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Abstract

Dictionary learning plays an important role in machine learn-
ing, where data vectors are modeled as a sparse linear com-
binations of basis factors (i.e., dictionary). However, how
to conduct dictionary learning in noisy environment has not
been well studied. Moreover, in practice, the dictionary (i.e.,
the lower rank approximation of the data matrix) and the
sparse representations are required to be nonnegative, such as
applications for image annotation, document summarization,
microarray analysis. In this paper, we propose a new formu-
lation for non-negative dictionary learning in noisy environ-
ment, where structure sparsity is enforced on sparse represen-
tation. The proposed new formulation is also robust for data
with noises and outliers, due to a robust loss function used.
We derive an efficient multiplicative updating algorithm to
solve the optimization problem, where dictionary and sparse
representation are updated iteratively. We prove the conver-
gence and correctness of proposed algorithm rigorously. We
show the differences of dictionary at different level of spar-
sity constraint. The proposed algorithm can be adapted for
clustering and semi-supervised learning.

Introduction
In dictionary learning, a signal is represented as a sparse
representation of basis factors (called dictionary), instead
of predefined wavelets (Mallat 1999). Dictionary learning
has shown the state of the art performance, and has many
applications for image denoising (Elad and Aharon 2006)),
face recognition (Protter and Elad 2009), document cluster-
ing, microarray analysis, etc. Recent researches (Raina et al.
2007; Delgado et al. 2003; Mairal et al. 2009; Olshausen
and Fieldt 1997) have shown the sparsity helps to eliminate
data redundancy, and capture the correlations inherent in
data. Compared with Principal Component Analysis (PCA),
dictionary learning does not have a strict constraint (such
as orthogonal) on the basis vector, and thus the dictionary
can be learned in a more flexible way. The key to dictionary
learning, at different context with different constraints, is to
solve the corresponding optimization problem. For example,
different objective functions (Aharon, Elad, and Bruckstein
2006; Mairal et al. 2010) have been proposed to meet the
requirement of specific applications, e.g., supervised dic-
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tionary learning (Mairal et al. 2008), a joint learning us-
ing dictionary learning and clustering-based sparse repre-
sentation (Dong et al. 2011), online dictionary learning (Ka-
siviswanathan et al. 2011), tensor decomposition for image
storage (Zhang and Ding 2013), etc.

In this paper, we focus on a general non-negative dic-
tionary learning problem in noisy environment, i.e., data
could be noisy and have missing values. To summarize,
the main contribution of this paper is in three-fold. (1)
We formulate the non-negative dictionary learning problem
in noisy environment through the optimization of a non-
smooth loss function over non-negative set with LASSO-
type regularization term. (2) It is challenging to solve this
problem due to the non-smoothness of reconstruction error
term and sparsity regularization term. Different from the re-
cent second order iterative algorithms (e.g., (Lee et al. 2007;
Aharon, Elad, and Bruckstein 2006)) used for dictionary
learning, we propose an efficient multiplicative updating al-
gorithm, where the convergence and correctness of algo-
rithm are rigorously proved. (3) As shown in experiment, our
algorithm converges very fast. The learned sparse coding Y

can be used for clustering and semi-supervised learning.

Robust Dictionary Learning Objective
In standard dictionary learning, given a set of training sig-
nals X = (x1, · · · ,xn), where xi 2 <p represents a data
of p-dimension. We use A 2 <p⇥k to represent fixed size
dictionary, where A = [a1,a2, · · · ,ak],ai 2 <p. For
each signal x 2 <p, we need to optimize the loss function
L(x,A) such that the loss is small using dictionary repre-
sentation. Note this dictionary representation usually needs
to be sparse. Usually, we need to optimize LASSO type ob-
jective (Tibshirani 1994), i.e.,

min
y

||x�Ay||2 + ↵||y||1, (1)

where y 2 <k is sparse representation of signal x using dic-
tionary A, ↵ > 0 is a parameter. Note standard least square
loss is used in Eq.(1), which implies Gaussian noises existed
in input data signals. However, in real world, data measure-
ment could be noisy and have missing values. It is known
that least square loss is prone to noises and large deviations.
Replacing the least square loss of Eq.(1) with more robust
`1 loss, robust dictionary learning becomes,

min
yi,A2C

X

i

||xi �Ayi||1 + ↵||yi||1, (2)
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where dictionary A 2 C, where C is the feasible domain of
problem, i.e., C = {A|A � 0}, or C = {A|kajk2  1} (aj
is j-th column of A).

