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Abstract

Learning relative similarity from pairwise instances is
an important problem in machine learning and has a
wide range of applications. Despite being studied for
years, some existing methods solved by Stochastic Gra-
dient Descent (SGD) techniques generally suffer from
slow convergence. In this paper, we investigate the ap-
plication of Stochastic Dual Coordinate Ascent (SDCA)
technique to tackle the optimization task of relative
similarity learning by extending from vector to matrix
parameters. Theoretically, we prove the optimal linear
convergence rate for the proposed SDCA algorithm,
beating the well-known sublinear convergence rate by
the previous best metric learning algorithms. Empiri-
cally, we conduct extensive experiments on both stan-
dard and large-scale data sets to validate the effective-
ness of the proposed algorithm for retrieval tasks.

Introduction
Similarity learning has attracted a significant amount of
interests in machine learning community due to its great
potential for real-world applications, including image re-
trieval and classification (Hoi et al. 2006), recommender
systems, web search and information retrieval (Wu et al.
2011), etc. A variety of similarity/distance functions have
been devised for solving challenges in different domains.
The most commonly used examples include cosine simi-
larity or Euclidean distance. The major limitation of such
kinds of schemes is that they adopt a rigid similarity/distance
function that is usually computed in the original feature
space, which may not be optimal or sometimes could be
computationally expensive. To overcome the limitation, re-
cent years have witnessed the surge of studies for Distance
Metric Learning (DML), which explores machine learn-
ing techniques to optimize flexible similarity/distance func-
tions from training data (Yang 2006; Xing et al. 2003;
Kwok and Tsang 2003; Yang et al. 2006; Wu et al. 2009a;
2009b; Hoi, Liu, and Chang 2010; Wu et al. 2013; Xia, Wu,
and Hoi 2013).

One straightforward approach for similarity learning is
to directly learn real-valued pairwise similarity or distance
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functions from training data that contains explicit similar-
ity/distance values for every pairwise objects. However, in
most real-world applications, it is often difficult or expen-
sive to obtain the ground truth with precise numerical values
for pairwise similarity/distance.

Instead of learning from explicit similarity/distance val-
ues, another more commonly used approach is to learn sim-
ilarity/distance functions from pairwise relationship which
indicates relative similarity of some pairs (Frome et al.
2007). Most previous studies have focused on learning the
Mahalanobis distance (Globerson and Roweis 2005; Wein-
berger, Blitzer, and Saul 2005; Hoi et al. 2006; Xiang, Nie,
and Zhang 2008) or the parametric similarity function in a
bi-linear form (Chechik et al. 2010). Despite being studied
extensively, these existing approaches often have slow con-
vergence rate in theory, and usually suffer from high com-
putational cost empirically, making them often scale poorly
large-scale applications.

To tackle the above challenges, we present a new relative
similarity learning scheme by extending the Stochastic Dual
Coordinate Ascent (SDCA) technique (Shalev-Shwartz and
Zhang 2013), a recently proposed promising optimization
method that picks a coordinate to update uniformly at ran-
dom. The proposed SDCA algorithm with uniformly ran-
dom sampling is able to converge much faster than the exist-
ing algorithms. Besides, the proposed approach is computa-
tionally efficient as it follows an online learning setting and
avoids computing all matrices before training and the expen-
sive retraining costs, making it more scalable and suitable
for large-scale machine learning tasks. More importantly,
the proposed algorithm enjoys a solid theoretical guarantee
in which it can be proved with a linear convergence rate,
which is better than the typical sub-linear convergence rate
of existing metric learning algorithms using stochastic gra-
dient descent. Finally, we conduct an extensive set of ex-
periments, in which our experimental results show that the
proposed SDCA algorithm achieves the state-of-the-art per-
formance when comparing with a family of existing metric
learning algorithms.

