Backdoors to Planning
DOI:
https://doi.org/10.1609/aaai.v28i1.9033Keywords:
planning, backdoors, theoretical analysis, parameterized complexity, causal graphAbstract
Backdoors measure the distance to tractable fragments and have become an important tool to find fixed-parameter tractable (fpt) algorithms. Despite their success, backdoors have not been used for planning, a central problem in AI that has a high computational complexity. In this work, we introduce two notions of backdoors building upon the causal graph. We analyze the complexity of finding a small backdoor (detection) and using the backdoor to solve the problem (evaluation) in the light of planning with (un)bounded plan length/domain of the variables. For each setting we present either an fpt-result or rule out the existence thereof by showing parameterized intractability. In three cases we achieve the most desirable outcome: detection and evaluation are fpt.