In real world problems (such as images features, text vec-
tor, etc), input data are non-negative values, which requires
the dictionary to be non-negative, i.e., A � 0. Naturally, the
sparse representation yi for each signal xi should be non-
negative.

Problem Formulation
Thus, in this paper, we focus on feasible domain of A to

be: C = {A|A � 0}. Then objective of Eq.(2) becomes,

min
yi,A

X

i

||xi �Ayi||1 + ↵||yi||1 + �kAk2F ,

s.t. A � 0,yi � 0. (3)

Note smooth term kAk2F is added in Eq.(3) to avoid the triv-
ial solution. In practice, we require � > 0. If � = 0, suppose
(A

⇤
,y

⇤
i ) is the current optimal solution for Eq.(3), then we

can always get a better solution (A

⇤
,y

⇤
i ) with smaller ob-

jective function value of Eq.(3), where A

⇤⇤
= ✓A

⇤
,y

⇤⇤
i =

1
✓y

⇤
i and ✓ > 1.
Using matrix formulation, let Y = [y1,y2, · · · ,yn], then

Eq.(3) becomes,

min
Y,A

||X�AY||1 + ↵||Y||1 + �kAk2F ,

s.t. A � 0,Y � 0, (4)

where ||Y||1 =

P
ki |Yki|. By introducing Lagrangian mul-

tiplier to enforce the constraint, Eq.(4) can be equivalently
expressed as,

min
Y,A

||X�AY||1,

s.t. A � 0,Y � 0, ||Y||1  q, kAk2F  p. (5)

The optimization of Eq.(4) is general non-convex. But if
one of the variables (A or Y) is known, we can find the
global optimal solution w.r.t the other variable. Note two
non-smooth `1 terms are involved in Eq.(4), and thus it is
a bit challenging to solve Eq.(4). However, it does not add
any difficulty, because in Eq.(4), `1 term appeared together
with non-negative constraint. Thus `1 term w.r.t sparse cod-
ing can be rewritten as, ||Y||1 = Tr(EY), where E 2 <k⇥n

is a matrix with all ones.
Algorithm
A main contribution of this paper is to derive the fol-

lowing multiplicative updating algorithms for problem of
Eq.(4), i.e.,

Ajk ( Ajk
[X�WY

T ]jk
[(AY)�WY

T + 2�A]jk
, (6)

Yki ( Yki
[AT

X�W]ki
[AT (AY)�W + ↵E]ki

(7)

where E is a all-ones matrix, W is a matrix given by Wij =⇣
(X�AY)

2
ij+✏

2
⌘�1/2

and � is the Hadamard product, i.e.,
elementwise product between two matrices. Here we assume
Hadamard product has higher operator precedence over reg-
ular matrix product, i.e., AB � CD = A(B � C)D. Note

Figure 1: Computed A = (a1,a2, · · · ,ak) on YaleB dataset
(K = 31) shown as 3 rows using Eq.(4) at ↵ = 0.5.

Figure 2: Computed A = (a1,a2, · · · ,ak) on YaleB dataset
(K = 31) shown as 3 rows using Eq.(4) at ↵ = 1.

that as ✏ ! 0,
⇣
(X � AY)

2
ij + ✏

2
⌘1/2

! |(X � AY)ij |.
We add a small number ✏ here to prevent overflow of Wij

in the case (X � AY)

2
ji ' 0. 1 Because ✏ is not zero, the

algorithm updating rules of Eqs.(6,7) actually minimize the
objective function

min
A�0,Y�0

nX

i=1

pX

j=1

((X�AY)2ji+✏
2)1/2+↵

kX

i=1

pX

j=1

|Yij |+�kAk2
F . (8)

