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Abstract

A common bottleneck in deploying supervised learn-
ing systems is collecting human-annotated examples. In
many domains, annotators form an opinion about the la-
bel of an example incrementally — e.g., each additional
word read from a document or each additional minute
spent inspecting a video helps inform the annotation. In
this paper, we investigate whether we can train learning
systems more efficiently by requesting an annotation
before inspection is fully complete — e.g., after reading
only 25 words of a document. While doing so may re-
duce the overall annotation time, it also introduces the
risk that the annotator might not be able to provide a
label if interrupted too early. We propose an anytime
active learning approach that optimizes the annotation
time and response rate simultaneously. We conduct user
studies on two document classification datasets and de-
velop simulated annotators that mimic the users. Our
simulated experiments show that anytime active learn-
ing outperforms several baselines on these two datasets.
For example, with an annotation budget of one hour,
training a classifier by annotating the first 25 words of
each document reduces classification error by 17% over
annotating the first 100 words of each document.

Introduction

Active learning is a machine learning approach that seeks
to maximize classifier accuracy while minimizing the effort
of human annotators (Settles 2012). This is typically done
by prioritizing example annotation according to the utility
to the classifier.

In this paper, we begin with the simple observation that in
many domains human annotators form an opinion about the
label of an example incrementally. For example, while read-
ing a document, an annotator makes a more informed deci-
sion about the topic assignment as each word is read. Simi-
larly, in video classification the annotator becomes more cer-
tain of the class label the longer she watches the video.

The question we ask is whether we can more efficiently
train a classifier by interrupting the annotator to ask for a
label, rather than waiting until the annotator has fully com-
pleted her inspection. For example, in document classifica-
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tion the active learner may request the label after the anno-
tator has read the first 50 words of the document. For video
classification, the active learner may decide to show only a
short clip. We refer to this approach as anytime active learn-
ing (AAL), by analogy to anytime algorithms, whose execu-
tion may be interrupted at any time to provide an answer.

If the decision of when to interrupt the annotator is made
optimally, we can expect to reduce total annotation effort by
eliminating unnecessary inspection time that does not affect
the returned label. However, the annotator may not be able
to provide a label if interrupted too early — e.g., the annota-
tor will not know how to label a document after seeing only
the first word. AAL strategies, then, must balance two com-
peting objectives: (1) the time spent annotating an instance
(annotation cost); (2) the likelihood that the annotator will
be able to produce a label (annotation response rate). In this
paper, we propose and evaluate a number of anytime active
learning strategies applied to the domain of document clas-
sification. In this domain, it is natural to implement this ap-
proach by revealing only the first £ words to the annotator,
which we refer to as a subinstance.

We first conduct user studies to estimate annotation times

and response rates, and then create simulated oracles that
mimic the human annotators. We perform simulated-oracle
experiments on two document classification tasks, compar-
ing two classes of anytime active learning strategies: (1)
static strategies select subinstances of a fixed size; (2) dy-
namic strategies select subinstances of varying sizes, opti-
mizing cost and response rate simultaneously. Our research
questions and answers are as follows:
RQ1. How does subinstance size affect human annota-
tion time and response rate? We conducted a user study
in which each user labeled 480 documents from two do-
mains under different interruption conditions (e.g., seeing
only the first £ words). We find that as subinstance sizes
increase, both response rates and annotation times increase
(non-linearly), and that the rate of increase varies by dataset.
RQ2. How do static AAL strategies compare with tra-
ditional active learning? We find that simple static strate-
gies result in significantly more efficient learning, even with
few words shown per document. For example, with an an-
notation budget of one hour, labeling only the first 25 words
of each document reduces classification error by 17% com-
pared with labeling the first 100 words of each document.



RQ3. How do dynamic AAL strategies compare with
static strategies? The drawback of the static strategy is that
we must select a subinstance size ahead of time; however,
we find that the optimal size varies by dataset. Instead, we
formulate a dynamic AAL algorithm to minimize cost while
maximizing response rates. We find that this dynamic ap-
proach performs as well or better than the best static strat-
egy, without the need for additional tuning.