The rest of this paper is organized as follows. We first
review related work, and then present the formulations of
the proposed method and its theoretical analysis; we further
discuss our experimental results, and finally make the con-
cluding remark at the end.
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Related Work
Similarity/distance metric learning has been extensively
studied in machine learning community (Yang 2006). Most
existing works for DML often focus on learning a Maha-
lanobis distance parameterized by a positive semidefinite
matrix (Shalev-Shwartz, Singer, and Ng 2004; Shental et
al. 2002; Schultz and Joachims 2003; Jin, Wang, and Zhou
2009). Inspired by its applications in the context of ranking,
the work in (Weinberger, Blitzer, and Saul 2005) addresses
the DML problem together with a large margin nearest-
neighbor classifier. The study in (Globerson and Roweis
2005) formulated it in a supervised setting by adding pos-
itive constraints. The works by (Davis et al. 2007) and
(Jain et al. 2008) proposed online metric learning algo-
rithms based on LogDet-regularization with different loss
functions. All these approaches focus on the symmetric for-
mat: given two images p1 and p2 they measure similarity
through (p1-p2)>M (p1-p2), where the matrix M must be
positive semidefinite. However, imposing the positive semi-
definitiveness constraint often results in a computationally
expensive optimization task, making it impractical for solv-
ing large-scale real applications.

Another popular similarity learning approach aims to
optimize an unconstrained similarity function in a bilin-
ear form, such as OASIS (Chechik et al. 2010). Specif-
ically, given two images p1 and p2 they measure similar-
ity by p>1 Mp1, where matrix M is not required to be pos-
itive semi-definite. This kind of measurement is more ef-
ficient in real-world applications since it avoids enforcing
positive semi-definite constraints when learning the sim-
ilarity function. Unlike OASIS that uses online passive
aggressive algorithms (Crammer et al. 2006), we explore
the emerging Stochastic Dual Coordinate Ascent (SDCA)
method (Shalev-Shwartz and Zhang 2013) for solving rela-
tive similarity learning problem.

In this work, we explore online optimization techniques
to learn similarity functions from triplet constraint streams.
Online learning works in a sequential fashion, which is ef-
ficient and scalable for large-scale applications (Hoi, Wang,
and Zhao 2014; Rosenblatt 1958; Cesa-Bianchi and Lugosi
2006; Crammer et al. 2006; Dredze, Crammer, and Pereira
2008; Chechik et al. 2010; Zhao, Hoi, and Jin 2011). In this
paper, we extend the SDCA method (Shalev-Shwartz and
Zhang 2013) to tackle the optimization task of relative sim-
ilarity learning in an online learning setting.

Relative Similarity Learning
Problem Formulation
Following (Chechik et al. 2010), we would study the prob-
lem of learning a relative similarity function S. Formally,
let {(xi,x+

i ,x
−
i ) ∈ Rd × Rd × Rd|i ∈ [n]} (where [n] =

{1, . . . , n}) be a set of instances, where the relevance be-
tween xi and x+

i is greater than that between xi and x−i , our
goal is to learn a similarity function S(x,x′) that assigns
higher similarity scores to more relevant instances, i.e.,

S(xi,x
+
i ) > S(xi,x

−
i ),∀i ∈ [n]. (1)

For the similarity function, we specifically adopt a paramet-
ric similarity function that has a bi-linear form,

SM (x,x′) = x>Mx′ (2)

where M ∈ Rd×d. In order to learn the optimal parameter
M , we introduce some loss function that measures its per-
formance on the i-th triplet:

`(M ; (xi,x
+
i ,x

−
i )) = ([1− SM (xi,x

+
i ) + SM (xi,x

−
i )]+)

2 (3)

where [·]+ = max(0, ·). The above loss measures
how much is the violation of the desired constraint
SM (xi,x

+
i ) ≥ SM (xi,x

−
i ) by the similarity function de-

fined by M .
With the above loss function, we formulate the relative

similarity learning problem as a regularized optimization:

min
M�0

P (M) :=

[
1

n

n∑
i=1

`i(M) +
λ

2
‖M‖2

]
(4)

where `i(M) = `(M ; (xi,x
+
i ,x

−
i )), λ is a regularization

parameter, and ‖M‖2 = trace(M>M) is Frobenius norm.
In literature, different approaches have been proposed to

tackle the similar optimization task in (4). For example,
in (Chechik et al. 2010), the authors proposed OASIS —
an online learning scheme to solve the problem (4) by ap-
plying the online Passive Aggressive (PA) learning (Cram-
mer et al. 2006), which proved some mistake bound but did
not give convergence rate. Another popular method to solve
this problem is based on the Stochastic Gradient Descent
(SGD) method (Zinkevich 2003; Zhang 2004), which usu-
ally achieves a sub-linear convergence rate.