Illustration of dictionary at different ↵
To simply the problem, we fix � = 0.1. On YaleB face

data set, each image xi 2 <p is linearized into a vector,
thus X = [x1,x2, · · · ,xn] 2 <p⇥n is used to compute the
dictionary A 2 <p⇥k and sparse coding Y 2 <k⇥n. Each
dictionary ai 2 <p in the computed A = [a1,a2, · · · ,ak] is
corresponding to each category (K = 31), and thus shown
as an image. Dictionary results A, at ↵ = 0.5, ↵ = 1 of
Eq.(4), are shown in Fig.1 and Fig.2, respectively. Clearly,
the dictionary changes slightly at different sparsity con-
straint (say, different ↵ values). Generally, ↵ = 1 gives
slightly better visual results as compared to ↵ = 0.5, due
to larger sparsity enforcement.

Connections to Related Works
Connection to Sparse Coding Our model has also some
connections to sparse coding (Olshausen and Fieldt 1997),
lasso (Tibshirani 1994) and elastic net (Zou and Hastie
2005). The basic idea of sparse coding is to represent a fea-
ture vector as linear combination of few bases from a prede-
fined dictionary, hence inducing a concept of sparsity. Given
dictionary A, our model is to findsparse representation y for
each signal x, i.e.,

min
y

||x�Ay||1 + ↵||y||1. (9)

If we replace the `1 norm on the error term (1st term) by
`2 norm, this is exactly the LASSO. If we add the smooth

1✏ is set to machine precision in our experiments.
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term of ||y||22 to Eq.(9), this is identical to the elastic net,
which improves the smoothness of the process. Using matrix
format, Eq.(4) becomes,
min
Y,A

||X � AY||1 + ↵||Y||1 + �||Y||2F , s.t. A � 0,Y � 0, (10)

because ||Y||2F =

P
i ||yi||22. Note the multiplicative rule

of Eq.(6) for dictionary A will not change, we only need to
change multiplicative rule for Y of Eq.(7) to,

Yki ( Yki
[AT

X�W]ki
[AT (AY)�W + ↵E+ 2�Y]ki

(11)

If we use original data X as dictionary, Eq.(4) becomes,
min
S

||X�XS||1 + ↵||S||1, s.t. A � 0,S � 0, (12)

where S 2 <n⇥n acts as pairwise similarity between data
points, and can be updated with the following rule,

Sij ( Sij
[XT (X� Ŵ)]ij

[XT (XS)� Ŵ + ↵E]ij
, (13)

where ˆ

Wij = [(X�XS)ij ]
� 1

2 , and E 2 <n⇥n is a matrix
with all ones. The correctness of Eq.(11) and Eq.(13) can be
similarly proved as that of Eq.(4), which has been sharply
observed in (Kong and Ding 2012a) .

Connection to Non-negative Matrix Factorization It
has been shown non-negative matrix factorization (Lee and
Seung 2000) has close relations with dictionary learning. In
our model of Eq.(4), if we set � = 0, this is exactly robust
non-negative matrix factorization using `1 norm, where dic-
tionary A = [a1,a2, · · · ,ak] plays the role of basis vector
in NMF, and Y = [y1,y2, · · · ,yn] is the cluster indicator,
k is the dimension of subspace. Sparse term ||Y||1 enforces
the cluster indicator of NMF solution to be sparse. It also
has clear differences with NMF model using `2,1 error func-
tion (Kong, Ding, and Huang 2011), (Ding and Kong 2012)
(using our notation), i.e.,

kX�AYk2,1 =
nX

i=1

vuut
pX

j=1

(X�AY)2ji =
nX

i=1

kxi �Ayik,

(14)
where index i (number of data), j (dimension of features)

are differently treated. Back to our model, Eq.(4) can be
rewritten as,
min
Y,A

||X � AY||2,1 + ↵||Y||1 + �kAk2
F , s.t. A � 0,Y � 0, (15)

where dictionary A is learned with a robust `2,1 function.
Connection to k-means Clustering The objective func-

tion of the K-means clustering (MacQueen 1967) is JK2 =PK
k=1

P
i2Ck

kxi � fkk2, where fk is the centroid of the
k-th cluster Ck. If we use a more robust error function of
L1 norm, we have JK1 =

