
On Boosting Sparse Parities

Lev Reyzin
Department of Mathematics, Statistics, & Computer Science

University of Illinois at Chicago
Chicago, IL 60607

lreyzin@math.uic.edu

Abstract
While boosting has been extensively studied, consider-
ably less attention has been devoted to the task of de-
signing good weak learning algorithms. In this paper
we consider the problem of designing weak learners
that are especially adept to the boosting procedure and
specifically the AdaBoost algorithm.
First we describe conditions desirable for a weak learn-
ing algorithm. We then propose using sparse parity
functions as weak learners, which have many of our de-
sired properties, as weak learners in boosting. Our ex-
perimental tests show the proposed weak learners to be
competitive with the most widely used ones: decision
stumps and pruned decision trees.

Introduction
The boosting approach to machine learning is a pow-
erful technique that combines simple rules that are cor-
rect with probability slightly better than random guess-
ing into strong predictors. The idea behind boosting origi-
nated in Schapire’s theoretical result (1990) showing a re-
duction from strong to weak learnability. Schapire’s reduc-
tion was eventually made into a practical algorithm called
AdaBoost (Freund and Schapire 1997), which remains the
most analyzed and most ubiquitous of the many boosting
algorithms that have appeared since. AdaBoost works by
presenting its input to a weak learning algorithm, getting a
hypothesis, reweighing the distribution on its input, and re-
peating the process again, with the idea that each successive
weak learner focuses on the examples that had previously
been hardest to classify.

Much effort has been expanded in various directions
around boosting. Experimentally, AdaBoost was discov-
ered to be very effective for classification, oftentimes beat-
ing concurrent state-of-the-art algorithms. It was also no-
ticed that AdaBoost tended to perform better than initial
theory suggested (we discuss this further in the following
section), and this observation led to considerable theoretical
and experimental investigation. AdaBoost also became the
basis for many successful applications. A recent summary
of various boosting results appears in (Schapire and Freund
2012).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To optimize for different objectives, new versions of
boosting appeared, including LogitBoost (Friedman,
Hastie, and Tibshirani 1998), BrownBoost (Freund 2001),
LPBoost (Demiriz, Bennett, and Shawe-Taylor 2002), etc.
One aspect these boosting algorithms have in common is
the weak learning assumption – that a weak learning al-
gorithm, used by boosting as a subroutine, can always do
better than random guessing on the distributions presented
to it. Without this property, boosting would fail to work both
in theory and in practice, so ensuring that a boosting algo-
rithm uses a good weak learner is essential to the success of
the overall algorithm.

Despite the centrality of weak learning in boosting, the
theory of choosing a good weak learner has been given con-
siderably less effort compared to the plethora of work sur-
rounding boosting’s other facets. In this work, we aim to
draw attention to the important problem of designing good
weak learners, which we hope will be the subject of future
study, and we give some theory that points to what would
make a good weak learner in practice.

We go on to propose a weak learner suggested by the
theory – the weak learner based on basic Fourier analy-
sis of boolean functions, namely the low degree charac-
ters, or sparse parities. Finally, we experimentally test our
learner and compare it to the most widely-used weak learn-
ers. While parities are not complicated functions, nor new to
learning theory, combining them with boosting turns out to
be an interesting and powerful tool.

The goal of this paper, however, is not to advertise using
parities per-se, but to present a well-researched position that
more serious study of this area is needed.

AdaBoost
AdaBoost, like all boosting algorithms, combines mod-
erately inaccurate prediction rules, taking a weighted ma-
jority vote to form a single classifier. On each round, a
boosting algorithm generates a new prediction rule and then
places more weight on the examples classified incorrectly.
Hence, boosting constantly focuses on correctly classifying
the hardest examples. A nice overview of boosting appears
in (Schapire 2003).
AdaBoost, the most ubiquitous of the boosting algo-

rithms, will be the focus of our paper, though much of
this paper is relevant to other boosting algorithms. The

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2055

Algorithm 1 AdaBoost (Freund and Schapire 1997)
Given: (x1, y1), . . . , (xm, ym),
where xi ∈ X , yi ∈ Y = {−1,+1}.

