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Abstract

Predicting human activities is important for improving
recommender systems or analyzing social relationships
among users. Those human activities are usually repre-
sented as multi-object relationships (e.g. user’s tagging
activities for items or user’s tweeting activities at some
locations). Since multi-object relationships are naturally
represented as a tensor, tensor factorization is becoming
more important for predicting users’ possible activities.
However, its prediction accuracy is weak for ambiguous
and/or sparsely observed objects. Our solution, Seman-
tic data Representation for Tensor Factorization (SRTF),
tackles these problems by incorporating semantics into
tensor factorization based on the following ideas: (1)
It first links objects to vocabularies/taxonomies and re-
solves the ambiguity caused by objects that can be used
for multiple purposes. (2) It next links objects to com-
posite classes that merge classes in different kinds of
vocabularies/taxonomies (e.g. classes in vocabularies for
movie genres and those for directors) to avoid low pre-
diction accuracy caused by rough-grained semantics. (3)
It then lifts sparsely observed objects into their classes
to solve the sparsity problem for rarely observed objects.
To the best of our knowledge, this is the first study that
leverages semantics to inject expert knowledge into ten-
sor factorization. Experiments show that SRTF achieves
up to 10% higher accuracy than state-of-the-art methods.

Introduction
Analyzing multi-object relationships, formed by three or
more kinds of objects, is critical for predicting human activi-
ties in detail. Typical relationships include those among users,
items, and user-assigned tags against items within content
providing services. They also include relationships among
users, their tweets, and their locations as posted in twitter, etc.
Those prediction results can improve many applications such
as recommendations and social network analysis. For exam-
ple, suppose that a user highly rates a thriller movie with tag
“romance” and another user also highly rates the same title
with tag “car action”. Methods that only handle bi-relational
(user-item) objects ignore tags, and finds above users to be
highly similar because they share the same movies. Multi-
relational methods compute those users as similar but also
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slightly different because they have different opinions about
the item. Recommendation quality is improved by reflecting
those differences in detail as (Nakatsuji and Fujiwara 2014)
described.

Representing multi-object relationships by a tensor is nat-
ural, so predicting possible future relationships by tensor
factorization is important (Karatzoglou et al. 2010). Among
known proposals, Bayesian Probabilistic Tensor Factoriza-
tion (BPTF) (Xiong et al. 2010) is promising because of its
efficient sampling of large-scale datasets with easy parameter
settings. Present tensor factorization schemes, however, have
weak accuracy because they fail to utilize the semantics un-
derlying the objects and to handle objects that are ambiguous
and/or sparsely observed.

Semantic ambiguity is one of the fundamental problems
in text clustering. Several researches use WordNet (Miller
1995) or Wikipedia to solve semantic ambiguity and improve
performance in text clustering (Hu et al. 2008) or comput-
ing the semantic relatedness of documents (Gabrilovich and
Markovitch 2007). Recent semantic web studies also pointed
out that the accuracy of opinion mining or recommendation
can fall if they use rough-grained semantics to capture users’
interests (Nakatsuji et al. 2012; Saif, He, and Alani 2012;
Nakatsuji and Fujiwara 2014). (Parundekar, Knoblock, and
Ambite 2012) creates composite classes that merge classes in
different kinds of vocabularies/taxonomies (e.g. class “popu-
lated place” in geoNames (Jain et al. 2010) and class “city”
in DBPedia (Bizer et al. 2009)) to find more complete defi-
nitions using Linked Open Data (LOD) (Bizer, Heath, and
Berners-Lee 2009). We also consider that fine-grained se-
mantics improves tensor factorization accuracy. Solving the
sparsity problem is also an urgent goal given that most
training datasets are not sufficient (Narita et al. 2011). To
improve tensor factorization accuracy, (Narita et al. 2011;
Ermis, Acar, and Cemgil 2012; Takeuchi et al. 2013) use aux-
iliary information in addition to multi-object relationships.
There are, however, no published tensor methods that use
the taxonomy of objects even though taxonomies are easily
available for real applications due to tools like DBPedia or
other linked data.

This paper proposes a method, Semantic data Represen-
tation for Tensor Factorization (SRTF), that incorporates se-
mantics into tensor factorization by using the following three
ideas: (1) It first measures the similarities between objects and
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instances in vocabularies/taxonomies and then links objects to
instances with the highest similarity values to resolve object
ambiguity. Fig. 1 represents an example of the relationships
among three objects; users, items, and tags. In Fig. 1-(1), user
um assigns tag “Breathless” to movie item vn whose name is
“Rock”. There are, however, several movie items whose name
is “Rock”. SRTF measures similarity between metadata given
for vn and properties given for instances in Freebase or DB-
Pedia. Then, it links vn to the instance “Rock” in class “C3:
Action” if it is the most similar instance with item vn. SRTF
also resolves the ambiguity caused by tags like “Breathless”
in Fig. 1. (2) It next creates composite classes (Parundekar,
Knoblock, and Ambite 2012) by computing disjunctions of
conjunctions of instances among classes in different kinds of
vocabularies. SRTF links objects to instances in composite
classes rather than separate classes. This enables us to ana-
lyze multi-object relationships in a detailed semantic space.
In Fig. 1-(2), items linked to the instances “Rock” or “Is-
land” are included in class “Action” in a genre vocabulary
and “Michael Bay” in a director vocabulary. SRTF creates
the composite class “C4: Action&Michael Bay” and links vn
to instance “Rock” in C4 in addition to “Rock” in C3. (3) It
then lifts objects linked to LOD/WordNet instances to classes
if those objects are sparsely observed. SRTF then applies
semantic biases to sparse objects in tensor factorization by
using shared knowledge in classes. Fig. 1-(3) assumes that
there are only a few observations for items linked to “Rock”
and “Island”, and tags linked to “Breathtaking” and “Breath-
less”. In such a case, normal factorized results tend not to
reflect such sparsely observed objects, which decreases the
prediction accuracy. SRTF applies semantic biases from class
C3 and composite class C4 (or class C1) to those sparse
objects in tensor factorization. This well solves the sparsity
problem.