The remainder of the paper is organized as follows: we
first formalize the anytime active learning problem, then pro-
pose static and dynamic solutions. Next, we describe our
user studies and how they are used to inform our simula-
tion experiments. Finally, we present the empirical results
and discuss their implications.

Anytime Active Learning (AAL)

In this section, we first review standard active learning and
then formulate our proposed anytime extension.

Problem Formulation

Let £ = {(x;,:)}\_, be a labeled dataset where x; € R?
is a d-dimensional feature vector and y; € {y°,y'} is its
class label.! Let U = {x;}!, . | be a set of unlabeled exam-
ples. Let Pz (y|x) be the conditional probability of y given
x according to a classifier trained on L.

Typical pool-based active learning selects instances U* C
U to be labeled by a human annotator (oracle) and appended
to L. Assuming a prespecified annotation budget B and an
annotation cost function C'(x), the goal of the active learn-
ing algorithm (student) is to select * to minimize the clas-
sifier’s generalization error subject to the budget constraints:

U* + argmin Err(Pz Uy, (ylx)) st Y C(x;) < B
Uscu Xjeui

ey

Equation 1 is typically optimized by greedy algorithms,
selecting one or more examples at a time according to some
heuristic criterion that estimates the utility of each labeled
example. A common approach is to request a label for the
unlabeled instance that maximizes benefit-cost ratio: x; <

U(xi)
C(xi)*

Various definitions of utility U(-) are used in the litera-
ture, such as expected error reduction (Roy and McCallum
2001) and classifier uncertainty (Lewis and Gale 1994).

We propose an alternative formulation of the active learn-
ing problem in which the student has the added capability
of interrupting the human oracle to request a label while the
annotation of x; is being performed. For example, in video
classification, the student may request a label after the oracle
has spent only one minute watching the video. Similarly, in
document classification the student may request a label after
the oracle has read only the first ten words of a document.

arg maxXy i

"We assume binary classification for ease of presentation; this
is not a fundamental limitation.
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Let xf indicate this abbreviated instance, which we call
a subinstance. The nature of subinstances will vary by do-
main. For example, k could indicate the time allotted to in-
spect the instance. In this paper, we focus on document clas-
sification, where it is natural to let x¥ be the first k¥ words of
document X;.

The potential savings from this approach arises from the
assumption that C(x¥) < C(x;); that is, subinstances are
less costly to label than instances. While the magnitude of
these savings are data-dependent, our user studies below
show substantial savings for document classification.

The immediate problem with this approach is that x* may
be considerably more difficult for the oracle to label. We
therefore must account for imperfect oracles (Donmez and
Carbonell 2008; Yan et al. 2011). There are at least two sce-
narios to consider — (1) a noisy oracle produces a label for
any xf, but that label may be incorrect; (2) a reluctant or-
acle may decide not to produce a label for some examples,
but labels that are produced are assumed to be correct. Our
user studies below suggests that the latter case is more com-
mon; thus, in this paper, we restrict our attention to reluctant
oracles, leaving noisy oracles for future work.

In each interaction between the student and oracle, the
student presents a subinstance x¥ to the oracle, and the ora-
cle returns an answer a € {y°, yi, n}, where the answer can
be either the correct label y or neutral, n, which represents
an “I don’t know” answer. If the oracle returns a non-neutral
answer a for xf, the student adds x; and the returned label
(y° or y1) to its training data and updates its classifier. If n
is returned, the labeled data is unchanged. In either case, the
annotation cost C'(x¥) is deducted from the student’s bud-
get because the oracle spends time inspecting x¥ even if she
returns a neutral label. To choose the optimal subinstance,
the student must consider both the cost of the subinstance
as well as the likelihood that a non-neutral label will be re-
turned. Below, we propose two AAL strategies.

Static AAL Strategies

We first consider a simple, static approach to AAL that de-
cides a priori on a fixed subinstance size k. For example, the
student fixes £ = 10 and presents the oracle subinstances
x}0 (please see Algorithm 1).