Initialize D1(i) = 1/m.

for t = 1, . . . , T do
Train base learner using distribution Dt.
Get base classifier ht : X → {−1,+1}.
Let:

γt =
∑
i

Dt(i)yiht(xi).

Choose:
αt =

1

2
ln

1 + γt
1− γt

.

Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

whereZt is a normalization factor (chosen so thatDt+1

will be a distribution).
end for

Output the final classifier:

H(x) = sign

(
T∑
t=1

αtht(x)

)
.

AdaBoost algorithm is given in Algorithm 1.
A key parameter of the boosting algorithm is the edge, γ,

the weak learner can achieve on any distribution AdaBoost
generates. If εt < 1/2 is the error rate of the weak learner
on round t on distribution Dt, then

γt
.
=

∑
i

Dt(i)yiht(xi)

= 1− 2εt
≥ γ,

which we can lower bound by a global γ.
If AdaBoost is run for T = d lnm2γ2 e rounds, its general-

ization error, denoted err(H), can be shown to be bounded
as follows

err(H) ≤ Õ
(
ln |H|
mγ2

+ ln

(
1

δ

))
, (1)

where δ is the failure probability,m the number of examples,
and H is the hypothesis class used by the weak learning al-
gorithm. It is important to note that the bound above is only
one of many explanations for AdaBoost’s performance. It
was observed that, contrary to the bound above, AdaBoost
tends not to overfit training data with more rounds of boost-
ing, despite that the combined classifier’s complexity in-
creases with every round.

This led to the following bound based on the margin of
the prediction of boosting’s weighted vote – a quantity that

can be seen as measuring the confidence (and correctness)
in the prediction of the combined classifier on the training
examples. From this angle, Schapire et al. (1998) derived
another bound on the generalization error of boosting: for
all θ > 0,

err(H) ≤ Pr
S
[yH(x) ≤ θ] + Õ

(√
ln |H|
mθ2

)
, (2)

with the margin represented by the left term to the right of
the inequality, in which PrS [. . .] is the empirical probability
with respect to the training sample that the margin is below
the threshold θ.

For more detail, we refer the reader to the rich amount
of work on alternative explanations of boosting’s perfor-
mance and resistance to overfitting, including, notably,
the margins theory itself (Grove and Schuurmans 1998;
Schapire et al. 1998; Mason, Bartlett, and Baxter 1998;
Reyzin and Schapire 2006).

Properties of a good weak learning algorithm
We can think of the weak learning algorithm working by do-
ing Empirical Risk Minimization (ERM) over some hypoth-
esis classH. That is to say that the algorithm, upon receiving
a (possibly weighted) labeled sample returns a hypothesis
h ∈ H such that

h = argmin
h∈H

(
Pr
x∼S

[h(x) 6= y]
)
.

This criterion can be relaxed to finding an approximate ERM
hypothesis.

With this view in mind, we argue the following properties
are desirable for an effective weak learner.

Diversity: A good weak learner will have many hypothe-
ses that disagree on a large fraction of examples in their
predictions. One reason for this is that AdaBoost’s up-
date rule makes the distribution Dt+1 be such that

Pr
(x,y)∼Dt+1

[ht(x) = y] = Pr
(x,y)∼Dt+1

[ht(x) 6= y]

= 1/2.

Hence, all hypotheses highly correlated with ht will likely
have a small edge as well, making the weak learning con-
dition harder to satisfy.
Coverage: We want all parts of the hypothesis space to be
“covered” by a weak learner. For instance, we do not want
features that are not considered, areas that are sparsely
covered, etc. With high coverage, diversity is easier to
achieve.
Simplicity: If H is finite, we want |H| to be as small as
possible. If H is infinite, we want its VC dimension (or
other measures) to be small.
Error: On the one hand, we need that over all distribu-
tions Di generated by AdaBoost, for a fixed γ > 0,

min
h∈H

errDt(H) ≤ 1/2− γ,

On the other hand, perhaps counter-intuitively, we need
h to have nonzero training error, otherwise AdaBoost
terminates after the first round, in which case boosting is
not used at all.