SRTF creates a disambiguated tensor by linking objects
to classes and augmented tensors by lifting sparse objects
to classes. It then factorizes those tensors over the BPTF
framework simultaneously. As a result, it can incorporate
semantic biases, computed by factorizing augmented tensors,
into feature vectors for sparse objects during the factorization
process. Thus, it solves the sparsity problem.

We applied SRTF to predict users’ rating activities in
this paper and evaluated SRTF using (1) the MovieLens rat-
ings/tags1 with FreeBase (Bollacker et al. 2008)/WordNet
and (2) the Yelp ratings/reviews2 with DBPedia (Bizer et al.
2009). The results show that SRTF achieves up to 10% higher
accuracy than state-of-the-art methods.

Related works
Tensor factorization methods have recently been used in vari-
ous applications such as recommendation (Karatzoglou et al.
2010; Rendle and Schmidt-Thieme 2010) and social network
analysis (Zheng et al. ). Recently, efficient tensor factoriza-
tion method based on a probabilistic framework has appeared
(Xiong et al. 2010). Unfortunately, one major problem with
tensor factorization is that its prediction accuracy often tends

1Available at http://www.grouplens.org/node/73
2Available at http://www.yelp.com/dataset challenge/
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Figure 1: Linking objects to classes by three ideas.

to be poor because observations in real datasets are typi-
cally sparse (Narita et al. 2011). Generalized coupled tensor
factorization (GCTF) (Yilmaz, Cemgil, and Simsekli 2011;
Ermis, Acar, and Cemgil 2012; 2013) and a few other
studies (Zheng et al. ; Acar, Kolda, and Dunlavy 2011;
Takeuchi et al. 2013) try to incorporate extra information into
tensor factorization by simultaneously factorizing observed
tensors and matrices representing extra information. Taxon-
omy is now also used for clustering genomes with functional
annotations in genomic science (Nakaya et al. 2013). There
are, however, no tensor studies that focus on handling am-
biguous and sparse objects by using vocabularies/taxonomies
of objects.

Preliminary
We now explain the background techniques of the paper.
Vocabularies and taxonomies Vocabularies/taxonomies,
sometimes called “simple ontologies” (McGuinness 2003),
are collections of human-defined classes and usually have
a hierarchical structure either as a graph (vocabulary) or a
tree (taxonomy). This paper uses, in particular, the DBPedia
and Freebase vocabularies and the WordNet taxonomy to
improve tensor factorization accuracy. DBPedia and Freebase
have many item entries with many properties (e.g. genres or
directors) such as music and movies; we use item entries as
instances and entries indicated by some specific properties
(e.g genre property) from item entries as classes. WordNet is
a lexical database for the English language and is commonly
exploited to support automatic analysis of texts. In WordNet,
each word is classified into one or more synsets, each of
which represents a class; we consider a synset as a class and
a word classified in the synset as an instance.
Bayesian Probabilistic Tensor Factorization This paper
deals with the multi-object relationships formed by user um,
item vn, and tag tk. Number of users is M , that of items
is N , and that of tags is K. Third-order tensor R models
the relationships among objects from sets of users, items,
and tags. The (m,n,k)-th element rm,n,k indicates the m-th
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user’s rating of the n-th item with the k-th tag. Tensor factor-
ization assigns a D-dimensional latent feature vector to each
user, item, and tag, denoted as um, vn, and tk, respectively.
Accordingly,R can be approximated as follows:

rm,n,k ≈ 〈um,vn, tk〉 ≡
D∑
i=1

um,i · vn,i · tk,i (1)

where index i represents the i-th element of each vector.
BPTF (Xiong et al. 2010) puts tensor factorization into

a Bayesian framework by assuming a generative probabilis-
tic model for ratings with Gaussian/Wishart priors (Bishop
2006) over parameters. We denote the matrix representa-
tion of um, vn, and tk as U, V, and T, respectively. The
size of U is M×D, that of V is N×D, and that of T
is K×D. To account for randomness in ratings, BPTF
uses the below probabilistic model for generating ratings:
rm,n,k|U,V,T ∼ N (〈um,vn, tk〉, α−1). This equation
represents the conditional distribution of rm,n,k given U,
V, and T as a Gaussian distribution with mean 〈um,vn, tk〉
and precision α.

The generative process of BPTF is:

1. Generate ΛU, ΛV, and ΛT ∼ W(W0,ν0), where ΛU,
ΛV, and ΛT are the precision matrices for Gaussians.
W(W0,ν0) is the Wishart distribution with ν0 degrees of
freedom and a D×D scale matrix, W0:W(Λ|W0, ν0)=
|Λ|(ν0−D−1)/2

C exp(−Tr(W0
−1Λ)

2 ) where C is a constant.
2. Generate µU ∼ N (µ0,(β0ΛU)−1), µV ∼ N (µ0,(β0

ΛV)−1), and µT∼N (µ0,(β0ΛT)−1), where µU, µV, and
µT are used as the mean matrices for Gaussians.

3. Generate α ∼ W(W̃0, ν̃0).
4. For each m ∈ (1 . . .M), generate um ∼ N (µU,ΛU

−1).
5. For each n ∈ (1 . . . N), generate vn ∼ N (µV,ΛV

−1).
6. For each k ∈ (1 . . .K), generate tk ∼ N (µT,ΛT

−1).
7. For each non-missing entry (m,n, k), generate rm,n,k ∼
N (〈um,vn, tk〉, α−1).

Parameters µ0, β0, W0, ν0, W̃0, and ν̃0 are set properly for
the objective dataset; varying their values, however, has little
impact on the final prediction (Xiong et al. 2010).