Algorithm
To tackle the optimization of relative similarity learning, we
explore the application of the Stochastic Dual Coordinate
Ascent (SDCA) method (Shalev-Shwartz and Zhang 2013),
which guarantees a linear convergence rate. Unlike the ex-
isting study of SDCA which only handled vector paramet-
ric problems, we extend the SDCA method to handle more
complicated problem with matrix-based parameters.

Specifically, the Dual Coordinate Ascent (DCA) method
aims to solve the dual problem of (4) as follows:

max
Θ=(Θi)

n
i=1

,
D(Θ) :=

[
1

n

n∑
i=1

−`∗i (−Θi)−
λ

2

∥∥ 1

λn

n∑
i=1

Θi
∥∥2

]
(5)

where Θi ∈ Rd×d, i = 1, . . . , n is a dual variable as-
sociated with every triplet instance (xi,x

+
i ,x

−
i ), `∗i (U) =

maxV [〈U, V 〉 − `(V )], and 〈U, V 〉 = trace(U>V ).
It is difficult to directly solve the dual objective in (5) as

there is a different dual variable associated with each exam-
ple in the training set. The idea of stochastic DCA is to pick
up a dual variable at each iteration, and then optimize the
dual objective with respect to the single dual variable, while
the rest of the dual variables are kept in tact.

To solve the relative similarity learning problem, we
extend the Stochastic Dual Coordinate Ascent (SDCA)
method (Shalev-Shwartz and Zhang 2013). At each itera-
tion, we choose one dual coordinate to optimize uniformly
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at random, in which each dual variable is associated with
some triplet instance {(xi,x+

i ,x
−
i ). Specifically, given a

uniformly sampled triplet instance {(xi,x+
i ,x

−
i ), the i-th

dual coordinate at each iteration can be optimized by:

∆Θt−1
i = arg max

∆Θi
−`∗i (−(Θt−1

i + ∆Θi))

−λn
2
‖M t−1 + (λn)−1∆Θi‖2 (6)

Given the loss function in (3), it is not difficult to show that
it is (2‖Xi‖2)-smooth (refer to Definition 1 below), where
Xi = xi(x

+
i − x−i )>, and its dual function is

`∗i (−Θi) =

{
−α+ α2/4 Θi = αXi, α ≥ 0
∞ otherwise

Thus, we can derive the closed-form solution of ∆Θi

∆Θi = max

(
1− x>i M(x+

i − x−i )− αi
2

1
2

+ (λn)−1‖Xi‖2
, −αi

)
Xi.

The details of the proposed algorithm for relative similar-
ity learning are summarized in Algorithm 1.

Algorithm 1 SDCA: Stochastic Dual Coordinate Ascent for
Relative Similarity Learning

Input: λ > 0, {(xi,x+
i ,x

−
i ) ∈ Rd × Rd × Rd|i ∈ [n]}

Initialize: M = 0, Θ1, . . . ,Θn = 0, α1, . . . , αn = 0
for t = 1, . . . , T do

Uniformly sample a triplet instance (xi,x
+
i ,x

−
i )

∆α
t−1
i =max

1− x>i M
t−1(x+

i − x−i )−
α
t−1
i
2

1
2 + (λn)−1‖Xi‖2

,−αt−1
i


∆Θt−1

i = ∆αt−1
i Xi;

αti = αt−1
i + ∆αt−1

i ;
Θt
i = Θt−1

i + ∆Θt−1
i ;

M t = M t−1 + (λn)−1∆Θt−1
i ;

end for
Output (Average option):

Let Θ̄ = 1
T−T0

∑T
t=T0+1 Θt−1

Let M̄ = M(Θ̄) = 1
T−T0

∑T
t=T0+1M

t−1

Return M̄
Output (Random option) :

Let Θ̄ = Θt and M̄ = M t for uniformly random t ∈
{T0 + 1, . . . , T}

Return M̄

Theoretical Analysis
We analyze the theoretical performance of Algorithm 1. For
simplicity, we only consider (1/γ)-smooth loss functions in
this paper, which is defined as follows.
Definition 1. A function ` : Rd×d → R is (1/γ)-smooth if
that for all U, V ∈ Rd×d, we have

`(U) ≤ `(V ) + 〈`′(V ), (U − V )〉+
1

2γ
‖U − V ‖2

where `′ is the derivative of `. It is well-known that if ` is
(1/γ)-smooth, then `∗ is γ-strongly convex, that is, for all
U, V ∈ Rd×d and s ∈ [0, 1], we have

`
∗
(sU + (1− s)V ) ≤ `∗(U) + (1− s)

(
`
∗
(V )−

γs‖U − V ‖2

2

)
.