2056

Evaluability: We need the weak learner to be efficiently
(e.g. in polynomial-time) evaluable for it to be usable in
practice.
Richness: Because AdaBoost takes a weighted vote
over hypotheses from H, it is desirable that a linear com-
bination of hypotheses from H is able to represent a rich
set of functions.
Optimizability: Finding an approximate ERM over the
weak learners should be tractable.

Domingos (2012) argues that “learning = representation +
evaluation + optimization.” It is unsurprising similar condi-
tions appear to help for weak learning.

We note that some of these conditions reinforce one an-
other – e.g. as in the case of diversity and coverage, where
one good way of achieving diversity is to ensure coverage.
On the other hand, some of these conditions are in tension –
e.g. simplicity and diversity. Designing a good weak learner
requires striking a balance among these. For instance, the
set of all boolean functions, while achieving great diversity,
coverage, richness, and efficiency fails the error and simplic-
ity requirements, making for an ineffective weak learner.

Common weak learners
Here we look at two of the most common weak learners used
in boosting.

Decision stumps
Decision stumps are simple weak learners that examine only
one (binary) feature value and predict either it or its nega-
tion. Hence, for n features, there are 2n different stumps.
These can be thought of as 1-node decision trees.

Despite their simplicity, they have proven useful in
practice, perhaps most notably in the celebrated Viola-
Jones face-detection algorithm (2004). Decision stumps
have had extensive empirical and theoretical experimenta-
tion, e.g. (Caruana and Niculescu-Mizil 2006; Reyzin and
Schapire 2006). One practical advantage of using decision
stumps is that optimization can be done via enumeration,
given the small number of hypotheses in the entire class.

Yet, decision stumps are not without drawbacks. Their
limited scope can often fail to find high edges, which can
yield overall worse performance than SVMs or boosted de-
cision trees on many tasks (Caruana and Niculescu-Mizil
2006).

A related limitation of decision stumps is that because
vote of AdaBoost (or any ensemble) can, instead of a sum
over rounds, be rewritten as a sum over all the weak learners
in the finite hypothesis space, with coefficients λ > 0:

H(x) = sign

(
T∑
i=1

αihi(x)

)
= sign

 |H|∑
j=1

λjhj(x)

 ,

is clearly a linear function in the features when stumps are
used as the weak learner.

Hence, many functions (e.g. an XOR on just two features)
simply cannot be predicted with reasonable accuracy via a
linear combination of any number of features. We note that

attempts have also been made to overcome this limitation of
stumps by modifying the boosting algorithm itself (Kégl and
Busa-Fekete 2009).

Classification and regression trees
Classification and regression trees (CART) (Breiman et al.
1984) form a more complicated weak learner, and together
with trees based on other splitting criteria, they comprise
perhaps the most popular general weak learner. CART trees
in particular use the popular Gini index, G, which measures
impurity at a node. The goal is to locally minimize:

G(Ai) =

Mi∑
j=1

p(Aij)G(C|Aij)

where

G(C|Aij) = 1−
J∑
k=1

p2(Ck|Aij),

with Ai being the feature on which to branch, J the num-
ber of classes, Mi the number of features, and p(Aij) the
probability of Ai = jth value, and p(Ck|Aij) as the prob-
ability an example is in Ck given its attribute Ai = j. See
Galiano et al. (2003) for more details on splitting rules, in-
cluding the Gini index.

Decision trees, used as weak learners in boosting are com-
petitive with state of the art solutions for a wide array of
problems, generally outperforming decision stumps (Caru-
ana and Niculescu-Mizil 2006). Decision trees, however,
also present their own difficulties. In order to avoid over-
fitting the training data, decision trees need to be pruned to a
limited number of nodes. However, the number of k-node bi-
nary decision trees grows exponentially in k, presenting the-
oretical, if not practical, difficulty in Occam’s Razor bounds.

Moreover, even pruned trees, or trees whose size is con-
trolled by some stopping criteria, can be problematic for
controlling complexity, and certain boosting algorithms can
overfit the data using pruned decision trees as weak learn-
ers (Reyzin and Schapire 2006). With this in mind, we are
motivated to design a weak learner without these downsides
that can be competitive with the state of the art.