BPTF views the hyper-parameters α , ΘU ≡ {µU,ΛU},
ΘV ≡ {µV,ΛV}, and ΘT ≡ {µT,ΛT} as random vari-
ables, yielding a predictive distribution for unobserved rating
r̂m,n,k, which, given observable tensorR, is:

p(r̂m,n,k|R) =

∫
p(r̂m,n,k|um,vn, tk, α)

p(U,V,T, α,ΘU,ΘV,ΘT|R)

d{U,V,T, α,ΘU,ΘV,ΘT}. (2)
BPTF views Eq. (2) as the expectation of

p(r̂m,n,k|um,vn,tk,α) over the posterior distribution
p(U,V,T,α,ΘU,ΘV,ΘT|R), and approximates the expec-
tation by an average of samples drawn from the posterior
distribution. Since the posterior is too complex to directly
sample from, the indirect sampling technique of Markov
Chain Monte Carlo (MCMC) is invoked.

The time and space complexity of BPTF is O(#nz×D2+
(M+N+K)×D3) where #nz is the number of observations.

M , N , or K is greater than D. Typically, the first term is
much larger than the rest. So, it is simpler than typical tensor
methods (e.g. GCTF requires O(M×N×K×D) as described
in (Ermis, Acar, and Cemgil 2012)). BPTF computes fea-
ture vectors in parallel while avoiding fine parameter tuning.
To initialize the sampling, it adopts maximum a posteriori
(MAP) results from Probabilistic Matrix Factorization (PMF)
(Salakhutdinov and Mnih 2008b); this lets the MCMC con-
verge quickly. Accordingly, we base our method on the BPTF
framework.

Method
We describe our method in detail in this subsection.

Disambiguation
This process has the following three parts:

(1) Disambiguation for items Content providers often use
specific, but simple, vocabularies to manage items. This de-
grades abstraction process (explained in next section) after
disambiguation process because such simple vocabularies
can express only rough-grained semantics for items. Thus,
our solution is to link items to instances in Freebase or DBPe-
dia vocabularies and resolve ambiguous items. For example,
in our evaluation, the MovieLens original item vocabulary
has only 19 classes while that of Freebase has 724 composite
classes. These additional terms are critical to the success of
our method.

We now explain the procedures of the disambiguation
process of SRTF: (i) It creates a property vector for item vn,
pvn ; x-th element of pvn has the value for corresponding
property px. It also creates a property vector for instance ej
in Freebase/DBPedia, pej , which has the same properties
as pvn . (ii) SRTF then computes the cosine similarity of
property vectors and links item vn to instance vn′ which has
the highest similarity value with vn. Because items with the
same name can be disambiguated to different item instances,
the number of items, N , and the number of item instances
after disambiguation, N ′, can be different values; N≤N ′.
(iii) After linking the item to instance vn′ , SRTF can use
the Freebase/DBPedia vocabulary (e.g. genre vocabulary) to
identify classes of vn′ .

We express the above process by function f(vn); if vn can
be disambiguated to instance vn′ , f(vn) returns class set that
has vn′ . Otherwise, it returns empty set ∅.
(2) Disambiguation for tags/reviews Many tags are am-
biguous as explained in Fig. 1 because they are assigned
by users freely. Thus, we need to disambiguate tags by us-
ing WordNet to improve prediction accuracy. SRTF first
classifies tags into those representing content of items
or the subjectivity of users for items as (Cantador, Kon-
stas, and Jose 2011; Nakatsuji and Fujiwara 2014) indi-
cate that those tags are useful in improving prediction ac-
curacy. When determining content tags, SRTF extracts noun
phrases from tags because the content tags are usually nouns
(Cantador, Konstas, and Jose 2011). First, SRTF removes
some stop-words (e.g. conjunctions), then determines the
phrases as tuples of PoS (Part of Speeches), and finally
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compare the resulting set with the following set of POS-
tuple patterns defined for classifying content tags: [<noun>],
[<adjective><noun>], and [<determiner><noun>]. It also
compares the resulting set with the following set of POS-tuple
patterns defined for classifying subjective tags: [<adjective>],
[<adjective><noun>], [<adverb>], [<adverb><adjective>],
and [*<pronoun>*<adjective>*]. It also examines negative
forms of patterns using the Stanford-parser (Klein and Man-
ning 2003) to identify tags like “Not good”.

Then, SRTF links the tags to the WordNet taxonomy. It
analyzes properties assigned to item vn in linking tag tk to
the taxonomy because tk often reflects vn’s characteristics.
We apply a semantic similarity measurement method (Zheng
et al. 2013) based on VSM (Turney and Pantel 2010) for
disambiguation, and use it as follows: (i) It first crawls the
descriptions of WordNet instances associated with word w
in tag tk. w is noun if tk is content tag. w is adjective or
adverb if tk is subjective tag. Each WordNet instance wj has
description dj . (ii) It next removes some stop-words from
description dj and constructs vector wj whose elements are
words in dj and values are observed counts of corresponding
words. (iii) It also crawls the description of item instance vn′
and descriptions of genres of vn′ from Freebase/DBPedia. It
constructs vector in′ whose elements are words and values are
observed counts of corresponding words in the descriptions.
Thus, vector in′ represents the characteristics of vn′ and its
genres. (iv) Finally, it computes the cosine similarity of in′
and wj, then links tk to the wordNet instance wj that has
the highest similarity value with tk and considers wj as tk′ .
Because tags with the same name can be disambiguated to
different WordNet instances, the number of tags, K, and the
number of WordNet instances after disambiguation, K ′, can
be different values; K≤K ′.

This paper also applies SRTF to multi-object relationships
among users, items, and user-assigned reviews. In this case,
we replace the reviews with aspect/subjective phrases in re-
views, treat those phrases as tags, and input replaced relation-
ships to SRTF. This is because aspect/subjective tags reflect
users’ opinions of an item (Yu et al. 2011). Of particular note,
we use the aspect tags extracted by using a semantics-based
mining study (Nakatsuji, Yoshida, and Ishida 2009). It ana-
lyzes reviews for specific objective domains (e.g. music) and
extracts aspect tags from reviews that match the instances (e.g.
artists) in the vocabulary for that domain. Thus, extracted
tags are already linked to the vocabulary.