If we define the following

M(Θ) =
1

λn

n∑
i=1

Θi (7)

then it is known that M(Θ∗) = M∗, where Θ∗ is an opti-
mal solution of (5). It is also known that P (M∗) = D(Θ∗)
which immediately implies that for all M and Θ, we have
P (M) ≥ D(Θ), and hence the duality gap defined as

P (M(Θ))−D(Θ) (8)

can be regarded as an upper bound of the primal sub-
optimality P (M(Θ))− P (M∗).

We first make some assumptions on the loss function
without loss of generality: 1) `i(M) ≥ 0 for any i ∈ [n]
and M ∈ Rd×d; 2) `i(0) ≤ 1 for any i ∈ [n].

Given these assumptions, we first present the following
lemma to facilitate our proof of the convergence rate for the
proposed algorithm. This lemma generally gives an upper
bound for the dual ascent at the t-th step based on the duality
gap at the (t-1)-th step plus a variance for the subgradients.
Lemma 1. Assume `∗i is γ-strongly convex (where γ can be
zero). Then, for any iteration t and any s ∈ [0, 1], we have

E[D(Θ
t
)−D(Θ

t−1
)]≥

s

n
E[P (M

t−1
)−D(Θ

t−1
)]−

s

2λn2
G
t (9)

where Gt = 1
n

∑n
i=1 (s− γ(1− s)λn)E‖Ui − Θi‖2, and

−U t−1
i ∈ ∂`i(M t−1).

Proof. Since only the i-th element of Θi is updated, the im-
provement in the dual objective can be written as

n[D(Θt)−D(Θt−1)] =

(
−`∗i (−Θt)− λn

2
‖M t‖2

)
︸ ︷︷ ︸

A

−

(
−`∗i (−Θt−1)− λn

2
‖M t−1‖2

)
︸ ︷︷ ︸

B

By the definition of the update, for all s ∈ [0, 1] we have

A = max
∆Θi
−`∗i (−(Θt−1

i + ∆Θi))−

λn

2
‖M t−1 + (λn)−1∆Θi‖2

≥ −`∗i (−(Θt−1
i + s(U t−1

i −Θt−1
i )))−

λn

2
‖M t−1 + (λn)−1s(U t−1

i −Θt−1
i )‖2 (10)

From now on, we omit the superscripts and subscripts.
Since `∗ is γ-strongly convex, we have that

`∗(−(Θ + s(U −Θ))) = `∗(s(−U) + (1− s)(−Θ)) ≤

s`∗(−U) + (1− s)`∗(−Θ)− γ

2
s(1− s)‖U −Θ‖2 (11)
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Combining this with (10) and rearranging the terms gives

A ≥ −s`∗(−U)− (1− s)`∗(−Θ) +

γ

2
s(1− s)‖U −Θ‖2 −

λn

2
‖M + (λn)

−1
s(U −Θ)‖2

= −s`∗(−U)− (1− s)`∗(−Θ) +
γ

2
s(1− s)‖U −Θ‖2

−
λn

2
‖M‖2 − s〈M,U −Θ〉 −

s2

2λn
‖U −Θ‖2

= −s(`∗(−U) + 〈M,U〉)︸ ︷︷ ︸
s`(M)

+ (−`∗(−Θ)−
λn

2
‖M‖2)︸ ︷︷ ︸

B

+

s(`
∗
(−Θ) + 〈M,Θ〉) +

s

2

(
γ(1− s)−

s

λn

)
‖U −Θ‖2

where we used −U ∈ ∂`(M) which yields `∗(−U) =
−〈U,M〉 − `(M). Therefore,

A−B ≥ s[`(M) + `∗(−Θ) + 〈M,Θ〉+(
γ(1− s)

2
− s

2λn

)
‖U −Θ‖2]

Next note that

P (M)−D(Θ) =
1

n

n∑
i=1

`i(M) +
λ

2
〈M,M〉 −(

− 1

n

n∑
i=1

`∗(−Θi)−
λ

2
〈M,M〉

)

=
1

n

n∑
i=1

(`i(M) + `∗i (−Θi) + 〈M,Θi〉)

Therefore, if we take expectation of (A − B) with respect
to the choice of i, we will obtain that

1

s
E[A−B] =

1

n

n∑
i=1

[`i(M) + `∗i (−Θi) +

〈M,Θi〉+

(
γ(1− s)

2
− s

2λn

)
‖Ui −Θi‖2]

which indicates
n

s
E[D(Θ

t
)−D(Θ

t−1
)] ≥ E[P (M

t−1
)−D(Θ

t−1
)]−

Gt

2λn

Multiplying both sides of the above inequalities will con-
clude the proof.