Sparse parities
Herein, we propose using sparse parity functions, the low-
degree characters, as weak learners. Their proposed use in
boosting, while a straightforward idea, is to our knowledge
novel.1 This section assumes binary features and binary clas-
sification. We then discuss how to possibly circumvent both
these limitations in future work.

1One exception is a theoretical result of Jackson (1997) who
uses an extended Kushilevitz and Mansour (1993) type Fourier-
finding algorithm as a boosting subroutine in order to prove a re-
sult for learning DNF under the uniform distribution with mem-
bership queries. Follow-up works by (Bshouty and Feldman 2002)
and (Jackson, Klivans, and Servedio 2002) explicitly considered
the sparsity of the parities used in learning.

2057

Theory
A basic fact of Fourier analysis is that any Boolean func-
tion f : {0, 1}n → {−1, 1} can be uniquely written in the
Fourier basis, taking the form

f(x) =
∑

S∈{0,1}n
f̂SχS(x), (3)

where
χS(x) = (−1)S·x.

The χS are known as the characters over GF(2), the Galois
field consisting of two elements. One may, for simplicity,
just think of this function as changing with the parity of S ·x.
Hence, in the PAC learning literature, these χSs are usually
known as parity functions, with the sparsity of a parity re-
ferring to the degree of the corresponding character, i.e. a
d-parity corresponds to a character of degree d. We shall use
these terms interchangeably.

The scalar quantities f̂S are known as the Fourier coeffi-
cients of the corresponding characters of f , and specifying
all 2n of them is sufficient to reconstruct f . The degree of
a coefficient f̂S is simply equal to ||S||1. Functions with all
non-zero coefficients having low degree are called low de-
gree functions.

The weight of the coefficients of degree ≤ d is

W≤d[f] =
∑

S∈{0,1}n s.t. ||S||1≤d
f̂2S .

Our proposed technique can approximately recover targets
whose Fourier-weight is concentrated on the low degree
characters, i.e. f such that

W≤d[f] ≥ 1− ε0,
for a suitable choice of ε0 as a function of the target error
rate.

While low degree functions over {0, 1}n seem quite lim-
ited, they are surprisingly powerful. We have already seen
that when the degree restriction is d = 1, then the class is
precisely the linear functions (parities of single features are
just the features themselves), which has already proven itself
to be quite effective in machine learning.

Use in boosting
It is not hard to see that the form of Equation 3 is similar to
boosting’s goal of finding a function H such that

H(x) = sign

(
T∑
i=1

αihi(x)

)
.

If we set the weak learner class Hd to be the d-parities, or
characters of degree ≤ d, as well as their negations, we get
a correspondence between the αs and the f̂s, as well as be-
tween the hs and the χs.2 Hence, boosting will try to find a

2It has been observed that variants of boosting can be used
as Goldreich-Levin (1989) analogues for finding heavy Fourier
coefficients, with recently an explicit connection being made be-
tween boosting and quadratic Fourier coefficients (Tulsiani and
Wolf 2011). Of course, we leave this task for the weak learner.

low degree Fourier approximation of the target function, if
it exists.

Now we analyze which of the desired properties such a
weak learner will have.

First, we note that |Hd| = 2
(
n
d

)
≤ 2nd when the degree

bound is d. Using the generalization error bounds in Equa-
tions 1 and 2, we get bounds of

err(H) ≤
(
d lnn

mγ2
+ ln

(
1

δ

))
(4)

and

err(H) ≤ Pr
S
[yf(x) ≤ θ] + Õ

(√
d lnn

mθ2

)
. (5)

Both these bounds have a contribution of d lnn stemming
from |Hd|, which are small for constant d. However, these
functions are able to represent a rich class of functions.

One still has to analyze the achievable γ for the bound,
and this will depend on the target data distribution. However,
the following facts should help us

1. Observing thatH1 is the class of decision stumps, ∀d ≥ 1,
H1 ⊆ Hd. Hence, we can expect the characters to achieve
higher γs.

2. On the uniform distribution, all of the hypotheses used by
the weak learner are orthogonal. Namely, let h1, h2 ∈ H
s.t. h1 6= h2; it is not hard to see that

Pr
x∼U

[h1(x) = h2(x)] = 1/2.