We express the above process by function g(vn, tk); if tk
can be disambiguated to tk′ , g(vn, tk) returns class that has
wordNet instance tk′ . Otherwise, it returns empty set ∅.

(3) Constructing the disambiguated tensor SRTF con-
structs the disambiguated tensor Rd as follows: (i) It picks
up each observation rm,n,k in R. It disambiguates item vn
(tag tk) in each observation by linking vn (tk) to instance vn′
(tk′ ) in the vocabulary/taxonomy. (ii) It replaces observation
rm,n,k inR to observation rdm,j,l inRd as follows:

rdm,j,l=

{
rm,n,k ((f(vn)=∅))
rm,n′,k ((f(vn) 6=∅) ∩ (g(vn, tk)=∅))
rm,n′,k′ ((f(vn) 6=∅) ∩ (g(vn, tk) 6= ∅))

(3)
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Figure 2: Examples of our factorization process.

(iii) It repeats steps (i) to (ii) by changing the entry inR. As
a result, it obtains the disambiguated tensorRd.

This process maps R to a semantic concept space and
allows us also to conduct abstraction as described next.

Abstraction
We create augmented tensors by lifting sparse instances inRd
to their classes. This allows us to analyze the shared knowl-
edge in classes in tensor factorization. Thus, it overcomes the
sparsity problem. It has the following two parts:

(1) Abstraction by taxonomy/vocabulary classes First,
we define the set of sparse item instances, Vs. This
is defined as the group of the most sparsely observed
items vss among all items. We set a 0/1 flag to indi-
cate the observation existence of multi-object relation-
ships composed by user um, item vn′ , and tag tk′ in
Rd as odm,n′,k′ . Then, Vs is computed as Vs = {vs :

(
∑
rm,s,k′∈Rd

odm,s,k′/
∑
rm,n′,k′∈Rd

odm,n′,k′) < δ}.
Here, δ is the parameter used to determine the number of

sparse instances in Vs. Typically, we set δ ranged from 0.1 to
0.3 according to the long tail characteristic (Anderson 2006).
We denote a class of sparse instances as svs and the number of
classes of sparse instances as SV=|

⋃
Vs f(vs)|. Then, SRTF

constructs augmented tensor for itemsRv by inserting multi-
object relationships composed by users, classes of sparse
item instances, and tag instances intoRd as:

rvm,j,k′=

{
rdm,j,k′(j ≤ N ′)
rdm,s,k′(N

′<j≤(N ′+SV ))∩(sv(j−N ′)∈f(vs))
(4)

The semantically augmented tensor for tags Rt can be
computed in the same way asRv .

In Fig. 2-(a), SRTF lifts items in the sparse item set Vs to
their classes (the size is SV ) and creates an augmented tensor
Rv from the disambiguated tensorRd. It also lifts tags in the
sparse tag set Ts to their classes (the size is ST ) and creates
an augmented tensorRt fromRd.

(2) Abstraction by composite classes SRTF also creates
composite classes (Parundekar, Knoblock, and Ambite 2012),
defined as disjunctions of conjunctions of “property and
value” combinations assigned for item instances, to capture
detailed semantics.
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We define the class, restricted by property px, as cx. Then,
we define a composite class that has X kinds of properties by
its populated instances. A set of item instances in composite
class c′ is computed as {vj : vj ∈

⋂
1≤x≤X{vn′∈cx}}. Then,

we define function f ′(vn); if vn can be linked to vn′ , it re-
turns a set of composite classes that has vn′ . Otherwise, it
returns ∅. SRTF uses f ′(vn) in spite of f(vn) in Eq. (4) and
additionally inserts multi-object relationships composed by
users, composite classes of sparse items, and tags intoRv .

As a result, SRTF can analyze multi-object relationships
over fine-grained semantic space in tensor factorization.

Tensor factorization with semantic biases
SRTF computes predictions by factorizing disambiguated ten-
sor Rd and augmented tensors Rv and Rt, simultaneously,
in the BPTF framework. Please see Fig. 2. For ease of un-
derstanding, the figure factorizes tensors into row vectors of
matrices Ud, Vd, and Td. i-th row vectors of Ud, Vd, and
Td are denoted as ud:,i, v

d
:,i, and td:,i, respectively (1≤ i≤ D).

SRTF gives semantic knowledge in cvj and ctj to feature vec-
tors vn′ and tk′ if vn′ and tk′ are sparsely observed. It also
circulates the semantic knowledge via shared parameters (e.g.
vn′ and tk′ ) during factorizations of the three tensors. Thus,
the semantic knowledge can effectively be distributed among
sparse objects during tensor factorization. It greatly solves
the sparsity problem.
Approach We first explain the following key approaches
underlying our factorization method:

(A) SRTF factorizes tensorsRd,Rv, andRt simultaneously.
It computes semantically-biased feature vectors cvj and ctj
by factorizing Rv and Rt as well as feature vectors vdn′
and tdk′ by factorizing Rd. Fig. 2-(b) represents the i-th
row vector of feature vectors factorized from tensors.

(B) SRTF shares precision α, feature vectors udm, vdn′ and
tdk′ , and their hyperparameters, which are computed by
factorizingRd, in the factorizations ofRv andRt. Thus,
semantic biases can be shared among the three tensors
via those shared parameters. In Fig 2-(b), ud:,i and td:,i are
shared in factorizing augmented tensorRv . Similarly, ud:,i
and vd:,i are shared in factorizing augmented tensorRt.

(C) SRTF updates latent feature vdn′ to v′n′ by incorporating
semantic biases into vdn′ . In Fig. 2-(c), each row vector cv:,i
has latent features for N ′ items and those for SV classes.
The features in cv:,i share semantic knowledge of sparse
items. Thus, they are useful to solve the sparsity problem
caused by those sparse items. So, SRTF replaces latent
feature vdn′ with cvn′ if vn′ is a sparse item instance. In the
same way, SRTF updates tag feature vector tdk′ to t′k′ by
incorporating semantic biases into tdk′ if tk′ is a sparse tag
instance.

