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Abstract

In heterogeneous multi-robot teams, robustness and
flexibility are increased by the diversity of the robots,
each contributing different capabilities. Yet platform-
independence is desirable when planning actions for
the various robots. We propose a platform-independent
model of robot capabilities which we use as a planning
domain. We extend existing planning techniques to sup-
port two requirements: generating new objects during
planning; and, required concurrency of actions due to
data flow which can be cyclic. The first requires on-
line action instantiation, the second a small extension
of the Planning Domain Definition Language (PDDL):
allowing predicates in continuous effects. We evaluate
the planner on benchmark domains and present results
on an example object transportation task in simulation.

Heterogeneous multi-robot systems are characterized by
the robots’ diversity, each contributing different capabili-
ties. One important aspect of such systems is task planning,
which involves finding sequences of actions required by one
or several robots to solve a task. Most commonly, a planning
domain is designed to fit a set of specific tasks or certain
experiments. This hinders portability of such robot systems
into new domains. We define a planning domain based on
robot capabilities which is flexible enough to express dif-
ferent types of robot tasks in different environments (house-
hold, rescue, etc) and then use this domain for task planning.

Actions producing data are a natural property of robotic
algorithms interacting with each other. For example, the
Robot Operating System (ROS) builds on standardized mes-
sage exchange between programs. From the planning per-
spective, each robot algorithm or program may be seen as
an action. To reflect data flow between robot actions, the
following factors need to be considered in the planner: (1)
An action needs to be able to generate new data which can
then be passed to another action. For instance, grasp plan-
ning will yield a position for the arm’s end effector, which
is then used to compute the arm’s reaching motion. To allow
passing data between actions, variables need to be instanti-
ated during planning, i.e., binding action reach(?pose)
to action instance reach(new-grasp-pose). However,
the common approach in current planners is to pre-generate
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all possible action instances with pre-defined objects, e.g.,
reach(pose-1), reach(pose-2), etc. This requires
pre-computing all possible new data objects (pose-1 etc.).
In the robotic domain, this can be prohibitive. That is, all
possible object positions need to be considered for comput-
ing all grasp poses, as an object could have been moved ear-
lier in the plan. (2) Data flow between concurrently execut-
ing actions has to be clearly represented, and can include
cycles. For example, localisation and navigation run in par-
allel and share positional and odometry data. Such data flow
dependencies imply that concurrency be required, i.e., due
to the data flow requirements, localisation has to run con-
currently with navigation. In the robotic domain, it seems
natural to encode concurrency with data flow requirements.

The aim of this paper is to propose a platform-
independent model of robot capabilities which can be used
for planning and execution of robot tasks. This paper con-
tributes an extension of existing planning techniques to sup-
port this robot domain. We address the abovementioned re-
quirements by: (1) developing an algorithm to achieve on-
line action instantiation; and, (2) handle required concur-
rency by extending existing techniques, proposing a small
extension to the Planning Domain Definition Language
(PDDL): allowing predicates in over all effects.

This paper is structured as follows. First, we review rel-
evant aspects and work. Then, we describe our robot capa-
bilities and our temporal planner, and finish by presenting
results on a series of experiments evaluating our planner.