PK
k=1

P
i2Ck

kxi � fkk1. In our
formulation of Eq.(4), set ↵ = 0,� = 0, let sparse repre-
sentation Y be the solution of the clustering: Yki = 1 if xi
belongs to cluster Ck; otherwise, Yki = 0 Thus we have

JK1 =
KX

k=1

X

i2Ck

kxi �
KX

k=1

akYkik1

=
KX

k=1

X

i2Ck

kxi � Ayik1 =
nX

i=1

kxi � Ayik1 = kX � AYk1.

Thus our model of Eq.(4) implicitly performs a `1 K-means
clustering. If ↵ 6= 0,� 6= 0, it performs a constraint k-means
clustering by imposing constraint ||Y||1 < q on cluster in-
dicators.

Convergence of the Algorithm
We give the convergence of algorithm in Theorem 1.
Theorem 1. (A) Updating Y using the rule of Eq.(7) while
fixing A, the objective function of Eq.(4) monotonically de-
creases. (B) Updating A using the rule of Eq.(6) while fixing
Y, the objective function of Eq.(4) monotonically decreases.

To prove Theorem 1, we need the following definition:

Wij =

⇣
(X � AY)

2
ij + ✏

2
⌘�1/2

, kBk2
W

=

P
ij B

2
ijWij ,

which are used in the following Lemmas. Note W is a con-
stant given current A,Y.

Updating Y We focus on updating Y while fixing A. Let
LHS be left-hand-side of an equation, and RHS be right-
hand-side of an equation. The proof of Theorem 1(A) re-
quires the following two lemmas. Note in the updating pro-
cess of Y from Y

t to Y

t+1, A,W remain the same. Thus,

kX�AY

t+1k2
W

=

X

ji

(X�AY

t+1
)

2
jiWji,

kX�AY

tk2
W

=

X

ji

(X�AY

t
)

2
jiWji,

where Wji = [(X�AY

t
)

2
ji + ✏

2
]

�1/2.

Lemma 2. Let Yt be the old Y [on the RHS of Eq.(7)]
and Y

t+1 be the new Y [on the LHS of Eq.(7)]. Under the
updating rule of Eq.(7), the following holds

1
2
kX�AY

t+1k2W + ↵Tr(EY

t+1)

 1
2
kX�AY

tk2W + ↵Tr(EY

t). (16)

Lemma 3. Under the updating rule of Eq.(7), the following
holds

kX�AY

t+1k1 � kX�AY

tk1  (17)
1
2

⇣
kX�AY

t+1k2W � kX�AY

tk2W
⌘
,

The key idea of proof of Lemma 2 is to construct an auxil-
iary function to show the convergence of the objective func-
tion. The key idea of proof of Lemma 3 is to compute the
difference between LHS and RHS of Eq.(17).
Proof of Theorem 1. From Lemma 3, the RHS of Eq.(17)
is negative or zero. Therefore

[kX�AY

t+1k1 + ↵Tr(EY

t+1)]

�[kX�AY

tk1 + ↵Tr(EY

t)]

 1
2
kX�AY

t+1k2W � 1
2
kX�AY

tk2W

+↵Tr(EY

t+1)� ↵Tr(EY

t)  0. (18)

This proves that the objective decreases monotonically. u–
Updating A We now focus on updating A while fixing

Y. The proof of Theorem 1(B) requires the following two
lemmas:
Lemma 4. Let At be the old A [on the RHS of Eq.(6)]
and A

t+1 be the new A [on the LHS of Eq.(6)]. Under the
updating rule of Eq.(6), the following holds
1

2
kX � A

t+1
Yk2

W + �kAt+1k2
F 

1

2
kX � A

t
Yk2

W + �kAtk2
F ,
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Lemma 5. Under the updating rule of Eq.(7), the following
holds

kX�A

t+1
Yk1 � kX�A

t
Yk1 

1
2

h
kX�A

t+1
Yk2W � kX�A

t
Yk2W

i
, (19)