Let U* = {x¥}™, | be the set of all unlabeled subin-
stances of fixed size k. In SELECTSUBINSTANCE (line 3),
the student picks x¥* as follows:

2

xF* + arg max

’ x%eb(k C(Xf)
Note that the utility is computed from the full instance x;,
not the subinstance, since x; will be added to our labeled set
(line 8). In our experiments, we consider two utility func-
tions: uncertainty (static—k-unc), which sets U (x%)
1 — max, Pz (y|x;), and constant (static-k-const),
which sets the utility of each subinstance to one, U (x¥) = 1.
We use static—k—const as a baseline for other AAL
methods because it is an anytime version of random sam-

pling.



Algorithm 1 Static Anytime Active Learning

1: Input: Labeled data £; Unlabeled data {/; Budget B;
Classifier P(y|x); Subinstance size k
while B > 0 do
: x¥ < SELECTSUBINSTANCE(U, k)
a < QUERYORACLE(xY)
B+ B—CO(x))
if a # n then // Non-neutral response
L+ LU(x;,a)
P(y|x) < UPDATECLASSIFIER(L, P)

2:
3
4:
5:
6‘
7
8
9

Algorithm 2 Dynamic Anytime Active Learning
1: Input: Labeled data £; Unlabeled data I{; Budget B;
Classifier P(y|x); Neutrality classifier Q(z|x¥); Neu-
trality labeled data £7 < 0.
while B > 0 do
: x¥ <~ SELECTSUBINSTANCE(U)
a < QUERYORACLE(xY)
B=B-(C(xF)
if a # n then // Non-neutral response
L+ LU(x;,a)
P(y|x) < UPDATECLASSIFIER(L, P)
L? + L* U (xF ISNEUTRAL(a))
Q(z|x¥) < UPDATECLASSIFIER(L?, Q)

—

2:
3
4
5:
6:
7.
8
9
0
1

—

Dynamic AAL Strategies

The static strategy ignores the impact that £ has on the likeli-
hood of obtaining a neutral label from the oracle. In this sec-
tion, we propose a dynamic strategy that models this proba-
bility directly and uses it to guide subinstance selection (see
Algorithm 2).

Let Q(z|x¥) be the probability distribution that models
whether the oracle will return an “I don’t know” answer
(i.e. a neutral label) for the subinstance xf, where z €
{n,—n}. The objective of SELECTSUBINSTANCE (line 3)
is to select the subinstance that maximizes utility and the
probability of obtaining a non-neutral label, —n, while min-
imizing cost.

Ux;)Q(z = ﬁn|xf)
C(xF)

7

3

xM  argmax
xkeutkes

In contrast to the static approach, the dynamic algorithm
searches over an expanded set of p different subinstance
sizes: S = {UM .. . Ukr}.

The immediate question is how to estimate Q(z|x},). We
propose a supervised learning approach using the previous
interactions with the oracle as labeled examples. That is,
we maintain an auxiliary binary labeled dataset £* con-
taining (x¥, z;) pairs (line 10), indicating whether subin-
stance x¥ received a neutral label or not.> This dataset is

*Mazzoni, Wagstaff, and Burl (2006) use a similar approach to
identify “irrelevant” examples.
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Time (secs) % Neutral

Size | IMDB | SRAA || IMDB | SRAA
10 5.7 5.2 53 50
25 8.2 6.5 33 38
50 10.9 7.6 24 42
75 15.9 9.1 12 22
100 16.7 10.3 13 13

Table 1: User study results reporting average annotation time
in seconds and percent of neutral labels by subinstance size.

used to train the neutrality classifier Q(z|x%) (line 11). Al-
gorithm 2 outlines this approach, where ISNEUTRAL maps
the oracle answer to z (i.e., n or —n). As in the static strat-
egy, we consider two settings of the utility function: uncer-
tainty (dynamic—unc) and constant (dynamic—-const).
While both dynamic—unc and dynamic-const con-
sider the cost of annotation, dynamic—unc balances util-
ity with the chance of receiving a non-neutral label, while
dynamic-const simply maximizes the chance of a non-
neutral label.

Experimental Evaluation

Our experiments use two datasets: (1) IMDB: A collection
of 50K reviews from IMDB.com labeled with positive or
negative sentiment (Maas et al. 2011); (2) SRAA: A collec-
tion of 73K Usenet articles labeled as related to aviation or
auto documents (Nigam et al. 1998).