Implementation over the BPTF framework SRTF ap-
plies udm, v′n′ , and t′k′ , and their hyperparameters to Eq.
(2). It learns the predictive distribution for unobserved rat-
ings r̂dm,n′,k′ by MCMC procedure as per BPTF. Detailed
MCMC procedure of BPTF can be seen in (Xiong et al.

2010). MCMC collects a number of samples, L, to ap-
proximate the unobserved predictions by p(r̂dm,n′,k′ |Rd) ≈∑L
l=1 p(r̂

d
m,n′,k′ |udm[l],vdn′ [l], t

d
k′ [l], α[l]). To implement

above described approaches, SRTF improves MCMC of
BPTF, and it works as follows (please also see the Appendix
section that describes our MCMC procedure in detail):

(1) Initializes Ud[1] and Vd[1] by MAP results of PMF as
per BPTF. It also initializes Td[1], Cv[1], and Ct[1] by
Gaussian distribution. X is matrix representation of feature
vector x (e.g. Cv[1] is the matrix representation of cvj ). Cv

and Ct are necessary for implementing our approach (A).
Next, it repeats steps (2) to (6) L times.

(2) Samples the hyperparameters the same way as BPTF i.e.:
– α[l] ∼ p(α[l]|Ud[l],Vd[l],Td[l],Rd)
– ΘUd [l] ∼ p(ΘUd [l]|Ud[l])
– ΘV d [l] ∼ p(ΘV d [l]|Vd[l])
– ΘTd [l] ∼ p(ΘTd [l]|Td[l])
– ΘCv [l] ∼ p(ΘCv [l]|Cv[l])
– ΘCt [l] ∼ p(ΘCt [l]|Ct[l])

here, ΘX represents {µX,ΛX}. µX and ΛX are computed
the same way as BPTF (see Preliminary).

(3) Samples the feature vectors the same way as BPTF as:
– udm[l+1] ∼ p(udm|Vd[l],Td[l], α[l],ΘUd [l],Rd)
– vdn′ [l+1] ∼ p(vdn′ |Ud[l+1],Td[l], α[l],ΘV d [l],Rd)
– tdk′ [l+1] ∼ p(tdk′ |Ud[l+1],Vd[l+1], α[l],ΘTd [l],Rd)

(4) Samples the semantically-biased feature vectors by using
α[l], Ud[l+1], Vd[l+1], and Td[l+1] as follows:
– cvj [l+1] ∼ p(cvj |Ud[l+1],Td[l+1], α[l],ΘCv [l],Rv)
– ctj [l+1] ∼ p(ctj |Ud[l+1],Vd[l+1], α[l],ΘCt [l],Rt)
Parameters α[l], Ud[l+1], Vd[l+1], and Td[l+1] are shared
by step (3) and (4) to satisfy our approach (B).

(5) Samples the unobserved ratings r̂dm,n′,k′ [l] by applying
udm[l+1], vdn′ [l+1], and tdk′ [l+1] to Eq. (1).

(6) Updates vdn′ [l+1] to v′n′ [l+1] by replacing vdn′ [l+1] with
cvn′ [l+1] if vn′ is a sparse item instance. In the same way,
it updates tdk′ [l+1] to t′k′ [l+1] if tk′ is a sparse tag instance.
This step is necessary for implementing our approach (C).
SRTF regards v′n′ [l+1] as vdn′ [l+1] and t′k′ [l+1] as tdk′ [l+1]
for the next iteration.
It finally computes the prediction for unobserved rating

in original tensor r̂m,n,k from r̂dm,n′,k′ by checking the link
relationship between vn and vn′ and that between tk and
tk′ . Basically, our MCMC procedure only adds steps (4) and
(6) to the original MCMC procedure of BPTF, but it does
require several additional parameters such as Cv and Ct.
Thus readers can easily implement our method to advance
their own research.

The complexity of SRTF in each MCMC iteration is
O(#nz×D2 +(M +N ′+K ′+SV +ST )×D3). Because
the first term is much larger than the rest, the computation
time is almost the same as that of BPTF. The parameter δ
and parameters for factorizations can be easily set based on
the long-tail characteristic and the full Bayesian treatment
inherited by the BPTF framework, respectively.
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Table 1: Tag class examples for MovieLens.
C Breathtaking Historical Spirited Unrealistic

Breathtaking Ancient Racy Kafkaesque
tk Exciting Historic Spirited Surreal

Thrilling Past life Vibrant Surreal life

Table 2: Mean/variance(x10−5) of RMSEs for MovieLens.
BPMF BPTF SRTFα SRTFβ SRTF(1.0) SRTF(0.3)

D=25 Mean 0.9062 1.0278 0.8842 0.8838 0.8850 0.8807
Variance 8.1712 15.3502 4.7174 5.7223 5.4754 5.9744

D=50 Mean 0.9043 0.9988 0.8827 0.8818 0.8837 0.8791
Variance 9.1206 39.4048 5.9430 4.6317 5.3072 6.8149

D=75 Mean 0.9040 0.9863 0.8821 0.8809 0.8829 0.8778
Variance 6.9771 37.2929 5.0868 5.7490 5.5913 6.4982

D=100 Mean 0.9032 0.9708 0.8823 0.8792 0.8824 0.8774
Variance 7.5844 14.5400 5.3995 5.3136 6.0363 6.1852

Evaluation
We applied SRTF to predict users’ rating activities.