The proofs of Lemmas 4, 5 are similar to the proofs of
Lemmas 2, 3 and thus are skipped due to space limitation.
Poof of Theorem 1(B). From Lemma 5, the RHS value of
Eq.(19) is negative or zero. Therefore

[kX�A

t+1
Yk1 + ↵||Y||1 + �kAt+1k2F ]

�[kX�A

t
Yk1 + ↵||Y||1 + �kAtk2F ]

 [
1
2
kX�A

t+1
Yk2W + �kAt+1k2F ]

�[
1
2
kX�A

t
Yk2W + �kAtk2F ]  0. (20)

This proves that the objective decreases monotonically. u–
Remark Proposed multiplicative update algorithm con-

verges to a local optimum due to the non-convexity of
f(A,Y) w.r.t both A and Y. However, even local min-
ima still provides very desirable properties for dictionary
learning tasks. It is usually very difficult to choose step
size to guarantee the convergence of general gradient de-
scent method. The proposed multiplicative method provides
a smart choice for step size, and thus for a better dictionary.

Due to space limit, the proof of Lemma 2 is omitted here.
Proof of Lemma 3 The left-hand-side (LHS) of Eq.(17) is

pX

j=1

nX

i=1

hq
(X � AY

t+1)2ji + ✏2 �
q

(X � AY

t)2ji + ✏2
i

=
pX

j=1

nX

i=1

[
q

(X � AY

t+1)2ji + ✏2 � 1/Wji]

using the definition of Wji = [(X�AY

t
)

2
ji+ ✏

2
]

�1/2. The
right-hand-side (RHS) of Eq.(17) is

RHS =
1

2

pX

j=1

nX

i=1

h
(X � AY

t+1)2jiWji � (X � AY

t)2jiWji

i

=
1

2

X

ji

h
[(X � AY

t+1)2ji + ✏
2]Wji � [(X � AY

t)2ji + ✏
2]Wji

i

=
1

2

X

ji

h
[(X � AY

t+1)2ji + ✏
2]Wji � 1/Wji

i

Therefore,

LHS � RHS = �
X

ji

Wji

2

h
� 2

1

Wji

q
(X � AY

t+1)2ji + ✏2

+
1

W 2
ji

+ [(X � AY

t+1)2ji + ✏
2]

i

= �
X

ji

Wji

2

⇣q
(X � AY

t+1)2ji + ✏2 �
1

Wji

⌘2
 0

u–

Correctness of the Algorithm
We prove that the converged solution satisfies the Karush-
Kuhn-Tucker condition of the constrained optimization the-
ory. We prove the correctness of the algorithm w.r.t. A and
Y, respectively.

Figure 3: umist data, half of the images from each category
are occluded. Occlusion size: 7 x 7.

Figure 4: Caltech data. Shown images are from “face” cate-
gory.

Table 1: Descriptions of occluded datasets

Dataset #Size #Dimension #Class occluded size
AT&T 400 644 40 10 x 10
Mnist 150 784 10 8 x 8
Umist 360 644 20 7 x 7
YaleB 1984 504 31 N/A
Caltech 600 432 20 N/A

Theorem 6. The converged solution Y

⇤ of the updating rule
of Eq.(7) satisfies the KKT condition of optimization theory.
Theorem 7. The converged solution A

⇤ of the updating rule
of Eq.(6) satisfies the KKT condition of optimization theory.
Proof of Theorem 6. Let J(Y) = kX�AYk1+↵kYk1+
�kAk2F of Eq.(10). The KKT condition for Y with the con-
straints Yki � 0, i = 1 · · ·n, k = 1 · · ·K is @J(Y)

@Yki
Yki =

0, 8 i, k. The derivative is

@J(Y)
@Yki

=
nX

i0=1

pX

j=1

(X�AY)ji0q
(X�AY)2ji0 + ✏2

@(X�AY)ji0

@Yki

+
�Tr(EY)

Yki
=

pX

j=1

�Wji(X�AY)jiAjk + ↵Eki (21)

= �(AT
X�W)ki + [AT (AY)�W + ↵E]ki.

