
Finding Median Point-Set Using Earth Mover’s Distance∗

Hu Ding and Jinhui Xu
Computer Science and Engineering, State University of New York at Buffalo

{huding, jinhui}@buffalo.edu

Abstract
In this paper, we study a prototype learning problem,
called Median Point-Set, whose objective is to construct
a prototype for a set of given point-sets so as to mini-
mize the total Earth Mover’s Distances (EMD) between
the prototype and the point-sets, where EMD between
two point-sets is measured under affine transformation.
For this problem, we present the first purely geomet-
ric approach. Comparing to existing graph-based ap-
proaches (e.g., median graph, shock graph), our ap-
proach has several unique advantages: (1) No encoding
and decoding procedures are needed to map between
objects and graphs, and therefore avoid errors caused
by information losing during the mappings; (2) Stay-
ing only in the geometric domain makes our approach
computationally more efficient and robust to noise. We
evaluate the performance of our technique for prototype
reconstruction on a random dataset and a benchmark
dataset, handwriting Chinese characters. Experiments
suggest that our technique considerably outperforms the
existing graph-based methods.

1 Introduction
Finding the prototype of a set of examples (or observa-
tions) is an important problem frequently encountered in
pattern recognition and computer vision. A commonly used
approach for this problem is to first encode each example
into a graph, and then compute the median of the graphs
as the prototype (Jiang, Münger, and Bunke 2001; Sebas-
tian, Klein, and Kimia 2001; Macrini, Siddiqi, and Dick-
inson 2008; Demirci, Shokoufandeh, and Dickinson 2009;
Trinh and Kimia 2010; Ferrer et al. 2011; Ding et al. 2013).
Such an approach although is quite general, it also suffers
from several key limitations. Firstly, it could introduce a
considerable amount of error due to information losing dur-
ing the encoding and decoding processes. Secondly, since
graph median often needs to solve some high complex-
ity graph (or subgraph) matching problem, its computation
could be rather inefficient. Thirdly, for complicated exam-
ples, a graph representation may not always be sufficient to
capture all necessary features.
∗The research of this work was supported in part by NSF under

grant IIS-1115220.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To provide a remedy to the above issues, in this paper, we
consider a family of prototype learning problems in some
geometric (e.g., Euclidean) space, and propose a purely ge-
ometric approach. In our problem, each example is repre-
sented as a point-set in Euclidean space, and the output is
a new point-set, called median point-set (i.e., prototype), in
the Euclidean space with minimum total Earth Mover’s Dis-
tance (EMD) (Cohen and Guibas 1999) to all input exam-
ples, where EMD is measured under affine transformations.

Our problem is motivated by a number of applications.
One type of applications (e.g., information fusion) is to ac-
curately reconstruct an object from a set of its observations.
Since each observation may only have partial information of
the object and could contain various types of noises/errors, it
thus can be modeled as an unsupervised prototype learning
problem. Another type of applications is for object recogni-
tion and classification. In such applications, we are given a
set of structured data items (or objects) in advance, and need
to find the best match for each query object. Since the num-
ber of data items might be very large, a straightforward way
of search could be quite costly. A more efficient way is to
first partition the data items into clusters, build a prototype
for each cluster, and then find the best match by comparing
only to the prototypes.

To validate our approach, we test it using a random dataset
and a benchmark dataset, handwriting Chinese characters,
and compare its performance with some existing graph-
based methods. Experimental results suggest that our tech-
nique considerably outperforms existing ones on both accu-
racy and robustness.

1.1 Related Works
Finding median graph from a set of given graphs is a prob-
lem with a long and rich history in pattern recognition.
(Jiang, Münger, and Bunke 2001) first introduced the me-
dian graph concept, and presented a genetic algorithm to
solve it. Later, (Ferrer et al. 2011) proposed an embedding
algorithm. Their idea is to first map the graphs into some
metric space, then find the median point in the metric space,
and finally map the median point back to some graph. Their
main drawback is the high computational complexity caused
by computing the best graph matching.