User Studies

To estimate the real-world relationships among subinstance
size, annotation time, and response rate, we first performed
several user studies in which subjects were shown document
subinstances of varying sizes and asked to provide a correct
label or an “I don’t know” answer (i.e., a neutral label).

Each wuser performed six classification tasks per
dataset, labeling document subinstances of sizes
{10, 25,50,75,100, All}. For example, to create the
50-word task, we truncated the documents to the first 50
words. For each classification task, the users were asked
to annotate 20 randomly-chosen documents from each
class, resulting in 40 annotations per task. The documents
were presented to the users in random order. For every
subinstance, we recorded the annotation time, the number
of words seen, and the label. We used the average over five
users on the IMDB and three users on the SRAA data.

Table 1 shows the average annotation time (in seconds)
and average percentage of neutral labels returned for each
subinstance size. We find that the annotation time varies by
subinstance size and dataset. For instance, in IMDB anno-
tation time of subinstances of size 50 is 25% greater than
for subinstances of size 25. These responses are influenced
by the user experience and domain knowledge familiarity,
among other factors.

Intuitively, the annotator will be more likely to provide a
non-neutral label when he can see more of a document. This
intuition was confirmed by our user studies. Table 1 shows
that the percentage of neutral labels decreases as subinstance



size increases. However, the rate at which the neutral answer
decreases differs by dataset. For example, there was approx-
imately a 50% neutral rate on both datasets for subinstances
with 10 words; yet for 75 words the neutral responses were
12% on IMDB and 22% on SRAA. We speculate that the
SRAA dataset is a more specialized domain, whereas classi-
fying movie reviews (IMDB) is easier for non-expert human
annotators.

Simulations

We use the results of the user study to inform our large-scale
studies on the two datasets.

Oracle In order to compare many AAL strategies at scale,
it is necessary to simulate the actions of the human annota-
tors. Specifically, we must simulate for which examples the
annotator will return a neutral label. We wanted to better re-
flect the fact that the lexical content of each subinstance in-
fluences its neutrality instead of random neutrality —e.g., if
a subinstance has strong sentiment words it is not likely to be
labeled neutral. To accomplish this, we trained two oracles
(one per dataset) that mimic the human annotators. We sim-
ulated the oracle with a classifier trained on held-out data; a
neutral label is returned when the class posterior probability
for a subinstance x¥ is below a specified threshold. We tune
this classifier so that the pattern of neutral labels matches
that observed in the user study.

At the start of each experiment we fit a logistic regres-
sion classifier on a held-out labeled dataset (25K examples
for IMDB; 36K for SRAA). We use L1 regularization con-
trolled by penalty C to encourage sparsity. When the oracle
is asked to label a subinstance x¥, we compute the posterior
probability with respect to this classifier and compute ora-
cle’s uncertainty on x7 as 1 — max, P(y|x¥). If the uncer-
tainty is greater than a specified threshold 7', then the oracle
returns a neutral label. Otherwise, the true label is returned.

For each of the datasets, we set C' and 1" so that the dis-
tribution of neutral labels by subinstance size most closely
matches the results of the user study. We searched values
C € [0.001, 3] with 0.001 step and T € [0.3,0.45] with
0.05 step, selecting C = 0.3,7 = 0.4 for IMDB and
C = 0.01,T = 0.3 for SRAA. Figures 1(a) and 1(b) show
the simulated distribution of neutral labels by subinstance
size over the same documents from the user study, indicat-
ing a close match with human behavior.

To simulate the cost of each annotation, we used a fixed
cost equal to the average annotation time from the user study
for subinstances of that size — e.g., for all subinstances of
size 10 for IMDB, the cost is the average annotation time
for all subinstances of size 10 in the IMDB user study. In
future work, we will consider modeling annotation time as a
function of the lexical content of the subinstance.

Student For the student, we use a logistic regression clas-
sifier with L1 regularization using the default parameter
C =1, seeded with a labeled set of two examples. At each
round of active learning, a subsample of 250 examples are
selected uniformly from the unlabeled set ¢/. Following the
user study, subinstances of sizes {10, 25,50, 75,100} are
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created for each example in the subsample and scored ac-
cording to the appropriate strategy (Equation 2 for static;
Equation 3 for dynamic). We reserve half of the data for
testing, and use the remaining to simulate active learning.
For all methods, we report the average result of 10 trials.