Dataset
The method’s accuracy was confirmed using two datasets:
MovieLens contains ratings by users against movie items
with user-assigned tags. Ratings range from 0.5 to 5. We
created composite classes from the vocabulary of genres, that
of directors, and that of actors gathered from Freebase and a
tag taxonomy from WordNet. We restrict each item instance
to not more than one director and two actors. As a result,
item vocabulary has 724 composite classes. The taxonomy
has 4,284 classes. We also used items and tags that do not
have any classes. Consequently, it contains 24,565 ratings
with 44,595 tag assignments; 33,547 tags have tag classes.
The size of user-item-tag tensor is 2, 026×5, 088×9, 160.
Table 1 shows examples of class C and its tag instances tk′s.
Yelp contains ratings assigned by users to restaurants in their
reviews. Ratings range from 1 to 5. We used the genre vo-
cabulary of Yelp as the item vocabulary. It has 179 classes.
We do not create composite classes because it offers only
one useful property type, genre. We analyzed review texts
by using the food vocabulary in DBPedia3 as (Nakatsuji,
Yoshida, and Ishida 2009) did, so this dataset does not re-
quire disambiguation. We extracted 2,038,560 food phrases.
The food phrase vocabulary contains 1,957 distinct phrases
in 2,316 classes. it contains 158,424 ratings with reviews.
Among those, 33,863 entries do not contain the phrases, thus
we assign dummy phrase id for those. By doing so, we can
use all restaurant reviews. The size of user-item-tag tensor is
36, 472×4, 503×1, 957.
Compared methods Compared methods are: (1) BPMF;
the Bayesian probabilistic matrix factorization that analyzes
ratings by users for items without tags (Salakhutdinov and
Mnih 2008a); it can not predict ratings with tags though they
assist users in understanding the items (Rendle et al. 2009).
(2) BPTF (Xiong et al. 2010). (3) SRTFα; it randomly links
an ambiguous object to one of its instances whose names are
same with that of object. (4) SRTFβ; does not use composite
classes. (5) SRTF(1.0); sets δ to 1.0 and abstracts all objects to

3http://dbpedia.org/ontology/Food

Table 3: Mean/variance(x10−4) of RMSEs for Yelp.
BPMF BPTF SRTFα SRTFβ SRTF(1.0) SRTF(0.3)

D=25 Mean 1.1161 1.2222 - - 1.2240 1.0858
Variance 9.5985 1.0143 - - 1.5127 1.4318

D=50 Mean 1.1154 1.1643 - - 1.1613 1.0860
Variance 10.1788 0.9400 - - 1.4273 1.2976

D=75 Mean 1.1147 1.1620 - - 1.1627 1.0856
Variance) 10.4442 1.2118 - - 1.6251 1.3544

D=100 Mean 1.1127 1.1533 - - 1.1621 1.0851
Variance 10.0000 0.2688 - - 1.8292 1.3444

Table 4: Comparing our method with GCTF (D = 50).
MovieLens Yelp

BPTF SRTF(0.3) GCTF BPTF SRTF(0.3) GCTF
0.9243 0.8791 0.9947 1.7821 1.1903 1.4192

their classes. (6) SRTF(0.3); sets δ to 0.3 following the long-
tail characteristics. (7) GCTF; the most popular method for
factorizing several tensors/matrices simultaneously (Ermis,
Acar, and Cemgil 2012).

Methodology and parameter setup Following the
methodology used in the BPTF paper (Xiong et al. 2010),
we used Root Mean Square Error (RMSE), computed by√

(
∑n
i=1(Pi −Ri)2)/n, where n is the number of entries in

the test dataset. Pi and Ri are the predicted and actual ratings
of the i-th entry, respectively. Smaller RMSE values indicate
higher accuracy. We divided the dataset into three parts and
performed three-fold cross validation. Results below are aver-
ages with variance values of the three evaluations. Following
(Xiong et al. 2010), the parameters are µ0=0, ν0=0, β0=0,
W0=I, ν̃0=1, and W̃0=1. L is 500. We used the IS cost
function for GCTF because it achieved the highest accuracy.

Results We first compared the accuracy of the methods
(mean and variance values for three-fold cross validation)
as shown in Table 2 and 3. BPTF has worse accuracy than
BPMF. This indicates that BPTF can not utilize additional in-
formation (tags/reviews) for predictions because observations
in tensors become much sparser than those of matrices. In-
terestingly, SRTFα has much better accuracy (lower RMSE)
than BPTF even though it uses a simple disambiguation strat-
egy. This is because many item objects are not ambiguous and
the improvement by abstraction from non-ambiguous objects
greatly exceeds the decrease created by disambiguation mis-
takes in SRTFα. We note that this result showed that the ab-
straction idea is useful even with a simple disambiguation pro-
cess. This means that our method will positively impact many
applications. SRTFβ has worse accuracy than SRTF(0.3) be-
cause SRTFβ does not have composite classes. It does not
use actor or director properties in item vocabularies. Further-
more, SRTF(1.0) has worse accuracy than SRTF(0.3). This
indicates that it is not useful to incorporate semantics into
non-sparse objects. SRTF(1.0) in Yelp has poor accuracy
because its item/tag vocabularies are less detailed than the vo-
cabulary/taxonomy of MovieLens. Finally, SRTF(0.3), which
provides sophisticated disambiguation/augmentation strate-
gies, improved the accuracy more than the other methods with
the statistical significance of α<0.05. SRTF(0.3) achieves
10% higher accuracy than BPTF for MovieLens (SRTF(0.3)
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Table 5: Prediction examples for MovieLens and Yelp by BPTF/SRTF(0.3) (bold words represent food tags).
Training dataset Rating predictions by BPTF and SRTF(0.3)

Tag in review sentence Item/main genre Rating Tag in review sentence Item/main genre BPTF SRTF Actual
President Air Force One/Thriller&Wolfgang Peterson 3.5 disease Outbreak/Thriller&Wolfgang Peterson 2.5 3.4 3.5
History All the Presidents Men/Historical Fiction 4.0 Historical Glory/Historical Fiction 3.0 3.7 4.0
Tempura udon was delicious. A/Japanese 4.0 Ramen was really good. B/Hawaiian 5.0 3.8 4.0
We enjoyed the foie gras. C/French 4.0 Gratin is excellent. D/Steakhouses 2.8 3.7 4.0
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 1
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 1.4

 0  100  200  300  400  500

RM
SE

Number of iterations

SRTF(0.3)
BPTF

Figure 3: RMSE vs. number of iterations (D=50).

marked 0.8774 while BPTF marked 0.9708.) We can also
confirm that SRTF(0.3) output more stable predictions than
BPTF or BPMF because variance values of SRTF(0.3) are
much smaller than those of BPTF and BPMF. The variance
values of BPTF is smaller than those of SRTF(0.3), however,
SRTF(0.3) output much accurate results than BPTF.).