This suggests that as a hypothesis h ∈ Hd is found to
satisfy the weak learning criterion, AdaBoost always
renormalizes the distribution to be orthogonal to h. If the
starting distribution is close to uniform, the renormaliza-
tion should leave the error rates of the remaining hypothe-
ses inH nearly unaffected.

This suggests that the γs produced by this weak learner
should be at least as good as for decision stumps. Moreover,
because H is symmetric in x1 . . . xn and its hypotheses are
evaluable in linear time, the sparse parities clearly meet the
diversity, coverage, simplicity, efficiency, error and richness.

The optimizability criterion, however, is harder to meet,
as naively one would need to try all the

(
n
d

)
elements. This

is the focus of the following section.

Optimizing over parity functions
Because of the orthogonality property of the class, for a
long time no algorithm better than brute force was known
for learning parities with noise, which is present in any real-
world dataset. Even this would not be a major impediment to
learning via low-degree coefficients, e.g. d = 2 or 3, how-
ever recent advances give hope for using larger classes of
weak learners.

Blum et al. (2003), in a theoretical breakthrough separat-
ing the learning complexity classes η−PAC and SQ, pro-
duced essentially the first advance on the learning parity
problem, showing that arbitrary parities over n variables can
be learned in time approximately 2

n
log n , as opposed to the

2058

brute force solution of checking all 2n functions. Their so-
lution remains state of the art for the general case.

The first progress on the sparse version of the noisy par-
ity problem was tackled by Grigorescu et al. (2011), who
gave a Õ(

√
nd) algorithm for learning d-parities. Subse-

quently, Valiant (2012) gave a O(n.8d) algorithm, but with
a significantly better dependence3 on the noise rate η, which
has been omitted from the statements of the bounds. We
include the (Grigorescu, Reyzin, and Vempala 2011) algo-
rithm, Algorithm 2, herein for completeness. The algorithm
of (Valiant 2012) more efficiently finds the correlations from
step 3.

Algorithm 2 Approach of Grigorescu et al. (2011) for learn-
ing d-parities (d, n, ε, δ, η)

1: Given a set X̂ = {x1, . . . , xm} of examples drawn from
D with noise η < 1/2 ,
where m ≥ d log(n/δ)ω(1)

(ε′−η)2 and ε′ = ε+ η − 2εη.

2: For each d
2 -parity c, evaluate it on X̂ to obtain the cor-

responding points

〈c · x1, c · x2, . . . , c · xm〉 ∈ {0, 1}m

and

〈c ·x1+`(x1), c ·x2+`(x2), . . . , c ·xm+`(xm)〉 ∈ {0, 1}m.

Let H be the set of all these 2 ·
(
n
d/2

)
points on the

Hamming cube.
3: Run the Approximate Closest Pair algorithm from (An-

doni and Indyk 2006) on H with the approximation pa-
rameter ρ = ε′/η, to obtain the closest pair of points
in {0, 1}m with corresponding d

2 -parities c1 and c2, re-
spectively.

4: Return c1 + c2.

Employing these algorithms alone is not enough because
of their reliance on random noise and other assumptions.
However, Feldman et al. (2009) showed how to, in general,
extend such results to work in the adversarial noise setting
without asymptotically sacrificing on running time.

Altogether, the recent results above give concrete algo-
rithms for efficiently using higher constant-degree charac-
ters, allowing for richer classes of weak learners to be used
in practice.

Non-binary features and multiclass prediction
An assumption underlying the use of parities in the manner
described is that the features and classifications are both bi-
nary. One straightforward extension to the parity function is
that for p classes, one can use the function x ·c (mod p). The
features x can then take integer values (though this splits the
numerical values of x into p equivalence classes).

3Namely, the algorithm of Grigorescu et al. (2011) has an ex-
ponential dependence on η, and the bound degrades to nd as η
approaches 1/2. Valiant’s (2012) bound, which more precisely is
O(n

3ω
4

+ε), does not.

One can, of course, be more clever in extending these
functions past binary, however, we will leave this for future
work, as our goal is simply to study the basic properties of
this weak learner and to argue that this is an area ripe for
future study.

Experimental results
In this section we experimentally test our proposed weak
learner against two commonly used weak learners: decision
stumps and pruned decision trees.