Relevant aspects and background
Capability model Most work on formalizing robot capa-
bilities focusses on the computation of a utility value which
expresses a robot’s “expected quality of task execution” (Ko-
rsah, Stentz, and Dias 2013). Capabilities are related to some
kind of resource, e.g., sensors/actuators, processing capac-
ities (He and Ioerger 2003; Chen and Sun 2010), and/or
software modules (Parker and Tang 2006). A capability can
also be a simple subtask, for which each robot learns their
suitability (Fua and Ge 2005). Other research also formal-
izes capabilities relating to robot components to infer what
a robot can do (Kunze, Roehm, and Beetz 2011) or how to
decompose a task into simple ‘skills’ (Huckaby and Chris-
tensen 2012). The Object Interaction Language (OIL) (Sut-
ton et al. 2010) describes a “functionality” by code snippets.
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Task planning The planning problem is NP-complete
(Erol, Nau, and Subrahmanian 1995), therefore all planning
algorithms must resort to search. There is a plethora of algo-
rithms addressing this problem (Malik Ghallab and Paolo
Traverso 2004). A popular and successful approach has
been to use forward-search in the state space, often with a
planning graph based heuristic. Examples are Fast Forward
(Hoffmann and Nebel 2001), Fast Downward (Helmert
2006), TLPlan (Bacchus and Ady 2001), SAPA (Do and
Kambhampati 2003), Temporal Fast Downward (TFD) (Ey-
erich, Mattmüller, and Röger 2009), LPG (Gerevini and Se-
rina 2002), Crikey (Coles et al. 2009) and COLIN (Coles et
al. 2012). None of these supports online action instantiation
or cyclic dependencies in concurrent actions’ data flow.

Configuration plans are generated in (Di Rocco et al.
2013), similar to ASyMTRe (Parker and Tang 2006). Time is
represented by constraints over the “activities”, which have
to be re-defined for each specific task. We aim at a more gen-
eral, domain-independent approach which suits many tasks.

Few approaches in robotics use a domain-independent
planning system. Temporal Fast Downward (TFD) is ex-
tended in (Keller, Eyerich, and Nebel 2010), building on
their previous continual planner. The special feature is their
“global memory” in the planner, i.e., if the same action fails
several times, it is not considered at the re-planning stage.
Also (Wurm et al. 2013) use the TFD/M planner to coordi-
nate heterogeneous teams of robots in exploration and trans-
portation tasks. The planning is done using symbolic actions
which are specified in PDDL by simple propositions, specif-
ically relating to the transportation task. Essentially this de-
signs the PDDL domain for a particular task, as the explo-
ration and transportation task. Instead, we aim at designing
a PDDL domain which is general for all robotic tasks.

Temporal planning with concurrency To find a plan for
robots to co-operate towards a goal, time is an essential fac-
tor, as the aim is to minimise the time it takes the robot(s)
to perform the task(s). PDDL2.1 (Fox and Long 2003) in-
troduces durative actions to account for time. Most existing
temporal planners build on PDDL’s durative actions.

Planning systems for real-world applications also need
the ability to handle concurrency. One very popular ap-
proach to handle concurrency during planning is Decision
Epoch Planning, as used in TLPlan (Bacchus and Ady
2001), SAPA (Do and Kambhampati 2003) and Optop (Mc-
Dermott 2003). This idea introduces a wait action which
simulates the passing of time. In every state there is a set of
active process instances (concurrently running actions). The
wait action moves time forwards until the next relevant
time point, e.g., when a process ends. Concurrency is inter-
leaved, meaning the actual starting/ending of actions hap-
pens sequentially and only the actual execution of several
active processes happens concurrently. Decision epoch plan-
ners are temporally incomplete for some planning problems
requiring complex temporal interactions, though (Cushing
et al. 2007) proposes a solution for this limitation. Our robot
tasks do not require such complex interactions at this stage
and we also chose to implement our planner based on Deci-
sion Epoch Planning. However, we need to adapt the concept

to support our data flow requirements.
MA-PDDL (Kovacs 2012) encodes concurrency require-

ments in PDDL. They use a generalisation of the concurrent
action lists in (Boutilier and Brafman 2001). Essentially, this
approach lists specific actions which have to run in parallel.
However, in robotics an algorithm typically needs data as in-
put. It does not matter which action generated it. For exam-
ple, the localisation algorithm does not care whether the 3D
point cloud comes from a laser scan or a stereo camera—the
data could even come from another robot. This observation
is also made in ASyMTRe (Parker and Tang 2006) which
connects action schemas by matching their data input/output
in their coalition formation algorithm. We connect capabili-
ties’ data input/output using a temporal planner instead.