We next compared the accuracy of BPTF, SRTF(0.3), and
GCTF. Since GCTF requires much more computation than
BPTF or SRTF (see Preliminary), we could not apply GCTF
to the whole evaluation dataset on our computer 4. Accord-
ingly, we randomly picked five sets of 200 users in each
dataset and evaluated the accuracy for each set. Table 4
shows the average RMSE values of those evaluations. SRTF
achieves higher accuracy than GCTF. This is because SRTF
naturally incorporates semantic classes into tensors after fit-
ting them to user-item-tag tensor; GCTF straightforwardly
combines different types of multi-object relationships, rating
relationships among users, items, and tags, link relationships
among items and their classes, and link relationships among
tags and their classes. SRTF also carefully selects sparse ob-
jects and gives semantic biases to them; GCTF gives biases
from extra information to all multi-object relationships.

Fig. 3 presents the accuracy on MovieLens when the num-
ber of iterations was changed in our MCMC procedures. This
confirms that the accuracy of SRTF converged quickly be-
cause it uses the MAP results from PMF to optimize the
initializations of U and V. Yelp result had similar tendencies.

We show the examples of the differences between the
predictions output by BPTF and those by SRTF(0.3) in Ta-
ble 5. The column “BPTF”, “SRTF”, and “Actual” present
prediction vales by BPTF, those by SRTF(0.3), and actual
ratings given by users as found in the test dataset, respec-
tively. MovieLens item “Outbreak” was rarely observed in
the training dataset. SRTF(0.3) predicted this selection accu-
rately since it can use the knowledge that the combination

4Recently, (Ermis, Acar, and Cemgil 2013) improved the time
complexity of GCTF by taking into account the sparsity pattern of
the dataset.

of thriller movies directed by “Wolfgang Petersen” and his-
torical movies like “All the Presidents Men” tended to be
highly rated in the training dataset. In Yelp dataset, the com-
bination of tag “udon” at restaurant “A” and “foie gras” at
restaurant “C” were highly rated in the training dataset. In
the test dataset, the combination of tag “ramen” at restaurant
“B” and “gratin” at restaurant “D” were highly rated. Those
tags are sparsely observed in the training dataset. SRTF(0.3)
accurately predicted those selections since it uses knowledge
that tags “udon” and “ramen” are both in tag class “Japanese
noodles”, as well as the knowledge that tags “foie gras” and
“gratin” are both in tag class “French dishes”. Note that restau-
rant “B” is not a Japanese restaurant, and that restaurant “D”
is not a French restaurant. Thus, those selections were ac-
curately predicted via tag classes and not by item classes.
BPTF predictions were inaccurate since they could not use
the semantics behind the objects being rated.

Since our disambiguation process is pre-computed before
tensor factorization, and our augmentation process is quite
simple, they can be easily applied to other tensor factorization
schemes. For example, we have confirmed that our approach
works well when applied to another popular tensor factor-
ization scheme, non-negative tensor factorization (NTF); we
extended the variational non-negative matrix factorization in
(Cemgil 2009) to variational non-negative tensor factoriza-
tion and applied our ideas to NTF. (Cemgil 2009) introduced
the NMF in a Poisson model that fits the exponential family
distribution often seen in various kinds of datasets. Thus, our
ideas can enhance the prediction accuracy for various kinds
of applications.

Conclusions and directions for future work
This is the first study to apply the semantics behind objects to
enhance tensor factorization accuracy. Semantic data repre-
sentation for tensor factorization is critical in using semantics
to analyze human activities; a key AI goal. It first creates
semantically enhanced tensors and then factorizes the ten-
sors simultaneously over the BPTF framework. Experiments
showed that SRTF achieves 10% higher accuracy than current
methods and can support many applications.

We are now applying SRTF to link predictions in social
networks (e.g. predicting the frequency of future commu-
nications among users). Accordingly, we are applying our
idea to NTF as described in the evaluation section because
the frequency of communications among users often follows
the exponential family distribution. Another interesting direc-
tion for our future work is predicting user activities among
cross-domain applications such as music and movie rating
services. We think our ideas have potential for cross domain
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analysis because they allow for the effective use of seman-
tic knowledge in the format of LOD shared among several
service domains. The third interesting direction is that the
development of methods that handle more detailed semantic
knowledge other than simple vocabularies/taxonomies.
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Appendix
This section explains how to learn feature vectors and their
hyperparameters in the MCMC procedure of SRTF in de-
tail. Please also refer to section “Implementation over the
BPTF framework”. The following notations and item num-
bers are the same as those used in the section “Implementa-
tion over the BPTF framework”. The MCMC procedure of
SRTF improves BPTF following the approaches explained in
the section “Approach” in the paper. A detailed explanation
of MCMC of BPTF is given in the BPTF paper (Xiong et al.
2010).