Data
We considered the following datasets: census, splice, ocr17,
and ocr49, breast cancer, heart, and ecoli, all available from
the UCI repository. The splice dataset was modified to col-
lapse the two splice categories into one to create binary-
labeled data. The ecoli dataset was similarly modified, merg-
ing three classes, to create binary-labeled data.

The following table shows the number of features in each
dataset, as well as how many points we used for training
and test. 1000 training examples were used unless the data
set was too small to accommodate such a large training set,
in which case we used fewer examples for training. Each
run of the experiment randomly divided the data into train-
ing and test sets, and the errors are averages over 20 runs.
The divisions used in the experiments, though random, were
the same across different algorithms to minimize variance in
comparisons.

Table 1: Dataset sizes, and numbers of features, for training
and test.

training # test # binary
examples examples features

oct17 1000 5000 403
ocr49 1000 5000 403
splice 1000 2175 240
census 1000 5000 131
cancer 500 199 82
ecoli 100 236 356
heart 100 170 371

Comparing to decision stumps
Because the functions χS are a generalization of decision
stumps, it is natural to ask how they compare in generaliza-
tion error. We compared decision stumps (which are charac-
ters with a degree bound of 1) to parities bounded by degree
2 and 3 – for these small values it was even possible to do
brute-force search over the entire hypothesis space in the op-
timization.

As we can see, these results show that sparse parities com-
pare favorably against stumps as weak learners. The data
also illustrate that stumps also sometimes outperform higher
degree parities – this is unsurprising, one pays for the ex-
tra hypotheses in the class by the d term in the bounds in

2059

Table 2: Error rates of decision stumps, 2-parities, and 3-
parities used as weak learners for AdaBoost run for 250
rounds, averaged over 20 trials.

decision stumps 2-parities 3-parities
oct17 1.09 0.68 0.62
ocr49 6.08 2.80 2.77
splice 7.37 4.64 4.99
census 18.50 20.44 22.00
cancer 4.45 4.02 3.64
ecoli 7.06 6.84 5.87
heart 22.24 23.88 22.94

Equations 4 and 5, which may not be compensated for with
higher edges.

Overall, these results indicate that the parity-based weak
learner more than competes with decision stumps. However,
it is also important to compare with decision trees, which as
we have mentioned, generally tend to outperform decision
stumps.

CART trees
Now we compare our weak learner to a more-widely used
and arguably better weak learner – pruned decision trees,
namely CART trees pruned to 16 nodes.

Because, modulo the splice dataset, 2-parities are outper-
formed either by decision stumps or 3-parities, we exclude
them from the following comparison table.

Table 3: Error rates of decision stumps, 3-parities, and
CART-16 trees used as weak learners for AdaBoost run
for 250 rounds, averaged over 20 trials.

decision 3-parities CART-16
stumps trees

oct17 1.09 0.62 1.11
ocr49 6.08 2.77 2.16
splice 7.37 4.99 3.18
census 18.50 22.00 22.00
cancer 4.45 3.64 3.19
ecoli 7.06 5.87 8.98
heart 22.24 22.94 24.06

Here, we see a more mixed picture. Which algorithm is
best is fairly evenly split among the classifiers, with sparse
parities occasionally strongly outperforming the others, see
especially the ecoli dataset. However, mixed results are to
be expected of many new algorithms, and we present all
our data in full for a fairer comparison. In designing a weak
learner competitive with those currently commonly used, we
can claim sparse parities should be considered as a choice of
weak learners, at least for some domains. One especially in-
teresting observation is that sparse parities were never the
worst performing classifier.

Discussion
In this paper we discussed some desirable properties of weak
learners, as well as the strengths and weaknesses of decision
stumps and decision trees. Our theory pointed to a new, and
simple, weak learner – sparse parity functions, which is quite
well studied in other contexts in the theory community, but
not previously empirically tested in the context of boosting.
Empirically, our weak learner stayed competitive with deci-
sion stumps and decision trees, sometimes achieving much
lower and sometimes higher error rates.

Another main goal of this work is to raise the question
of principled design of weak learners, which we hope will
become more widely studied.

