ad-
missible, meaning it never overestimates the distance to the
goal (Yuan, Malone, and Wu 2011). Admissible heuristics
guarantee the optimality of BFBnB. However, because of
the complete relaxation of the acyclicity constraint, the sim-
ple heuristic may generate loose lower bounds.

In (Yuan and Malone 2012), an improved heuristic func-
tion called k-cycle conflict heuristic was proposed by reduc-
ing the amount of relaxation. The idea is to divide the vari-
ables into multiple groups with a size up to k and enforce
acyclicity within each group while still allowing cycles be-
tween the groups. There are two major approaches to divid-
ing the groups. One is to enumerate all of the subsets with
a size up to k (each subset is called a pattern); a set of mu-
tually exclusive patterns covering V \U can be selected to
produce a lower bound for node U as the heuristic is addi-
tive (Felner, Korf, and Hanan 2004). This approach is called
dynamic pattern database. In (Yuan and Malone 2012), the
dynamic pattern database was created by performing a re-
verse breadth-first search for the last k layers in the order
graph. The search began with the goal node V whose reverse
g cost is 0. A reverse arc from U′ ∪ {X} to U′ corresponds
to selecting the best parents for X from among U′ and has
a cost of BestScore(X,U′). The optimal reverse g cost for
node U′ gives the cost of the pattern V \U′. Furthermore,
each pattern has an associated differential score, which is its
improvement over the simple heuristic given in Equation 1.

2440



Patterns which have the same differential score as their sub-
sets cannot improve the dynamic pattern database and are
pruned.

The other approach is to divide the variables V into sev-
eral static groups Vi (typically two). We then enumerate all
subsets of each group Vi as the patterns, which can be done
by a reverse breadth-first search similar to dynamic pattern
databases in an order graph containing only Vi (Yuan and
Malone 2012). The patterns from different groups are guar-
anteed to be mutually exclusive, so we simply pick out the
maximum-size pattern for each group that is a subset of
V \U and add them together as the lower bound. This ap-
proach is called static pattern database. Both dynamic and
static pattern databases remain admissible.

Tightening Dynamic Pattern Database
To use the dynamic pattern database to calculate the tightest-
possible lower bound for a search node U, we select the set
of mutually exclusive patterns which covers all of the vari-
ables in V \ U and has the maximum sum of costs. This
can be shown to be equivalent to the maximum weighted
matching problem (Felner, Korf, and Hanan 2004), which is
NP-hard (Papadimitriou and Steiglitz 1982) for k > 2. Con-
sequently, the previous work (Yuan and Malone 2012) used
a greedy approximation to solve the matching problem; its
idea is to greedily choose patterns with the maximum differ-
ential scores.

Solving the matching problem exactly improves the tight-
ness of dynamic pattern database heuristic. To achieve that,
we formulate the problem as an integer linear program (Bert-
simas and Tsitsiklis 1997) and solve it exactly. A set of bi-
nary variables Ai,j are created which indicate if Xi is in
pattern j. A second set of variables pj are created which
indicate if pattern j is selected. The linear constraints that
A · p = e, where e is a vector with 1s for each variable in
V \ U, are also added to the program. A standard integer
linear program solver, such as SCIP (Achterberg 2007), is
used to maximize the cost of the selected patterns subject
to the constraints. The resulting value is the lower bound
which is guaranteed to be at least as tight as that found by
the greedy algorithm. Solving the integer linear program in-
troduces overhead compared to the simple greedy algorithm,
though.

Tightening Static Pattern Database
The tightness of the static pattern database heuristic depends
highly on the static grouping used during its construction.
A very simple grouping (SG) method was used in (Yuan
and Malone 2012). Let X1, ..., Xn be the ordering of the
variables in a dataset. SG divides the variables into two
balanced groups, {X1, ..., Xdn2 e} and {Xdn2 e+1, ..., Xn}.
Even though SG exhibited excellent performance on some
datasets in (Yuan and Malone 2012), there is potential to
develop more informed grouping strategies by taking into
account of the correlation between the variables.

A good grouping method should reduce the number of di-
rected cycles between the variables and enforce acyclicity as
much as possible. Since no cycles are allowed within each

group, we should maximize the correlation between the vari-
ables in each group. Also, because cycles are allowed be-
tween groups, we should minimize the correlation between
the groups. Consider two variables X1 and X2. If they have
no correlation, there will be no arc between these two vari-
ables in the optimal Bayesian network, so there is no need to
put the two variables in the same group. On the other hand,
if they have strong correlation, and if they are put into dif-
ferent groups G1 and G2, X1 is likely to select X2 from G2

as a parent, and vice versa. Then a cycle will be introduced
between the two groups, resulting in a loose bound. It is bet-
ter to put these variables in one group and disallow cycles
between them.