Thus the KKT condition for Y is

[�(AT
X�W)ki + (AT (AY)�W + ↵E)ki]Yki = 0, (22)

On the other hand, once Y converges, according to the up-
dating rule of Eq.(7), the converged solution Y

⇤ satisfies

Y ⇤
ki = Y ⇤

ki
(AT

X�W)ki
(AT (AY)�W + ↵E)ki

, (23)

which can be written as [�(A

T
X�W)ki + (A

T
(AY)�

W + ↵E)ki]Y
⇤
ki = 0. This is identical to Eq.(22). Thus the

converged solution satisfies the KKT condition. u–
The proof of Theorem 7 is similar to that of Theorem 6,

and thus is skipped due to space limit.

Experiment
In this section, we empirically evaluate the proposed ap-
proach, where our goal is to examine the convergence of the
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proposed algorithm, and also compare against other robust
dictionary learning methods in noisy environment.

We do experiment on 5 data sets in our experiments, in-
cluding two face datasets AT&T 1 and Umist, YaleB, one
digit datasets mnist (Lecun et al. 1998) and one image scene
datasets Caltech101 (Dueck and Frey 2007). Table 1 sum-
marizes the characteristics of the datasets.

We generate occluded image datasets corresponding to
above 3 original data sets (except YaleB and Caltech). For
YaleB dataset, the images are taken under different poses
with different illumination conditions. The shading parts of
the images play the similar role of occlusion (noises). Thus
we use the original YaleB data. For Caltech dataset, the nat-
ural scenes images are polluted by noises when pictures are
taken. For the other 4 datasets, half of the images are se-
lected from each category for occlusion with block size of
wxw pixels (e.g., w = 10). The locations of occlusions are
random generated without overlaps among the images from
the same category. A demonstration of images are shown in
Figs.3,4.

Convergence of the algorithm We show the convergence
of our algorithm for Eq.(4) in first 1000 iterations on dataset
AT&T and Umist in Fig.5(b) and Fig.5(c), respectively. “x-
axis” is the number of iteration, “y-axis” is the value of log
function of Eq.(4) at � = 2. We use results G 2 {0, 1}k⇥n

computed from standard k-means clustering, to initialize
Y = G + 0.3, and then dictionary A 2 <p⇥k is computed
from the centroid of each category. Experiment results indi-
cate our algorithm of Eqs.(6, 7) converges very fast. We note
Alternating direction method (ADM) (Bertsekas 1996) can
be used to solve Eq.(4). We show the convergence of ADM
on dataset AT&T at � = 2 in Fig.5(a), where objective func-
tion of Eq.(4) decreases from 1.2426e + 4 to 5.032e + 3

in 838 iterations. As compared to ADM, our algorithm de-
creases very fast at first, and guarantees monotonically de-
creaseing in each step.

Data Clustering experiment As is shown before, the ob-
tained sparse coding Y can be used as “cluster indicator”
to do clustering tasks, where each data xi is attributed to
category k, such that k = argmaxk0

Yk0i. The evaluation
metrics (Bühler and Hein 2009) we used here are clustering
accuracy, normalized mutual information and purity. These
measurement are widely used in the evaluation of different
clustering approaches. The larger values of these metrics in-
dicate the better performance of clustering methods.

Compared Methods We compare the proposed method
with the following related methods: (1) k-means cluster-
ing (k-means); (2) standard non-negative matrix factoriza-
tion using least square error function (L2NMF); (3) non-
negative matrix factorization with `1 sparse constraint on
cluster indicator (L2NMFs) (Kim et al. 2011), which opti-
mizes: min

A�0,Y�0 kX�AYk2F + ↵kYk1 + �kAk2F ; (4)
sparse non-negative matrix factorization with group sparse
constraint (L2NMFgs) on cluster indicator (Kim, Mon-
teiro, and Park 2012), which optimizes: min

A�0,Y�0 kX�
AYk2F + ↵

Pn
j=1(

Pk
i=1 |Yij |)2 + �kAk2F ; (5) robust

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html
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(c) Multiplicative
algorithm on
Umist dataset