One disadvantage of Lemma 1 is that it contains a termGt

which is hard to estimate. To solve this issue, we would try to
estimate one lower bound of the right hand side of (9), which
is independent of Gt and as large as possible. Specifically,
we propose to estimate as follows:

max
s∈[0,1]

s

n
E[P (M t−1)−D(Θt−1)]− s

2λn2
Gt

≥ max
s∈[0, λnγ

1+λnγ ]

s

n
E[P (M t−1)−D(Θt−1)]− s

2λn2
Gt

≥ max
s∈[0, λnγ

1+λnγ ]

s

n
E[P (M t−1)−D(Θt−1)] =

s∗

n
E[P (M t−1)−D(Θt−1)]

where the last inequality used Gt ≤ 0, and s∗ = λnγ
1+λnγ .

Now, we will analyze the convergence rate of the pro-
posed algorithm. Specifically, for the expected duality gap
of E[P (MT )−D(ΘT )], we have the following theorem.
Theorem 1. Assume `i(·) is (1/γ)-smooth ∀i ∈ [n]. To ob-
tain an expected duality gap of E[P (MT )−D(ΘT )] ≤ εP ,
it suffices to have a total number of iterations of

T ≥ (n+
1

λγ
) log

(
(n+

1

λγ
)

1

εP

)
(12)

Moreover, to obtain an expected duality gap of E[P (M̄) −
D(Θ̄)] ≤ εP , it suffices to have a total number of iterations
of T > T0 where

T0 ≥ (n+
1

λγ
) log

(
(n+

1

λγ
)

1

(T − T0)εP

)
(13)

Proof. Since `i is (1/γ)-smooth, its dual γ-strongly convex.
Then according to Lemma 1, if we set s∗ = λnγ

1+λnγ we have

E[D(Θt)−D(Θt−1)] ≥ s∗

n
E[P (M t−1)−D(Θt−1)] (14)

since Gt ≤ 0. Furthermore since

εt−1
D := D(Θ∗)−D(Θt−1) ≤ P (M t−1)−D(Θt−1) (15)

where Θ∗ is the optimal solution for the dual problem, and
D(Θt)−D(Θt−1) = εt−1

D − εtD, we obtain that

E[εtD] ≤ (1− s∗

n
)E[εt−1

D ] ≤ (1− s∗

n
)tE[ε0D] (16)

In addition, since P (0) = 1
n`i(0) ≤ 1 and

D(0) =
1

n

n∑
i=1

−`∗i (0) =
1

n

n∑
i=1

−max
M

(0− `i(M)) =

1

n

n∑
i=1

min
M

`i(M) ≥ 0 (17)

we have ε0D ≤ P (0) − D(0) ≤ 1. Combining this with
inequality (16), we obtain

E[εtD]le(1− s∗

n
)t ≤ exp(−s

∗t

n
) = exp(− λγt

1 + λγn
)

According to the above inequality, by setting

t ≥ (n+
1

λγ
) log(1/εD)

we will get E[εtD] ≤ εD. Furthermore, according to inequal-
ity (14),

E[P (M t)−D(Θt)] ≤ n

s∗
E[εtD − εt+1

D ] ≤ n

s∗
E[εtD], (18)

by setting

t ≥ (n+
1

λγ
) log

(
(n+

1

λγ
)

1

εP

)
,

we will have E[εtD] ≤ s∗

n εP and E[P (M t)−D(Θt)] ≤ εP .

2145



Summing inequality (18) over t = T0, . . . , T − 1 leads to

E

[
1

T − T0

T−1∑
t=T0

(
P (M t)−D(Θt)

)]
≤

n

s∗(T − T0)
E[D(ΘT )−D(ΘT0)]

Now, if we choose M̄ , Θ̄ to be either the average matrix or a
randomly chosen matrix over t ∈ {T0 + 1, . . . , T}, then the
above implies

E[P (M̄)−D(Θ̄)] ≤ n

s(T − T0)
E[D(ΘT )−D(ΘT0)]

≤ n

s(T − T0)
E[εT0

D ]

It follows that in order to obtain a result of E[P (M̄) −
D(Θ̄)] ≤ εP , we only need to have

E[εT0

D ] ≤ s(T − T0)

n
εP =

T − T0

n+ 1/λγ
εP

This implies the second part of the theorem.