The above problem can be naturally formulated as a graph
partition problem. Given a weighted undirected graph G =
(V,E) with V vertices and E edges, which we call the parti-
tion graph, the graph partition problem cuts the graph into 2
or more components while minimizing the weight of edges
between different components. We are interested in uniform
or balanced partitions as it has been shown that such parti-
tions typically work better in static pattern databases (Felner,
Korf, and Hanan 2004). Two issues remain to be addressed
in the formulation: creating the partition graph and perform-
ing the partition.

Creating the Partition Graph We propose to use two
methods to create the partition graph. One is to use
constraint-based learning methods such as the Max-Min Par-
ent Children (MMPC) algorithm (Tsamardinos, Brown, and
Aliferis 2006) to create the graph. The MMPC algorithm
uses independence tests to find a set called candidate par-
ent and children (CPC) for each variable Xi. The CPC set
contains all parent and child candidates of Xi. The CPC sets
for all variables together create an undirected graph. Then
MMPC assigns a weight to each edge of the undirected
graph by independent tests, which indicate the strength of
correlation with p-values. Small p-values indicate high cor-
relation, so we use the negative p-values as the weights. We
name this approach family grouping (FG).

The second method works as follows. The simple heuris-
tic in Eqn. 1 considers the optimal parent set out of all of
the other variables for each variable X , denoted as PA(X).
Those PA(X) sets together create a directed cyclic graph;
by simply ignoring the directions of the arcs, we again obtain
an undirected graph. We then use the same independence
tests as in MMPC to obtain the edge weights. We name this
approach parents grouping (PG).

Performing the Partition Many existing partition algo-
rithms can be used to perform the graph partition. Since
we prefer balanced partitions, we select the METIS algo-
rithm (Karypis and Kumar 1998). METIS is a multilevel
graph partitioning method: it first coarsens the graph by col-
lapsing adjacent vertices and edges, then partitions the re-
duced graph, and finally refines the partitions back into the
original graph. Studies have shown that the METIS algo-
rithm has very good performance at creating balanced parti-
tions across many domains. Also, since the partition is done
on the reduced graph, the algorithm is quite efficient. This is
important for our purpose of using it only as a preprocessing

2441



10−2 10−1 100 101 102
0

2

4

6

8
x 106

N
um

be
r o

f E
xp

an
de

d 
N

od
es

Running Time of AWA*

 

 

10−2 10−1 100 101 102
0

5

10

15

20

R
un

ni
ng

 T
im

e 
of

 B
FB

nB

Expanded Nodes
Running Time of BFBnB

10−1 100 101 102 103 104
0

2

4
x 108

N
um

be
r o

f E
xp

an
de

d 
N

od
es

Running Time of AWA*

 

 

10−1 100 101 102 103 104
0

500

1000

R
un

ni
ng

 T
im

e 
of

 B
FB

nB

Expanded Nodes
Running Time of BFBnB

(a)Parkinsons (b)SteelP lates

Figure 2: The effect of upper bounds generated by running AWA* for different amount of time (in seconds) on the performance
of BFBnB on Parkinsons and Steel Plates.

step.

Topology Grouping Besides the above grouping meth-
ods based on partitioning undirected graphs, we also pro-
pose another method based on topologies of directed acyclic
graphs found by approximate Bayesian network learning
algorithms. Even though these algorithms cannot guaran-
tee to find the optimal solutions, some of them can find
Bayesian networks that are close to optimal. We assume
that the suboptimal networks capture many of the depen-
dence/independence relations of the optimal solution. So
we simply divide the topological ordering of the subopti-
mal network into two groups, and those are the grouping
for the static pattern database. Many approximate learning
algorithms can be used to learn the suboptimal Bayesian
networks. We select the recent anytime window A* algo-
rithm (Aine, Chakrabarti, and Kumar 2007; Malone and
Yuan 2013) (introduced for obtaining upper bounds in the
next section) for this purpose. We name this approach as
topology grouping (TG).

Tightening Upper Bounds
Breadth-first branch and bound improves search efficiency
by pruning nodes which have an f -cost worse than some
known upper bound, ub. In the best case, when ub is equal
to the optimal cost, BFBnB provably performs the minimal
amount of work required to find the shortest path (Zhou and
Hansen 2006). As the quality of ub decreases, though, it may
perform exponentially more work. Consequently, a tight up-
per bound is pivotal for good search behavior.