Information generation during planning In PDDL, it is
not possible to specify that performing an action causes new
objects to be created. For example, the result of an action
GRASP PLAN (which plans the grasp of an object) will result
in a position p=(x,y,z) to which the manipulator is to be
moved. This new data object, unique to the specific grasp-
ing problem, is then passed to the REACH(?position)
action by binding ?position to p. Passing information
from plan step to plan step has been recognized as a rele-
vant factor (McDermott 1978) but has received little atten-
tion. To pass a new data object to an action, actions have
to be instantiated at planning time (online). However, the
common approach is to avoid variables altogether by substi-
tuting them in all possible ways before the search. The only
recent planner that binds variables during planning time is
Optop (McDermott 2003), which is a regression-based plan-
ner. The extra effort to bind variables during planning makes
it slower than other algorithms but instead it is able to han-
dle infinite domains such as numbers (for example, an ac-
tion act(?a -number) would not be allowed in plan-
ners which enumerate all possible actions in advance). Un-
fortunately, their regression-based algorithm is incomplete
due to binding variables such that the maximum number of
goal conjuncts are satisfied. We develop an algorithm for
action instantiation during forward-search without such re-
strictions in variable bindings.

Defining Robot Capabilities
We define capability in a manner that abstracts from hard-
ware and software, allowing a robot to learn its constraints
relating to the capabilities. A capability is a simple func-
tional element which can be part of many different tasks, in-
spired by Zuech and Miller (Zuech and Miller 1989, p. 163)

“There are a limited number of task types and task decom-
positions [..] with only a few different types of reach, grasp,
lift, transport, position, insert, twist, push, pull, release,
etc. A list of parameters with each macro can specify where
to reach, when to grasp, how far to twist, how hard to push...”

With this definition, a capability abstracts from underly-
ing architectures at a medium level of granularity. For ex-
ample, to pick up an object, any robot needs to REACH for
it, GRASP and then LIFT it. It is not important how a robot
grasps an object (e.g., which finger movements) but only
what it can probably grasp. The overall idea is that a ca-
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pability can be part of many different tasks, either (a) repre-
senting a primitive physical action as, for example, REACH,
GRASP, PUSH, or (b) a sensing activity which produces data
(e.g., VISION), or (c) is an algorithm or computational entity
as PATH-PLANNING, STEREO-MATCHING, etc.

A complete ontological discussion of the individual ca-
pabilities cannot be given in the space of this paper. There-
fore, we shall only briefly describe the relevant aspects for
task planning. Because we define our domain in PDDL,
the notation for variables (?var) is used in the follow-
ing. A capability C = {P,E,I,O,hw,pr} has precon-
ditions P and effects E, as common for actions in plan-
ning. For example, an effect of REACH is that the ma-
nipulator is at-Pose(?manip-id,?pose), which is
also the precondition for GRASP. The effect of GRASP

is that the object is held(?manip-id,?object),
which is also the precondition for LIFT, which in
turn has effect not(grounded(?object)). Goals
are specified with conditions. For example, picking up
an object is specified by the goal that the object is
not(grounded(object-id)). A solution is to con-
nect REACH, GRASP and LIFT. However, this is not suffi-
cient to reflect the data flow. In this example, we need to
compute a specific pose where to reach so the object can
be grasped. This is a computational process related to the
grasp action: the grasp planning. Each physical action may
have a computational planning counterpart which can ap-
pear earlier in the plan, i.e., GRASP-PLAN for GRASP. Now,
the correct action sequence is GRASP-PLAN, REACH, GRASP