For both datasets, we used documents that at least con-
tain 100 words. We created binary feature representations of
the documents, using stemmed n-grams (sizes one to three),
pruning n-grams appearing in fewer than five documents. In
SRAA, we filtered header information, preserving only the
subject line and body of the messages.

Results and Discussion

With an oracle simulation and annotation cost in place, we
explored the performance of several AAL strategies. We ex-
amined learning curves for accuracy and area under the ROC
curve (AUC) and observed the same trends and behaviors for
each; therefore we include only AUC results here. We sum-
marize our findings below.

Smaller subinstances generally outperform larger
subinstances. Figure 2 shows the performance of
static-k-const for IMDB and SRAA datasets. These
results consistently show that savings can be achieved by
selecting smaller subinstances. For example, after an hour
of annotation (3600 seconds) on IMDB, inspecting the first
100 words of each document results in an AUC of .752;
whereas labeling only the first 25 words results in an AUC
of .792, a 17% reduction in error. This suggests that while
a smaller k£ results in a high neutral percentage, the time
saved by reading shorter documents more than make up for
the losses. The results for static-k-unc are similar but
are omitted due to space limitations.

The optimal subinstance size varies by dataset. Com-
paring Figure 2(a) to Figure 2(b) indicates that the optimal
k* varies by dataset (k* 25 for IMDB, k* = 50 for
SRAA). This follows from the observed differences between
these datasets in the user study (Table 1); i.e., the annotation
cost rises more slowly with subinstance size in SRAA. Thus,
somewhat bigger subinstances are worth the small additional
cost to reduce the likelihood of a neutral label.

dynamic—unc does better than or equal to the best
static AAL algorithm. Given the fact that the optimal
subinstance size varies by dataset, we examine how the dy-
namic approach compares to the static approach. Figure 3
compares the dynamic approach with uncertainty and con-
stant utility (dynamic-unc, dynamic—const) with the
best static methods. We find that the dynamic-unc out-
performs the best static method for the IMDB dataset (Fig-
ure 3(a)). In Figure 3(b), the static and dynamic approaches
are comparable; however, the advantage of dynamic-unc
is that there is no need to specify k ahead of time.

Dynamic approaches tend to pick a mixture of subin-
stance sizes. To better understand the behavior of the dy-
namic approaches, Figure 4 plots the distribution of subin-
stance sizes selected by both approaches. As we can see, the
dynamic approaches select a mixture of subinstance sizes,
but heavily favor smaller sizes. Combining this observation
with the results that dynamic—unc is either able to outper-
form or perform comparable to static approaches, this sug-
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Figure 1: A comparison of the proportion of neutral responses by subinstance size for the user studies and the simulated oracles.
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Figure 2: AUC learning curves for static-k—const. The trends for static-k—-unc are similar. The optimal £* depends
on the domain. For IMDB, k£* = 25 while for SRAA, k* = 50.
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Figure 3: Comparing dynamic AAL to the best of the static AAL approaches. dynamic-unc outperforms all methods for
IMDB whereas it is comparable to the best static approaches for SRAA.

gests that the dynamic approach is able to pick small subin- Table 1 and Figure 4, we compute the proportion of neu-
stances that receive non-neutral labels. tral labels we expect to see for the observed distribution
Table 2 further investigates this by comparing the propor- of subinstance sizes. We can see that the neutrality classi-
tion of neutral labels observed with the expected proportion fier Q(z[x}) enables the dynamic approach to select small
based on the user study. That is, by combining the data from subinstances while limiting the impact of neutral labels.

2052



IMDB - AAL Proportion of Subinstances by Size

100% 100% -
W dyn-unc Q
N dyn-const §
80% < 80% \
g 60% g 60%
k] k]
c c
"g 40% ‘% 40%
o o
3 3
a (-9
20% § 20%
0% l - — 0%
10 25 50 75 100 10

Subinstance Size (words)

(a) IMDB

25

Subinstance Size (words)

l“ |

SRAA - AAL Proportion of Subinstances by Size

M dyn-unc Osbt; Ego/p
N dyn-const const 15% 0
IMDB |~ 7 | 349 | 45%

const 2% 50%

SRAA T “inc | 37% | 45%

Table 2: The percentage of observed
neutral labels for dynamic—unc and
dynamic-const, compared with
what is expected for subinstances of
- the observed sizes.