A beam search-based hill climbing algorithm was used
in (Yuan and Malone 2012) to find an upper bound. Re-
cently, anytime window A* (AWA*) (Aine, Chakrabarti, and
Kumar 2007; Malone and Yuan 2013) was shown to find
high quality, often optimal, solutions very quickly. Briefly,
AWA* uses a sliding window search strategy to explore the
order graph over a number of iterations. During each itera-
tion, the algorithm uses a fixed window size, w, and tracks

the layer l of the deepest node expanded. Nodes are ex-
panded in best-first order as usual by A*; however, nodes
selected for expansion in a layer less that l − w are instead
frozen. A path to the goal is found in each iteration, which
gives an upper bound solution. After finding the path to the
goal, the window size is increased by 1 and the frozen nodes
become the open list. The iterative process continues until
no nodes are frozen during an iteration, which means the
upper bound solution is optimal, or a resource bound, such
as running time, is exceeded. Due to its ability to often find
tight upper bounds quickly, we use AWA* in this work.

Empirical Results
We empirically tested our new proposed tightened bounds
using the BFBnB algorithm 1. We use benchmark datasets
from the UCI machine learning repository and Bayesian
Network Repository. The experiments were performed on
an IBM System x3850 X5 with 16 core 2.67GHz Intel Xeon
Processors and 512G RAM; 1.7TB disk space was used.

Results on Upper Bounds
We first tested the effect of the upper bounds generated by
AWA* on BFBnB on two datasets: Parkinsons and Steel
Plates. Since AWA* is an anytime algorithm, it produces
multiple upper bounds during its execution. We recorded
each upper bound plus the corresponding running time of
AWA*. Each upper bound is tested on BFBnB. In this ex-
periment, we use static pattern database with family group-
ing (FG) as the lower bound. Figure 2 plots the running time
of AWA* versus the running time and number of expanded
nodes of BFBnB.

The experiments show that the upper bounds had a huge
impact on the performance of BFBnB. Parkinsons is a small

1For comparisons between heuristic search-based methods and
other exact learning algorithms, please refer to, e.g., (Malone and
Yuan 2013; Yuan and Malone 2013).

2442



(a)Parkinsons (b)SteelP lates

Figure 4: The effect of different grouping strategies on the number of expanded nodes and running time of BFBnB on Parkinsons
and Steel Plates. The four grouping methods are the simple grouping (SG), family grouping (FG), parents grouping (PG), and
topology grouping (TG).

Figure 3: The number of expanded nodes and running time
needed by BFBnB to solve Parkinsons based on dynamic
pattern database strategies: matching (“Exact” or “Approxi-
mate”) and k (“3” or “4”).

dataset with only 23 variables. AWA* finds upper bounds
within several hundredths of seconds and solves the dataset
optimally around 10 seconds. The BFBnB was able to solve
Parkinsons in 18 seconds using the first upper bound found
by AWA* at 0.03s, and in 2 seconds using the upper bound
found at 0.06s. Subsequent upper bounds bring additional
but marginal improvements to BFBnB. This confirms the re-
sults in (Malone and Yuan 2013) that AWA* often finds ex-
cellent solutions early on and spends the rest of time finding
marginally better solutions, or just proving the optimality of
the early solution.

Steel Plates is a slightly larger dataset. AWA* needs more
than 4,000 seconds to solve it. We tested all the upper bounds
found by AWA*. The first upper bound found at 0.1s en-
abled BFBnB to solve the dataset within 1,000 seconds, and
the third upper bound found at 0.5s solved the dataset within
400 seconds. Again, all the subsequent upper bounds only
brought marginal improvements, even for the optimal bound
found by AWA*. For much larger datasets, we believe that

running AWA* for several hundreds of seconds should al-
ready generate sufficiently tight upper bounds; the time is
minimal when compared to the amount of time needed to
prove the optimality of Bayesian network structures. In all
these experiments, the results on the number of expanded
nodes show similar patterns as the running time.