and LIFT, with data being passed between GRASP-PLAN and
REACH. To capture the data flow, capabilities have input (I)
and output data (O) (e.g., images, maps, poses, etc.), simi-
lar to ASyMTRe (Parker and Tang 2006) and (Di Rocco et
al. 2013) which connect schemas or activities with matching
information types. Data inputs/outputs serve as additional
constraints on how capabilities can be connected. Further-
more, hardware dependencies (hw) are listed for each capa-
bility. Each device is indexed by a unique number (ID) on a
robot. By using this ID in an action’s parameter, we can en-
sure consistency in hardware use, i.e., the same manipulator
is used for reaching and grasping. The resulting plan effi-
ciently captures the hardware devices required, which can
be useful in evaluating plan quality. Capability parameters
(pr) specify approximate execution constraints which fur-
ther help ruling out a robot’s eligibility for a specific task.
For example, areas that a robot can REACH are approximated
with spherical shapes around the manipulators; terrain on
which a robot can MOVE may be described by indices of “ter-
rain roughness” with assigned average speeds; object sizes
it can GRASP may be approximated with a bounding volume;
weights it can LIFT with a maximum bound, and so on.

Planning with Capabilities
We implemented a decision epoch planner similar to SAPA.
In SAPA, preconditions Pres and Pree are required to be
true at the starting/ending point ts / te of the action of dura-
tion Da, while persistent conditions Prep should hold true
throughout some duration d ≤ Da. Effects Eff s, Eff d Eff e
occur at the start or end time points ts, te, or at predefined

time points td within the action duration. We adopt a sim-
ilar approach, extending it by supporting persistent effects
Eff p which constantly happen throughout the whole execu-
tion duration Da of the action (similar to the persistent pre-
condition which needs to hold throughout the action execu-
tion). Additionally, we need to modify the SAPA algorithm
to support cyclic dependencies in the data flow.

We keep the following data structures for describing a
search State S = (E, t, Facts, τ, γ, Ext):

• E: An event queue containing all (ground) actions that are
currently being concurrently executed;

• t: time elapsed since the start of the plan;
• Facts: a set of predicate and function values which hold

at time t. This is essentially the current state of the world;
• τ : a set of propositions which describe the persistent ac-

tion preconditions of all actions in Q. This is a collection
of predicates and function values;

• γ: a set of propositions which describe the persistent ac-
tion effects of all actions in Q; and,

• Ext : External module data (detailed on page 5).

Using this state description, we perform a forward search
through the state space, expanding each node by evaluating
for each state S which actions are applicable. An action A is
applicable to be started in state S if and only if:

1. All starting preconditions Pres are fulfilled by Facts;
2. The same action instance A is not already in Q (nb. the

same action can run twice but with different parameters);
3. The external planning module determines A to be eligible
S (as discussed on page 5); and,

4. The starting effect Eff s does not interfere with any of the
conditions in τ or persistent effects in γ. Interference of
proposition Pi ∈ Eff s means:
• Pi is a predicate and its negation is contained in τ ; or,
• Pi is a function expression and it is writing the same

function value as another proposition in γ.
If an action is eligible to start in S, we apply the effect

Eff s on Facts and add it to the event queue E. The persis-
tent conditions and effects are added to τ and γ.

Concurrency of actions Concurrency can be represented
with persistent preconditions and the persistent effects
by including propositions that symbolise data flow, e.g.,
data(?d - Image2D). Data consumption (persistent
precondition) and production (persistent effect) are matched
by the data object and thereby connect concurrent actions.
Figure 1 shows example capabilities, represented as a box
with input and output slots for conditions and effects. p1
and p2 are persistent effects of actions B and A. The persis-
tent precondition of B (A) is the availability of data object
p2 (p1). We connect persistent effects to persistent precon-
ditions to form a valid data flow. In the example, p1 connects
B to A, and p2 connects A to B, forming a cyclic data flow.
A more specific example is the data flow between moving,
localising and path planning (which continuously corrects
the path). For persistent effects we need to extend PDDL to
allow effects within over all.
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Figure 1: Cyclic dependencies of persistent condi-
tion/effects.