SRTF applies udm, v′n′ , and t′k′ , and their hyperpa-
rameters to Eq. (2) in the paper. It learns the pre-
dictive distribution for unobserved ratings r̂dm,n′,k′ by
MCMC procedure as per BPTF. Especially, MCMC
collects a number of samples, L, to approximate the
unobserved predictions for Rd by p(r̂dm,n′,k′ |Rd) ≈∑L
l=1 p(r̂

d
m,n′,k′ |udm[l],vdn′ [l], t

d
k′ [l], α[l]). The MCMC pro-

cedure of SRTF works as follows:

(1) It first initializes Ud[1], Vd[1] by MAP results of PMF as
per BPTF. It also initializes Td[1], Cv[1], and Ct[1] by
Gaussian distribution. Cv and Ct are matrix representa-
tions of cvj and ctj , respectively. Next, it repeats steps (2)
to (6) L times and samples feature vectors and their hy-
perparameters. Each sample in MCMC procedure depends
only on the previous one.

(2) It samples the conditional distribution of α givenRd, Ud,
Vd, and Td as per BPTF as follows:

p(α|Rd,Ud,Vd,Td) =W(α|W̃ ∗0 , ν∗0 ),

ν∗0 = ν̃0 +
∑K′

k′=1

∑N ′

n′=1

∑M
m=1 1, (W̃ ∗0 ) = (W̃0)

−1

+
∑K′

k′=1

∑N ′

n′=1

∑M
m=1(rdm,n′,k′ − 〈udm,vdn′ , tdk′〉)2.

It also samples hyperparameters ΘUd , ΘV d , and ΘTd as
per BPTF. They are computed in the same way. For exam-
ple, ΘV d is conditionally independent of all other parame-
ters given Vd; it is computed as follows:
p(ΘV d |Vd)=N (µV d |µ∗0, (β∗0ΛV d)−1)W(ΛV d |W∗

0 , ν
∗
0 ),

µ∗0 = β0µ0+N′v̄d

β0+N′ , β∗0 = β0 +N ′, ν∗0 = ν0 +N ′,

W∗
0
−1 =W0

−1+N ′S̄ + β0N
′

β0+N′ (ν0 − v̄d)(ν0 − v̄d)tr,

v̄d = 1
N′

∑N′

n′=1 v
d
n′ ,

S̄ = 1
N′

∑N′

n′=1 (vdn′ − v̄d)(vdn′ − v̄d)tr.

Our MCMC procedure also samples the hyperparameter
of cv, ΘCv , to generate ratings for Rv. The generative

process ofRv is almost the same as that ofRd except for
sharing α, udm, and tdk′ , which are also used in sampling
vdn′ , in sampling cvj (see steps (3) and (4)). Thus, ΘCv can
be computed in the same way as ΘV d as follows:

p(ΘCv |Cv)=N (µCv|µ∗0 ,(β
∗
0 ΛCv)

−1)W(ΛCv |W∗
0 ,ν
∗
0 ),

µ∗0 =
β0µ0+(N′+SV )c̄v

β0+N
′+SV

, β∗0 =β0+N ′+SV , ν∗0 =ν0+N ′+SV ,

W∗
0
−1=W0

−1+(N ′+SV )S̄+
β0(N′+SV )

β0+N
′+SV

(ν0−c̄v)(ν0−c̄v)tr,

c̄v = 1

N′+SV
∑N′+SV
j=1 cvj ,

S̄ = 1

N′+SV
∑N′+SV
j=1 (cvj − c̄v)(cvj − c̄v)tr.

(3) Then it samples model parameters Ud, Vd, Td as per
BPTF. They are computed in the same way. For example,
Vd can be factorized into individual items. If Pm,k′ ≡
udm · tdk′ , each item feature vector is computed in parallel
as follows:

p(vd
n′ |R

d,Ud,Td, α,Θ
V d

) = N (vd
n′ |µ

∗
n′ , (Λ

∗
n′ )
−1),

µ∗
n′ ≡ (Λ∗

n′ )
−1(Λ

V d
µ
V d

+ α
∑K′
k′=1

∑M
m=1 r

d
m,n′,k′Pm,k′ ),

Λ∗
n′ = Λ

V d
+ α

∑K′
k′=1

∑M
m=1 o

d
m,n′,k′Pm,k′P

tr
m,k′ .

(4) It also samples model parameters Cv and Ct. Conditional
distribution of Cv can also be factorized into individual
items and individual augmented item classes as follows:

p(cvj |Rv,Ud,Td, α,ΘCv)=N (cvj |µ∗j , (Λ∗j )−1),

µ∗j≡(Λ∗j )
−1(ΛCvµCv+α

∑K′

k′=1

∑M
m=1 r

v
m,j,k′Pm,k′),

Λ∗j = ΛCv + α
∑K′

k′=1

∑M
m=1 o

v
m,j,k′Pm,k′P

tr
m,k′ .

Here, ovm,j,k′ is a 0/1 flag to indicate the observation
existence of multi-object relationships composed by user
um, j-th item/class that corresponds to cvj , and tag tk′ in
Rv .
Steps (3) and (4) share precision α and feature vectors
udm and tdk′ (in Pm,k′). This means SRTF shares those
parameters in the factorization of tensorsRd andRv . Thus,
semantic biases can be shared among the above tensors via
those shared parameters. The conditional distribution of
Ct can also be computed in the same way.
Steps (3) and (4) also indicate that feature vectors for
objects as well as semantically-biased feature vectors can
be computed in parallel.

(5) In each iteration, it samples the unobserved ratings r̂dm,n′,k′
by applying udm, vdn′ , and tdk′ to Eq. (1) in the paper.

(6) It updates vdn′ to v′n′ by replacing vdn′ with cvn′ if vn′ is
a sparse item instance. Otherwise, it does not replace vdn′
with cvn′ . In the same way, it updates tdk′ to t′k′ if tk′ is a
sparse tag instance. SRTF regards v′n′ as vdn′ and t′k′ as
tdk′ for the next iteration.

SRTF finally computes the prediction value for unobserved
rating in original tensor r̂m,n,k from r̂dm,n′,k′ by checking
link relationship between vn and vn′ and that between tk and
tk′ .

In this way, SRTF effectively incorporates semantic biases
into the feature vectors of sparse objects in each iteration of
its MCMC procedure. It greatly solves the sparsity problem.
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