Results on Dynamic Pattern Databases
We compared the dynamic pattern database with ex-
act matching against with the previous greedy matching
in (Yuan and Malone 2012) on the Parkinsons dataset. We
used AWA* upper bounds in these experiments. The exact
matching method is guaranteed to produce a tighter bound
than the greedy method. However, an exact matching prob-
lem needs to be solved at each search step; the total amount
of time needed may become too prohibitive. This concern
is confirmed in the experiments. Figure 3 compares the per-
formance of BFBnB with four dynamic pattern databases
(k = 3/4, and matching=exact/approximate). Solving the
matching problems exactly did reduce the number of ex-
panded nodes by up to 2.5 times. However, solving the many
exact matching problems necessary to calculate the h-costs
of the generated nodes in the order graph far outweighed the
benefit of marginally fewer expanded nodes. For example,
BFBnB with the exact matching required up to 400k sec-
onds to solve Parkinsons, compared to only 4 seconds using
the approximate matching.

Results on Static Pattern Databases
We compared the new grouping strategies, including family
grouping (FG), parents grouping (PG), and topology group-
ing (TG), against the simple grouping (SG) on Parkinsons
and Steel Plates. We again used AWA* upper bounds. Fig-
ure 4 shows the results. On Parkinsons, FG and PG had
the best performance; both FG and PG enabled BFBnB to
solve the dataset three times faster. TG was even worse than

2443



Dataset Results
Name n N loose (SG) tight (SG) loose (FG) tight (FG) loose (PG) tight (PG)
Parkinsons 23 195 Time (s) 13 4 12 1 8 1

Nodes 5.3 1.1 5.0 0.3 4.2 0.2
Autos 26 159 Time (s) 19 5 16 3 20 4

Nodes 9.6 2.4 7.8 0.9 8.7 1.6
Horse Colic 28 300 Time (s) 148 110 10 1 26 3

Nodes 44.1 34.6 4.5 0.2 9.6 1.2
Steel Plates 28 1,941 Time (s) 1,541 628 1,535 329 1,329 30

Nodes 246.5 91.4 246.3 32.8 222.5 2.0
Flag 29 194 Time (s) 150 79 115 50 240 88

Nodes 39.0 21.4 28.3 14.4 57.6 25.6
WDBC 31 569 Time (s) 11,864 5,621 9,936 770 9,478 1,083

Nodes 1,870.3 906.3 1,631.0 120.3 1,553.4 192.1
Alarm 37 1,000 Time (s) OM 142,365 39,578 69 40,813 78

Nodes OM 16,989.2 5,154.1 13.0 5,154.1 13.0
Bands 39 277 Time (s) OM 333,601 OM 47,598 OM 836

Nodes OM 31,523.6 OM 4,880.1 OM 128.9
Spectf 45 267 Time (s) OM 506 OM 500 OM 11

Nodes OM 55.1 OM 27.0 OM 1.3

Table 1: The number of expanded nodes (in millions) and running time (in seconds) of the BFBnB algorithm on a set of
benchmark datasets with different combinations of upper (loose: hill climbing; tight: AWA*) and lower bounds (SG: simple
grouping; FG: family grouping; PG: parents grouping). “n” is the total number of variables, and “N” is the number of data
points; “OM” means out of external memory.

the SG. On Steel Plates, however, TG was slightly better
than FG. PG was again the best performing method on this
dataset; it allowed BFBnB to solve the dataset 10 times
faster than SG. These results suggest that family grouping
(FG) and parents grouping (PG) are both reliably better than
the simple grouping (SG). We therefore use FG and PG as
the lower bounds in our subsequent experiments.

Batch Results on Benchmark Datasets
We tested BFBnB with different combinations of upper and
lower bounds on a set of benchmark datasets. The upper
bounds are found by hill climbing (loose) (Malone and Yuan
2013) and AWA* (tight); the lower bounds are static pattern
databases based on simple grouping (SG), family grouping
(FG), and parents grouping (PG). Dynamic pattern database
with approximate matching was excluded because it is on
average worse than static pattern databases even with simple
grouping (Yuan and Malone 2012). We let AWA* run up to
10 seconds for the datasets with fewer than 30 variables, and
up to 160 seconds for datasets with 30+ variables to gener-
ate the upper bounds (the upper bounds could be found much
earlier though). The results are shown in Table 1.

The results further highlight the importance of tight up-
per bounds. BFBnB could not solve the largest datasets with
the loose bounds due to running out of external memory.
The tight bounds by AWA* enabled BFBnB to solve all of
the datasets. The benefit of the new lower bounds is obvi-
ous, too. FG and PG consistently outperformed SG given
any upper bound; the speedup ranged from several times
faster (e.g., Autos and WDBC) to several orders of magni-
tude faster (e.g., Horse Colic and Alarm). When comparing
FG and PG against each other, FG has advantages on some

of the smaller datasets (e.g., Horse Colic and Flag) but PG
was much faster on the two biggest datasets; it was 50 times
faster on these datasets than FG with AWA* upper bounds.