To support cyclic dependencies, we need to adopt a new
interpretation of the wait action: actions can be in one of
three states: start(s) , running(r) and end(e).
When starting an action A, it is flagged as start (As) and
added to the queue E. Time only moves forwards once wait
is applied—it “activates” all actions As in E and switches
their flags from start to running (Ar). Wait is only ap-
plicable if all actions As and Ar in E have their persistent
conditions fulfilled. To check this, we first apply all the per-
sistent effects γs, γr (of allAs,Ar) on Facts and then check
if all the persistent conditions τ of all actions in E are ful-
filled with Facts. If they are not, we have reached a dead
end and the planner has to backtrack, possibly starting ac-
tions which provide the missing persistent effects. Only once
all persistent conditions are met, can we advance time. The
key point is that persistent effects and preconditions of con-
current actions will be added at the same time (at the wait ac-
tion), and not after one another, which allows cyclic depen-
dencies. When wait has found that an action Ar has ended,
it will be flagged Ae. At each node expansion, if there are
any such ended actions, ending them is mandatory before
starting any other actions or wait. Some actions may have
undefined durations: they end once their persistent precon-
ditions are not fulfilled any more (e.g., Localisation and Path
Planning end once the Moving has ended).

This implementation implies the following limitation: we
cannot allow two concurrent actions which write the same
function value, else the function value is not well-defined.

Online action instantiation At each plan state S, we in-
stantiate only actions which are eligible in the current plan-
ning state. Just as in Optop (McDermott 1999), all variables
which appear in the :parameters of the action must also
appear in the :(pre)condition. To determine whether
an action is eligible, we need to (1) instantiate its precondi-
tion Pre using a variable substitution s, and (2) find a proof
of Pre given s (abbreviated Pre | s) with the current propo-
sition set Facts . We do this proof using unification. When
searching for all s such that Facts |= Pre | s, we obtain not
only the proof of Pre, but also all possible variable substi-
tutions s which instantiate the action such that it is eligible
in the planning state. Unification in the common definition
means that two expressions’ variables can be substituted in
such a way that the expressions are exactly equal. We in-
troduce subset unification, meaning that the expressions do

Algorithm 1 Subset unification
1: function UNIFYPREDICATE(pi, facts, givenS)
2: S← []
3: neg← isNegated(pi)
4: if neg then pi ← negate(pi)
5: for all ps ∈ givenS do
6: pi,inst ← applySubstitution(pi,ps)
7: extensions← []
8: for all fact ∈ facts do
9: matchSub← match(pi,inst,fact)

10: if pi,inst = fact ∨ matchSub 6= [] then
11: psext ← ps ∪ matchSub
12: extensions← extensions ∪ psext
13: if neg ∧ extensions = [] then
14: S← S ∪ ps
15: else if ¬ neg ∧ extensions 6= [] then
16: S← S ∪ extensions

return S

not have to be exactly the same but one expression is a sub-
set of the other. For example, in the two expressions
E1=and ((atom1(?v1, o2))
E2=and ((atom1(o1, o2) (atom2(o3,o2))

E1 is as a subset of E2 for either of the substitutions
s1=[?v1/o1], s2=[?v1/o3]. If E1 and E2 are con-
junctions, then E2 |= E1 | s1 ∨ s2, meaning we can prove
E1 from E2. Facts is always a conjunction and, if we con-
vert Pre to Disjunctive Normal Form (DNF), we can find
alternative proofs for each conjunct P ∈ Prednf . Given
the conjuncts P and Facts, we can find possible variable
substitutions Si = [s1, ...sn] for propositions pi ∈ P , such
that Facts |= pi | ∀s ∈ Si. Algorithm 1 sketches a func-
tion which returns possible substitutions (or the empty set)
for a predicate pi such that Facts |= pi (functions and nu-
merical, quantified and conditional expressions are also sup-
ported but cannot be detailed within this space). The func-
tion takes a list of given substitutions givenS (results of call-
ing unifyPredicate for propositions pj | j < i earlier in
the conjunct P ). Each substitution ps ∈ givenS may have to
be extended to match the current predicate pi. The function
match in line 9 returns the variable substitution matchSub
to make two predicates equal. If a unification of pi with a
fact ∈ facts is possible, matchSub is added to ps (line
11), and the extended ps is added to the result set S (line
12). Using the closed world assumption, negated predicates
should find no unification with the Facts. Hence, we only
keep ps if we do not find a disproof with it (line 14).