50 75 100

(b) SRAA

Figure 4: Proportion of subinstance sizes selected by dynamic AAL.

Uncertainty improves the exploration of AAL al-
gorithms. In general, we find that using uncertainty
outperforms constant utility. For example, in Figure 3,
dynamic-unc outperforms dynamic-const on both
datasets. This supports prior work showing the benefits of
uncertainty sampling. Additionally, we find that the uncer-
tainty term of the objective balances the neutrality term,
enabling a better exploration of the sample space. For
example, in the SRAA dataset, Figure 3(b) shows that
dynamic-const stops learning after a few rounds of ac-
tive learning. Interestingly, analysis of this result showed
that the Q(z|x¥) model quickly learned in the first iterations
a strong correlation between non-neutral response and cer-
tain terms, e.g. “GPL” (proper name indicating class “auto”)
in the subject line; dynamic—-const selected subinstances
with those terms thereafter obtaining non-neutral labels for
those subinstances. Thus, Q(z|x%) was further reinforced to
predict the subinstances that contain the word “GPL” as non-
neutral. This prevented the neutrality model from exploring
other terms and the student did not receive a diverse set of
documents to improve learning. Including the uncertainty
term encouraged the student to seek a more diverse set of
examples, thus avoiding this problem.

This is further supported by Table 2, which shows that
dynamic—-const primarily selects instances for which
it is very likely to receive a non-neutral label. E.g., in
SRAA, only 2% of instances receive a neutral label for
dynamic-const; Figure 3(b) shows this to be an inef-
fective strategy, since the student observes only a homoge-
neous subset of examples. While dynamic—unc increases
the rate of neutral labels, this additional cost is worth the
greater diversity of labeled data.

Related Work

There has been a significant amount of work on noisy and
reluctant oracles for traditional active learning scenarios
without anytime capability (Donmez and Carbonell 2008;
Donmez, Carbonell, and Schneider 2009; Fang, Zhu, and
Zhang 2012; Wallace et al. 2011; Yan et al. 2011). Much
of this work considered which instance to show to which or-
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acle, and the oracle’s quality is fixed. In the anytime frame-
work that we propose in this paper, the student has control
over how much time an oracle should spend on an instance,
thus controlling the quality of the label.

There has also been a significant amount of work on
cost-sensitive active learning (Settles, Craven, and Fried-
land 2008; Donmez and Carbonell 2008; Haertel et al. 2008;
Kapoor, Horvitz, and Basu 2007; Tomanek and Hahn 2010).
The common strategy is to use a utility-cost ratio to deter-
mine the most cost-effective instances. We follow the same
strategy and use utility-cost ratio, with the additional multi-
plicative factor of probability of non-neutrality.

We build on our previous work (Ramirez-Loaiza, Culotta,
and Bilgic 2013) about the problem of searching over subin-
stances with some notable differences: i) we conducted user
studies to determining annotation time, whereas they as-
sumed a linear cost function, ii) we allow the oracles to re-
turn a neutral label and model neutrality.

Conclusions and Future Work

We present an anytime active learning framework in which
the student is allowed to interrupt the oracle to save annota-
tion time. User studies were conducted to quantify the rela-
tionship between subinstance size, annotation time, and re-
sponse rate. These were used to inform a large-scale sim-
ulated study on two document classification tasks, which
showed that although interruption can cause the oracle re-
turn neutral labels, interrupting at the right time can lead to
significantly more efficient learning. We found that optimal
interruption time depends on the domain and proposed a dy-
namic AAL strategy that is better than or comparable to the
best static strategy that uses a fixed interruption time.

In the future, we will expand our model of annotation time
to account for lexical content. Moreover, we assumed in this
paper that the annotator reads the document serially starting
from the beginning and hence created subinstances that cor-
respond to the first k£ words of the document. As future work,
we will consider alternative techniques of interruption, such
as structured reading (e.g., the first and last sections of a
document) and text summarization to speed up annotation.
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