When the input is a set of shapes, a frequently used strat-
egy is to represent each shape as a graph abstraction. For

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1781

examples, (Demirci, Shokoufandeh, and Dickinson 2009)
and (Macrini, Siddiqi, and Dickinson 2008) used the medial
axis graph as the graph abstraction; (Sebastian, Klein, and
Kimia 2001) and (Trinh and Kimia 2010) adopted a similar
approach called shock graph to represent the graph abstrac-
tion. As pointed out in article (Demirci, Shokoufandeh, and
Dickinson 2009), the main drawback of these approaches is
the requirement of accurate segmentation of the raw images,
since otherwise, the shape abstraction would be difficult to
obtain. Another drawback is that a graph abstraction of a
complicated shape (e.g., handwriting characters) may lose a
significant amount of information.

As a similarity measurement for images, Earth Mover’s
Distance has been widely used in computer vision (Cohen
and Guibas 1999; Rubner, Tomasi, and Guibas 2000; Gi-
annopoulos and Veltkamp 2002; Grauman and Darrell 2004;
Pele and Werman 2009). EMD can be viewed as a gen-
eralization of the bipartite matching, i.e., from one-to-one
matching to many-to-many matching, and has applications
in many other areas. As observed in (Giannopoulos and
Veltkamp 2002), a major advantage of EMD (over bipar-
tite matching) is its robustness to noise. Such a general-
ization makes it more challenging to find the optimal solu-
tion, especially when the images can perform certain trans-
formations. Article (Cohen and Guibas 1999) provided an
iterative algorithm to find a local optimum for EMD un-
der rigid transformation. Later, (Klein and Veltkamp 2005;
Cabello et al. 2008; Ding and Xu 2013) presented approxi-
mate solutions, which are mainly of theoretical importance.

It is worth pointing out that (Ricci et al. 2013; Zen and
Ricci 2011) also used EMD to compute a smooth repre-
sentation of each short video clip and called it “prototype.”
Their problem has several significant differences from ours.
(1) In their problem, a sequence of “prototypes” is computed
for detecting activity, while in our problem only one proto-
type is computed from a set of exemplars. (2) In their prob-
lem, EMD is computed by treating objects in each frame
as static data, while in our problem, EMD is computed un-
der affine transformation (i.e., point-sets can perform some
affine transformations).

1.2 Our Contributions
One of our main contributions for this unsupervised pro-
totype learning problem is the first purely geometric algo-
rithm. Comparing to existing graph-based approaches, our
approach has two major advantages. (1) Our approach does
not need the encoding and decoding procedures mapping
between the objects and their corresponding graphs. Con-
sequently, it avoids errors caused by information losing dur-
ing the mappings. (2) Since our approach always stays in
the continuous Euclidean space and does not rely on graph
matching, our algorithm is more efficient and robust.

2 Preliminaries
In this section, we introduce some definitions which will be
used throughout the paper.
Definition 1 (Earth Mover’s Distance (EMD)). Let A =
{p1, · · · , pn} and B = {q1, · · · , qm} be two sets of

weighted points in Rd with nonnegative weights αi and βj
for each pi ∈ A and qj ∈ B respectively, and WA and WB

be their respective total weights. The earth mover’s distance
between A and B is

EMD(A,B) =
minF

∑n
i=1

∑m
j=1 fij ||pi − qj ||

min{WA,WB} , (1)

where F = {fij} is a feasible flow satisfying the following
conditions. (1) fij ≥ 0,

∑m
j=1 fij ≤ αi, and

∑n
i=1 fij ≤ βj

for any 1 ≤ i ≤ n and 1 ≤ j ≤ m; (2)
∑n

i=1

∑m
j=1 fij =

min{WA,WB}.
Definition 2 (Affine Transformation). In 2D, affine trans-
formation is the set of transformations including linear
transformation, translation, and their combinations, where
linear transformation is determined by a 2 × 2 matrix, and
translation is determined by a 2D vector.