The result of our algorithm yields a list of substitutions
S = [s1, ...sn]. If not empty, each s ∈ S instantiates the
action such that it is eligible in the current planning state.

Application to capabilities We can now define a PDDL
domain in which actions produce data. The example of
planning a grasp action will produce a position p=(x,y,z)
where to move the manipulator. Evidently, PDDL is not ex-
pressive enough to simulate such a complex process as grasp
planning. This has to be done in external modules, while the
specification in PDDL only encodes the symbolic action and
the symbolic information generation (i.e., the grasp planning
and the manipulator position). In the planner, we represent
symbolic information by generating an Object ID for it. The
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PDDL definition can then abstract from the actual data (i.e.,
the coordinates) the external module outputs. For example,
let’s consider a symbolic action to plan a grasp:
(:action graspPlan
:parameters (?obj ?objectPos)
:precondition ( and
(= (objectAtPos ?obj) ?objectPos)
(= (idGenerator) ?armPosID) ...)

:effect ( and
(reachLocation ?obj ?armPosID)
(increase (idGenerator) 1) ...) )

Each time a grasp plan is performed, we increase the ob-
ject ID (incrementing the value of idGenerator). We add
a predicate reachLocation to symbolise data creation,
which as parameter takes the object ID (?armPosID is uni-
fied with the last idGenerator value in the precondition).
The durative action REACH has reachLocation in its pre-
condition, which will then be bound to the current ID. This
way, data flow amongst actions is symbolically represented,
and repeated action calls are supported due to the index gen-
eration. Detailed data is kept in the external module, indexed
by the ID’s. Evidently, the illustrated graspPlan needs to
be extended to fully represent its semantics, but to illustrate
the idea this simplified example should suffice.

External modules To determine a robot’s eligibility for a
specific task, we may need to evaluate conditions and com-
pute time estimates which require more complex algorithms
that cannot be represented in PDDL. TFD/M (Dornhege et
al. 2012) addresses the lack of PDDL expressiveness by in-
troducing external modules in which function calls to exter-
nal libraries can be specified within PDDL. We adopt a sim-
ilar approach, with the difference that we introduce external
modules per action, instead of arbitrary function calls within
PDDL definitions. This more naturally suits our needs and
does not require changes in the PDDL specification. The ex-
ternal module of an action is called from within the planner
to (a) retrieve the action’s duration (e.g., calculating time
of navigation along a path), (b) to check for more complex
preconditions (e.g., concerning capability parameters men-
tioned earlier), and (c) when applying effects of an action
in the current planning state. The latter is mainly used to al-
low the external module to create data structures that have
been generated by the action (e.g., storing the x/y/z coordi-
nates indexed by the generated object ID). Such data has to
be passed from one planning state to the next so the mod-
ules can use it for their calculations. The reference Ext to
external module data is passed along with the current state.

Results
We evaluate our algorithms using our implementation of
the planner on a series of experiments. First, we want
to compare the performance of our runtime action in-
stantiation (online instantiation) to the traditional ap-
proach of pre-instantiating all actions in advance (offline
pre-instantiation). Our planner can also do offline
instantiation—but domains with numeric action parameters
(like our capabilities) will not work with the offline ap-
proach, because we cannot pre-instantiatiate such actions

Offline Online
Domain # Exp # Act Time # Act Time
Briefcase4 6738 49 1.7 3 1.1
Briefcase5 7856 71 6.6 3 3.6
Ferryn5,l5 25156 300 4.9 3 6
Ferryn6,l5 134543 363 22 3 42
Gripper6 8957 2100 9.2 3 2.7
Gripper7 23689 2783 31.9 3 5.8
Gripper8 60213 3600 100.5 3 14.9
Gripper9 149322 4563 306 3 41.4
Gridx5,y5,k1,l1 325 - - 5 7.3
Loga1,s2,c2,p3 2900 67500 23.7 6 2.3
Loga1,s2,c3,p2 202117 29376 82 6 5.6

Table 1: Results on FF domains. Node expansions (# Exp),
(generated) actions (# Act) and search time in seconds.