Another important observation is that “cooperative” in-
teractions between the tighter upper and lower bounds en-
abled BFBnB to achieve much better efficiency. For exam-
ple, on WDBC, the AWA* upper bounds alone improved the
speed of BFBnB by only 2 times; FG and PG only improved
the speed slightly. However, AWA* upper bounds and FG
together improved the speed by more than 10 times (from
11,864s to 770s), and AWA* upper bounds and PG together
achieved similar speedup (to 1,083s). Alarm is another ex-
ample for which the combination of tighter bounds produced
dramatic speedup compared to either in isolation.

Conclusion
This paper investigated various methods for tightening the
upper and lower bounds of breadth-first branch and bound
algorithm (BFBnB) for Bayesian network structure learn-
ing (Yuan and Malone 2012). The results suggest that the
upper bounds generated by anytime window A* and lower
bounds generated by family grouping- and parents grouping-
based static pattern databases can improve the efficiency and
scalability of BFBnB by several orders of magnitude.

As future work, we plan to investigate integration of do-
main knowledge into the pattern database heuristics. Com-
bining prior knowledge with information from suboptimal
solutions could scale Bayesian network learning to big data.

Acknowledgments This work was supported by the NSF
(grants IIS-0953723 and IIS-1219114) and the Academy of
Finland (grant 251170).

2444



References
Achterberg, T. 2007. Constrained Integer Programming.
Ph.D. Dissertation, TU Berlin.

Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA*-a
window constrained anytime heuristic search algorithm. In
Proceedings of the 20th International Joint Conference on
Artifical intelligence.

Bertsimas, D., and Tsitsiklis, J. 1997. Introduction to Linear
Optimization. Athena Scientific.

Cussens, J. 2011. Bayesian network learning with cutting
planes. In Proceedings of the 27th Conference on Uncer-
tainty in Artificial Intelligence.

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research 22:279–318.

Jaakkola, T.; Sontag, D.; Globerson, A.; and Meila, M. 2010.
Learning Bayesian network structure using LP relaxations.
In Proceedings of the 13th International Conference on Ar-
tificial Intelligence and Statistics.

Karypis, G., and Kumar, V. 1998. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing 20(1):359–392.

Koivisto, M., and Sood, K. 2004. Exact Bayesian structure
discovery in Bayesian networks. Journal of Machine Learn-
ing Research 5:549–573.

Korf, R. 2008. Linear-time disk-based implicit graph search.
Journal of the ACM 35(6).

Malone, B., and Yuan, C. 2013. Evaluating anytime algo-
rithms for learning optimal Bayesian networks. In In Pro-
ceedings of the 29th Conference on Uncertainty in Artificial
Intelligence.

Malone, B.; Yuan, C.; Hansen, E.; and Bridges, S. 2011. Im-
proving the scalability of optimal Bayesian network learn-
ing with external-memory frontier breadth-first branch and
bound search. In Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence.

Malone, B.; Yuan, C.; and Hansen, E. 2011. Memory-
efficient dynamic programming for learning optimal
Bayesian networks. In Proceedings of the 25th National
Conference on Artifical Intelligence.

Ott, S.; Imoto, S.; and Miyano, S. 2004. Finding optimal
models for small gene networks. In Pacific Symposium on
Biocomputing.

Papadimitriou, C. H., and Steiglitz, K. 1982. Combinatorial
Optimization: Algorithms and Complexity. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc.

Silander, T., and Myllymaki, P. 2006. A simple approach
for finding the globally optimal Bayesian network structure.
In Proceedings of the 22nd Conference on Uncertainty in
Artificial Intelligence.

Singh, A., and Moore, A. 2005. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University.

Tsamardinos, I.; Brown, L.; and Aliferis, C. 2006. The max-
min hill-climbing Bayesian network structure learning algo-
rithm. Machine Learning 65:31–78.
Yuan, C., and Malone, B. 2012. An improved admissible
heuristic for finding optimal bayesian networks. In Proceed-
ings of the 28th Conference on Uncertainty in Artificial In-
telligence.
Yuan, C., and Malone, B. 2013. Learning optimal Bayesian
networks: A shortest path perspective. Journal of Artificial
Intelligence Research 48:23–65.
Yuan, C.; Malone, B.; and Wu, X. 2011. Learning opti-
mal Bayesian networks using A* search. In Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence.
Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170:385–408.

2445