Figure 5: Convergence of proposed algorithm for solving
Eq.(4) at ↵ = 2,� = 0.1. x-axis: # of iteration; y-axis:
log objective function value of Eq.(4). (a) ADM algorithm
on AT&T dataset; (b) Multiplicative algorithm on AT&T
dataset; (c) Multiplicative algorithm on Umist dataset.

non-negative matrix factorization using `2,1 error func-
tion (L21NMF) (Ding et al. 2006), which optimizes:
min

A�0,Y�0 kX � AYk2,1; (6) robust non-negative ma-
trix factorization using `2,1 error function and `1 sparse
constraint on cluster indicator (L21NMFs) (Kong, Ding,
and Huang 2011), which optimizes: min

A�0,Y�0 kX �
AYk2,1 + ↵kYk1 + �kAk2F ; (7) robust non-negative ma-
trix factorization using `1 error function (L1NMF) (Ke and
Kanade 2005), which optimizes: min

A�0,Y�0 kX�AYk1.
Experiment Settings In all above methods and our

method, � = 0.1 if there is �. ↵ is searched in the fol-
lowing set: {0, 0.5, 1, · · · , 4.5, 5} if there is ↵. We show the
computed accuracy, normalized mutual information, purity
results in Table 2.

Results Analysis We make several important observa-
tions from experiment results. (1) The proposed method is
generally better than the other methods, which validates the
effectiveness of proposed method for data clustering tasks,
in terms of accuracy, normalized mutual information and pu-
rity. (2) In our method, there are two factors contributing to
the performance improvement: (a) robust loss function; (b)
sparsity constraint enforced on Y. As compared to the the
other loss functions used in non-negative matrix factoriza-
tion, `1 loss is more robust for the noises both in data sample
space and feature dimension, and thus gives better perfor-
mance when data are polluted with noises. For the sparsity
constraint, it generally promotes the sparsity of cluster indi-
cator, which slightly improves the performance. This gener-
ally holds for different versions of NMF with different loss
functions, such as least square loss and `2,1 loss. (3) Group
sparsity has been widely used in feature learning and vari-
able selection. Our results, however, indicate that the group
sparsity does not help much for the improvement of cluster-
ing performance, as compared to more general flat sparsity
using LASSO. The reason is that, the goal of group sparsity,
which is to select the most discriminant features, is incon-
sistent with the goal of clustering tasks, which is to find the
most probable class that a data point is assigned to.

Influence of parameter ↵ In all of our experiments, we
fix � values. Only one parameter ↵ is needed to be tuned.
We study the the influence of parameter ↵ for the perfor-
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Table 2: Accuracy (ACC), Normalized Mutual information (NMI), Purity (PUR) comparisons of different algorithms: k-
means clustering, least square NMF (L2NMF), NMF with sparsity constraint (L2NMFs), NMF with group sparsity constraint
(L2NMFsg), NMF using `2,1 error function (L21NMF), NMF using `2,1 error function with sparsity constraint (L21NMFs),
NMF using `1 error function (L1NMF); our methods of using `1 error function with sparsity constraint (L1NMFs) on five
datasets.

Dataset Metric
Clustering Methods

kmeans L2NMF L2NMFs L2NMFsg L1NMF L1NMFs (ours) L21NMF L21NMFs

AT&T
ACC 0.5700 0.5875 0.5975 0.5925 0.6203 0.6310 0.6075 0.6175
NMI 0.7544 0.7575 0.7589 0.7546 0.7944 0.8123 0.7638 0.7737
PUR 0.6025 0.6175 0.5930 0.6250 0.6525 0.6673 0.6425 0.6475

MNIST
ACC 0.5800 0.5733 0.6133 0.6066 0.6604 0.6733 0.6333 0.6466
NMI 0.5717 0.5451 0.5931 0.5984 0.6097 0.6208 0.5693 0.5937
PUR 0.6234 0.6265 0.6479 0.6333 0.6846 0.6935 0.6466 0.6666