(which is the reason why we needed to implement the online
instantiation). However, we can evaluate the performance of
offline vs. online on other classic domains like the
well-known FF benchmark domains (Hoffmann 2001). We
used depth-first search only in order to reflect raw runtime
peformances regardless of heuristics. Results are shown in
Table 1. Domain name subscripts in the table list the pa-
rameters for problem generation (cf. FF domains documen-
tation). #Act is the number of action instances which were
pre-generated for the offline case and is the number of
domain actions in the online case. #Time does not in-
clude the time to generate action instances in offline,
which for some problems was significant (e.g., for Grid).
The main observations which can be made from this table
are as follows. (a) The number of action instances can be-
come huge in the offline case, which is clearly reflected in
the search time, because all these actions have to be evalu-
ated for applicability in each state. In particular, the results
on the Gripper domain show a big difference between both
approaches. (b) Sometimes the offline approach can result in
better performance, as seen in the ferry domain. This domain
has a larger number of predicates in the problem description
(Facts in our state), which are used to instantiate domain
actions, hence the larger state description affects search per-
formance. (c) In some cases, we were not able to run the
offline variant because the planner ran out of memory at
the stage of pre-generating action instances, which was the
case in the Grid domain (and others we tested which are not
shown here). Overall, the results show that, in most cases,
there is no disadvantage of action instantiation at planning
time but that there can even be performance improvements,
in some cases solving problems requiring too much memory
for the offline approach.

Next, we ran experiments with our robot capabilities de-
fined in PDDL. Apart from the planning actions, all are du-
rative actions. For the experiment, we use 11 actions: LO-
CALISE, PATHPLAN, MOVE, GRASPPLAN, GRASP, RELEASE,
REACHPLAN, REACH, PLACEPLAN, PLACE and LIFT. Of these,
LOCALISE, PATHPLAN and MOVE have cyclic concurrency re-
quirements in their interacting data flow, as illustrated in Fig-
ure 1. To pick an object, the robot has to GRASPPLAN to ob-
tain a target arm position armPose for the grasp, which is
passed to REACHPLAN to determine the robot’s standing pose
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#Robots – AStar Best First
#Objects # Exp Task time # Exp Task time
1 – 1 78 18.1 78 18.1
1 – 2 239 35.2 167 37.0
1 – 3 690 51.1 303 52.7
2 – 1 83 16.7 85 18.8
2 – 2 1876 20.1 826 34.4
2 – 3 5764 29.2 1483 49.8
3 – 1 105 15.7 84 20.4
3 – 2 3463 17.7 804 33.5

Table 2: Results for the object transportation task.

standPose to reach to armPose. LOCALISE, PATHPLAN and
MOVE bring the robot to a target position standPose. PLA-
CEPLAN determines an arm pose to place an object, similar
to GRASPPLAN. LIFT and PLACE are symbolic actions which
attach/detach the object from the robot. Unfortunately we do
not have the space to include the PDDL definitions but the
principle has been explained in the above sections. Robots
are generated in a 10x10 grid world in which they can move
vertically and horizontally. A number of objects which have
to be transported to a random target location are generated as
well. We want to see how many nodes have to be expanded
until a plan is found and how long it takes all robots to trans-
port all objects (total task time). We compare results of an
optimal A-Star search with a Greedy Best First search. Task-
independent heuristic computation is part of our future work,
therefore the heuristic we currently use is simply the maxi-
mum distance of any object to its target location, assuming
all robots move at the same speed (this is admissible because
it assumes all objects are transported in parallel). The dura-
tion of all manipulation actions is 1 second but the MOVE