Acknowledgements
We thank Shmuel Friedland for the use of his computing re-
sources in our experiments. We thank the anonymous refer-
ees of both this version of the paper and of a previous version
for helpful comments and suggestions.

References
Andoni, A., and Indyk, P. 2006. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions.
In FOCS, 459–468.
Blum, A.; Kalai, A.; and Wasserman, H. 2003. Noise-
tolerant learning, the parity problem, and the statistical
query model. J. ACM 50(4):506–519.
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J.
1984. Classification and Regression Trees. Wadsworth.
Bshouty, N. H., and Feldman, V. 2002. On using extended
statistical queries to avoid membership queries. Journal of
Machine Learning Research 2:359–395.
Caruana, R., and Niculescu-Mizil, A. 2006. An empiri-
cal comparison of supervised learning algorithms. In ICML,
161–168.
Demiriz, A.; Bennett, K. P.; and Shawe-Taylor, J. 2002. Lin-
ear programming boosting via column generation. Mach.
Learn. 46(1-3):225–254.
Domingos, P. 2012. A few useful things to know about
machine learning. Commun. ACM 55(10):78–87.
Feldman, V.; Gopalan, P.; Khot, S.; and Ponnuswami, A. K.
2009. On agnostic learning of parities, monomials, and half-
spaces. SIAM J. Comput. 39(2):606–645.
Freund, Y., and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55(1):119–139.
Freund, Y. 2001. An adaptive version of the boost by ma-
jority algorithm. Mach. Learn. 43(3):293–318.
Friedman, J.; Hastie, T.; and Tibshirani, R. 1998. Additive
logistic regression: a statistical view of boosting. Ann. Stat.
28:2000.
Galiano, F. B.; Cubero, J. C.; Cuenca, F.; and Martı́n-
Bautista, M. J. 2003. On the quest for easy-to-understand
splitting rules. Data Knowl. Eng. 44(1):31–48.

2060

Goldreich, O., and Levin, L. A. 1989. A hard-core predicate
for all one-way functions. In STOC, 25–32.
Grigorescu, E.; Reyzin, L.; and Vempala, S. 2011. On noise-
tolerant learning of sparse parities and related problems. In
ALT, 413–424.
Grove, A. J., and Schuurmans, D. 1998. Boosting in the
limit: Maximizing the margin of learned ensembles. In
AAAI/IAAI, 692–699.
Jackson, J. C.; Klivans, A.; and Servedio, R. A. 2002. Learn-
ability beyond ac0. In STOC, 776–784.
Jackson, J. C. 1997. An efficient membership-query algo-
rithm for learning dnf with respect to the uniform distribu-
tion. J. Comput. Syst. Sci. 55(3):414–440.
Kégl, B., and Busa-Fekete, R. 2009. Boosting products of
base classifiers. In ICML, 63.
Kushilevitz, E., and Mansour, Y. 1993. Learning deci-
sion trees using the fourier spectrum. SIAM J. Comput.
22(6):1331–1348.
Mason, L.; Bartlett, P. L.; and Baxter, J. 1998. Direct op-
timization of margins improves generalization in combined
classifiers. In NIPS, 288–294.
Reyzin, L., and Schapire, R. E. 2006. How boosting the
margin can also boost classifier complexity. In ICML, 753–
760.
Schapire, R. E., and Freund, Y. 2012. Boosting: Foundations
and Algorithms. The MIT Press.
Schapire, R. E.; Freund, Y.; Bartlett, P.; and Lee, W. S. 1998.
Boosting the margin: A new explanation for the effective-
ness of voting methods. Ann. Stat. 26(5):1651–1686.
Schapire, R. E. 1990. The strength of weak learnability.
Mach. Learn. 5:197–227.
Schapire, R. E. 2003. The boosting approach to machine
learning: An overview. In Nonlinear Estimation and Classi-
fication. Springer.
Tulsiani, M., and Wolf, J. 2011. Quadratic goldreich-levin
theorems. In FOCS, 619–628.
Valiant, G. 2012. Finding correlations in subquadratic time,
with applications to learning parities and juntas. In FOCS,
11–20.
Viola, P. A., and Jones, M. J. 2004. Robust real-time face
detection. Int. J. Comp. Vision 57(2):137–154.

2061