UMIST
ACC 0.4372 0.4611 0.4616 0.4527 0.4672 0.4872 0.4500 0.4711
NMI 0.6190 0.6005 0.6158 0.6138 0.6490 0.6690 0.6323 0.6752
PUR 0.4872 0.4833 0.4777 0.4933 0.4972 0.5172 0.5033 0.4976

YALEB
ACC 0.0866 0.1683 0.1577 0.1673 0.1882 0.2148 0.1956 0.2021
NMI 0.0851 0.2864 0.2418 0.2674 0.2864 0.3323 0.3154 0.3214
PUR 0.0957 0.1769 0.1678 0.1769 0.1983 0.2343 0.2046 0.2102

Caltech
ACC 0.4033 0.4167 0.4433 0.4450 0.5033 0.5267 0.4500 0.4917
NMI 0.4272 0.4364 0.4729 0.4737 0.5272 0.5396 0.4611 0.5025
PUR 0.4300 0.4333 0.4700 0.4733 0.5300 0.5517 0.4817 0.5200
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(b) Caltech

Figure 6: Clustering Accuracy w.r.t different parameter ↵ on
datasets mnist and Caltech.

mance of our algorithm. We show the clustering accuracy
w.r.t different ↵ on data set mnist and Caltech in Fig.6. An
interesting observation is that, our method is not very sensi-
tive to ↵. Our method also gives better clustering results at
different ↵ values.

Semi-supervised learning experiment
Another interesting application of non-negative dictio-

nary learning is to learn the “self-representation” (i.e., S
computed from Eq.(13)). This can be used to construct a
symmetric pairwise similarity S =

1
2 (S + S

T
), because

it captures the relations between different data points using
sparse representation. Then S are fed into semi-supervised
learning methods, for classification purpose. The goal of this
group of experiment is to test the effectiveness of S used for
semi-supervised learning tasks. We adopt three most widely
used semi-learning methods: (1) harmonic function (Zhu,
Ghahramani, and Lafferty 2003); (2) local and global con-
sistency (Zhou et al. 2004); (3) Green’s function (Ding et al.
2007). We note there are other label propagation methods,
e.g., (Kong and Ding 2012b), due to space limit, we do not
compare against them here.

We compare the classification accuracy using 10%, 20%

Table 3: Accuracy comparisons of semi-supervised learn-
ing with 10% labeled data. Learning algorithms used: Har-
monic function, Green’s function and Local and global con-
sistency (LGC). W: results obtained from standard Gaus-
sian kernel; P: results computed using Bi-Stochastication
method (Wang, Li, and König 2010); S: results obtained
from Eq.(13). Dataset: AT&T (A), Mnist (M), Umist (U),
YaleB (Y), Caltech (C).

data
Harmonic Green’s LGC

W P S W P S W P S

A 65.34 66.02 67.23 67.13 69.21 69.23 68.25 69.23 69.34
M 64.53 61.23 66.91 62.17 65.23 65.31 63.72 64.76 63.19
U 44.14 45.98 46.39 45.91 45.80 46.38 47.87 48.12 48.21
Y 26.24 27.43 28.14 25.13 23.98 26.94 32.02 31.79 34.23
C 43.28 42.87 45.19 46.47 48.23 48.24 42.17 43.01 43.04

labeled data against the pairwise similarities computed from
another two methods: (1) Gaussian kernel (shown as W

in Tables3), where Wij = e

��||xi�xj ||2 , and bandwidth
� = 0.7/�

2, where � is the average distance of kNN (k=3)
neighbors of all data points; (2) Bi-Stochastication result
(shown as P in Tables 3) (Wang, Li, and König 2010). The
experiment results indicate that, generally, Eq.(13) results
are better than W and P results, except one case on dataset
Mnist with LG-consistency method.

Conclusion
We present a non-negative dictionary learning method for
noisy data, where an efficient multiplicative updating algo-
rithm is derived. We prove the convergence and correctness
of the algorithm, and demonstrate its good performance in
data clustering and semi-supervised learning tasks. In future,
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we will explore how to effectively incorporate the group
structure (or hierarchical structure) into the dictionary learn-
ing process, e.g., non-convex regularization.
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