Remark. If we choose T = 2T0, and assume that T0 ≥
n + 1/(λγ), then the second part of the above theorem in-
dicates a requirement of T0 ≥ (n + 1

λγ ) log( 1
εP

), which
is slightly smaller than the first part of the above theorem,
when εP is relative large.

Experiments
In this section, we conduct comprehensive experiments on
different datasets to evaluate the efficacy of our proposed
algorithms for relative similarity learning.

Experimental Testbed and Setup
We first conduct experiments of similarity/distance metric
learning on five standard machine learning datasets publicly
available at LIBSVM 1, as shown in Table 1.

Table 1: Details of Machine Learning Datasets.
Dataset. Source Class Feature Size

Vehicle Statlog 4 18 846
Vowel UCI 11 10 990
Letter Statlog 26 16 20000

Svmguide4 CWH03a 6 6 612
Segment Statlog 7 19 1937

For each dataset in Table 1, data instances from each
class were split into training set (70%) and test set (30%).
We adopt cross-validation to choose parameters for all al-
gorithms, in which models were learned on 80% of the
training set and validated on the rest 20%. The parameters
set by cross validation include: the λ parameter for SDCA
(λ ∈ {0.0025, 0.005, 0.01}), and the η parameter for ITML
and LEGO (η ∈ {0.01, 0.125, 0.5}). Results reported below
were achieved by choosing the best value of the parameter
by cross validation. To adapt to image retrieval task, we also
carried out experiments on Caltech256 dataset. To examine

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

the scalability, we also test the algorithms on a large-scale
image dataset.

To obtain side information in the form of triplets for learn-
ing similarity function, we generate a triplet instance by ran-
domly sampling two instances sharing the same class and
another one instance from any other different class. In total,
we provide 10K triplet instances for each standard data set,
100K triplets for Caltech256 Dataset and 500K triplets for
the large-scale experiment. We evaluate different algorithms
fairly and adopt the standard mean Average Precision (mAP)
to evaluate the retrieval performance.

Comparison Algorithms
We compared the following list of algorithms:
• Eucl: Baseline method using the standard Euclidean dis-

tance in feature space.
• RCA: Relevance Component Analysis that learns a lin-

ear projection from equivalent constraints (Bar-Hillel et
al. 2005).

• LMNN: Largest Margin Nearest Neighbor (Weinberger,
Blitzer, and Saul 2005) in which k-nearest neighbors al-
ways belong to the same class while examples from dif-
ferent classes are separated by a large margin.

• ITML: Information Theoretic Metric Learning with the
goal that minimizes the differential relative entropy be-
tween two multivariate Gaussians under constraints on the
distance function. (Davis et al. 2007).

• LEGO: Similar to online ITML with a different loss func-
tion to ensure the positive definiteness for the learned ma-
trix (Jain et al. 2008).

• OASIS. A bilinear similarity learning approach based
on online Passive Aggressive algorithm using triplet in-
stances (Chechik et al. 2010).

• SDCA: The proposed similarity learning algorithm.

Evaluation on the Standard Datasets
We first compare the performance of the proposed algorithm
with six other approaches for similarity search on the stan-
dard data sets as shown in Table 1. All the experiments were
conducted by fixing 5 different random seeds for each data
set, and all the results were reported by averaging over 5
runs. The accuracy results represented by mean Average Pre-
cision (mAP) are shown in Table 2, from which we observe
that all learning approaches achieve better performance than
the Euclidean baseline, showing the ability of distance met-
ric learning. On all standard datasets, the proposed SCDA
algorithm outperforms all other algorithms.