action depends on the path calculated in the PATHPLAN ac-
tion, which for these experiments returns the Manhattan dis-
tance. We generated 100 such problem instances and aver-
aged the results as displayed in Table 2. The number of node
expansions increases quite dramatically with more robots
and objects being introduced. This is not surprising, because
temporal planning, particularly with interleaved and concur-
rent actions, is much more complex than classical planning:
Scheduling is part of the problem and, in this example, also
the Traveling Salesman Problem (TSP), which is NP-Hard,
implicitly is part of the problem. This is because the shortest
path to all objects needs to be found. Therefore, we cannot
use this planner for large instances of robots and objects.
However, this is not our aim. We require a planner to yield
action sequences for one robot or a smaller number of robots
co-operating at one task (also termed a Coalition (Korsah,
Stentz, and Dias 2013)). The number of node expansions
needed is acceptable for a small number of robots/objects,
especially considering that the heuristic used in this exam-
ple is very simple. If we compare the results of A-Star and
Best First, as expected we can see how the heuristic causes
the planner to be too greedy and find suboptimal solutions
but instead saving a significant amount of node expansions.
Table 3 shows another run of the experiment with only one
robot or one object respectively. It shows clearly that perfor-
mance is not heavily impacted by having several robots com-
peting for the same object. The total task time decreases with

#Robots – AStar Best First
#Objects # Exp Task time # Exp Task time
1 – 1 78 18.0 78 19.9
3 – 1 105 16.1 84 19.6
5 – 1 132 15.0 85 20.9
8 – 1 205 14.3 88 19.8
10 – 1 259 13.4 91 19.5
1 – 1 79 20.0 78 20.0
1 – 2 234 36.7 175 37.6
1 – 3 679 49.9 303 54.0
1 – 4 1738 66.9 494 74.4
1 – 5 4688 79.6 920 89.8

Table 3: Result set 2 for object transportation task.

#Robots – AStar Best First
#Places # Exp Task time # Exp Task time
2 – 1 171 29.2 169 33.2
5 – 1 298 26.8 158 30.5
10 – 1 996 23.9 206 31.6
2 – 3 317 28.7 231 35.2
5 – 3 1106 26.3 312 31.5
10 – 3 1517 21.0 385 26.1
2 – 5 604 26.0 342 31.9
5 – 5 1578 24.5 391 29.1
10 – 5 2652 19.3 553 30.1

Table 4: Object transportation task with need for co-
operation.

the number of robots because the closest robot will transport
the object but the number of node expansions does not in-
crease too much. Instead, if we have one robot which has to
transport several objects, a dramatic increase in the search
space can be observed. This is because the TSP implicitly
becomes part of the problem. From this, we can draw the
conclusion that our planner works well for several robots
and few location-dependent tasks. Our planner finds an ac-
tion sequence for the robot which is best suited (according
to execution prediction) for the task.

In the last experiment, we assume robots cannot move ev-
erywhere in the world because they cannot navigate certain
terrain. We divide the grid into two different terrain shapes;
one half of the grid each. Robots can place an object at the
boundary to the other terrain, so that another robot can pick
it up and bring it to its destination. Now, robots need to co-
operate in order to solve the task. For our search algorithm
to work, positions in the world have to be tagged as “plac-
ing positions”. This is necessary to restrict the search space,
otherwise robots would have to try placing objects at every
possible location in the world, which would make the plan-
ning problem intractable in continuous domains. Such place
positions could be automatically detected, e.g., positions on
tables, or on other flat surfaces. For this experiment, we gen-
erate such place positions randomly at the boundary of the
two terrains. We want to see how the number of such place
positions influences node expansions. Table 4 shows the re-
sults of this experiment. As expected, the search space in-
creases with more place positions, because robots have more
choices. At the same time, overall task runtime decreases, as
robots find more optimal place positions.
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Conclusion
We present a domain description supporting a variety of
robotic tasks, with robot capabilities defined in a platform-
independent way to support heterogeneous architectures. To
integrate this model with a domain-independent planner, we
present a novel approach to instantiate actions during plan-
ning and support concurrent actions with cyclic data flow
dependencies. Results show that this planner can produce an
optimal plan in an acceptable number of node expansions.
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