Table 2: Evaluation of mAP on standard datasets.
Alg. vehicle vowel letter svmguide4 segment

Eucl 0.3697 0.2920 0.2135 0.2088 0.6645
RCA 0.4039 0.3184 0.2297 0.2181 0.6781

LMNN 0.3935 0.3144 0.2411 0.2127 0.6722
ITML 0.4142 0.3074 0.2255 0.2236 0.6895
LEGO 0.4415 0.3143 0.2238 0.2186 0.6857
OASIS 0.5318 0.3383 0.2531 0.2295 0.6970
SDCA 0.5955 0.3564 0.2806 0.2731 0.7468
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Evaluation on the Caltech256 Dataset
We also evaluate the proposed algorithm in an image sim-
ilarity task with the well-known Caltech256 data set. To
better show the direct comparison results with the previ-
ous literature, we use the same 50 classes to generate 100K
triplet instances and extract same image representation fash-
ion with (Chechik et al. 2010), which utilized bag-of-local-
descriptors with a 1000-sized codebook.

Table 3: Evaluation of mAP performance on “Caltech256”.
Eucl RCA ITML LEGO OASIS SDCA

0.0924 0.0957 0.1009 0.1021 0.1155 0.1237

In this experiment, we exclude LMNN due to its ex-
tremely high computational cost. From Table 3, we observe
that the proposed SDCA algorithm also outperforms other
approaches on image retrieval task. Then, we show the con-
vergence rate described by accumulative loss divided by
the number of iterations below. Since the loss functions for
RCA, LMNN, ITML and LEGO algorithms are not repre-
sented in the format of bilinear similarity, we just show the
loss convergence behaviors between OASIS and SDCA.
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Figure 1: Average loss convergence comparison.

From Figure 1, we observe that using the same bilin-
ear loss function, the proposed SDCA algorithm achieved
a faster convergence rate than OASIS. After learning about
100k iterations, the proposed algorithm can converge to
about 0.46, while OASIS can only converge to about 0.58.
Therefore, our experiment validates that the proposed SDCA
algorithm has a fast convergence rate as indicated by our
theoretical analysis. To further confirm SDCA’s fast conver-
gence rate, we also evaluate the online mistake rates by both
OASIS and SDCA shown in Figure 2. From the comparison
in Figure 1, we observe that the decreasing trend of mistake
rate is consistent with that of average loss convergence rate,
which again validates that SDCA is able achieve a faster
convergence and lower online mistake rate than OASIS.

Evaluation on the Large-scale Dataset
To evaluate the scalability of the proposed algorithm, we
apply the proposed algorithms on a large-scale image re-
trieval dataset named ”ImageCLEF+Flickr”, which includes
the public dataset ”ImageCLEF” 2 as the ground-truth and
extra one-million images crawled from Flickr as the back-
ground. We generate 500K triplets in training stage and ex-
tract 297-dimensional global feature descriptors to repre-

2http://www.imageclef.org/
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Figure 2: Online mistake rate comparison.

sent images including color histogram and moments (81 di-
mensions), edge direction histogram (37 dimensions), Gabor
wavelets transformation (120 dimensions) and local binary
pattern(59 dimensions). The whole dataset is split into 60%
for training and 40% for testing. 20% of the training set are
utilized for cross validation, and 10% of the testing set are
used as queries to evaluate mAP performance.

Table 4: Evaluation of mAP on “ImageCLEF+Flickr”.
Eucl RCA ITML LEGO OASIS SDCA

0.3305 0.3701 0.4019 0.3801 0.4088 0.4378

Table 4 shows the mAP performance of the six algo-
rithms. From the results, we can again observe that the pro-
posed algorithm consistently outperforms the state-of-the-
art methods on this large-scale dataset. These encouraging
results validate that the proposed SDCA algorithm not only
enjoys an attractive convergence rate in theory, and em-
pirically but also achieves the state-of-the-art accuracy on
different-scale data sets, making it a practical solution for
large-scale applications.

Conclusions
This paper presented a novel scheme for relative similarity
learning by extending the emerging Stochastic Dual Coordi-
nate Ascent (SDCA) technique for online optimization of a
bi-linear similarity function. In contrast to many existing so-
lutions for similarity/distance metric learning that often have
sub-linear convergence rates, we show that the proposed
SDCA algorithm achieves a linear convergence rate in the-
ory. We conducted an extensive set of experiments by com-
paring a number of state-of-the-art similarity/ditance learn-
ing techniques, in which the encouraging results showed that
the proposed SDCA algorithm is able to achieve the state-of-
the-art performance on various benchmark datasets, validat-
ing the effectiveness of the proposed technique for relative
similarity learning. Future work can explore more other real-
world applications of the proposed technique.
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