Note that from a geometric point of view, linear transfor-
mation can be decomposed into rotation, scaling, reflection,
shear mapping, and squeeze mapping (see Fig. 1 a).

Now, we discuss the main problem below.
Definition 3 (Median Point-Set Using Earth Mover’s
Distance (Memd)). Given a set of weighted point-sets
{P1, · · · , Pn} and an integer m > 0, the median point-set
problem under EMD is to determine a new weighted point-
set Q containing no more than m points such that the fol-
lowing objective function is minimized

n∑
i=1

min
T

EMD(Q, T (Pi)), (2)

where T (Pi) is the affine transformation of Pi. The point-
set Q achieving the optimal objective value is denoted as
Memd. The weights of each Pi and Q are assumed to be
normalized to the same value.

Note: In Definition 3, some reasonable constraints may be
imposed to avoid meaningless result. For example, if the co-
efficient of a scaling transformation were 0, every Pi would
be mapped into a single point, and the objective value (2)
would become 0 after translating all these single points to
make them overlap with each other. Thus, in order to avoid
this, we first normalize the diameter of all the initial input
point-sets to be the same, and select one point-sets as the
initial estimation of Memd (see the details in Section 4.2).
Consequently, the point-sets would not be transformed into
single points during the algorithm.
Main Challenges: There are two main difficulties in finding
Memd. The first one is due to the intrinsic difficulty of de-
termining the median of a set of geometric structures. Note
that if each Pi is only a single point, the problem is the me-
dian point (i.e., Fermat-Weber point) problem and can be
relatively easily solved. However, when each Pi becomes a
much more complicated geometric structure, there is no ex-
isting solution, to the best of our knowledge. The second one
comes from the need of determining a proper affine trans-
formation for each Pi. If Q is already known, finding the
transformation is equivalent to the minimum cost matching
between Q and each Pi. However, since Q is unknown, the
problem becomes much harder.

1782

Scaling

Squeeze mappingRotation

Shear mapping

(a) (b)

Figure 1: (a) shows an example of rotation, scaling, shear
mapping, and squeeze mapping respectively; (b) shows the
LP-model (7)-(11), where the black nodes denote the points
of the current estimationEt, the nodes with the same (other)
color denote a point-set Pi, and the edges denote the flows
between each Pi and Et. The LP-model is to minimize the
total cost of all flows.

3 Minimizing EMD under Affine
Transformation

In this section, we consider the problem of minimizing EMD
between two point-setsA andB under affine transformation.
Clearly, this is a basic step for computing the function (2).

Note that if the two point-sets A and B are fixed (i.e.,
no transformation is allowed), their EMD can be opti-
mally computed by using linear programming (Cohen and
Guibas 1999) or other more efficient algorithms mentioned
in Section 1.1. However, if A or B can be transformed,
the problem becomes much harder and available techniques
are still quite limited (Cohen and Guibas 1999; Cabello et
al. 2008; Klein and Veltkamp 2005; Ding and Xu 2013;
Ding, Berezney, and Xu 2013) (e.g., mainly considering
rigid transformation). To the best of our knowledge, there
is no efficient algorithm considering affine transformation.
Flow-Transformation Iterative Algorithm. (Cohen and
Guibas 1999) introduced an iterative algorithm for minimiz-
ing EMD of two point-sets under rigid transformation (in-
cluding translation and rotation). Their idea is as follows.
Initially, A and B are fixed in the space, and the algorithm
computes EMD(A,B); then based on the obtained flows
from A to B, it computes an optimal transformation for B,
such that the cost is minimized; the algorithm iteratively run
this flow-transformation iteration until the cost converges to
some local optimum. This idea is similar in spirit to a num-
ber of existing algorithms for some other optimization prob-
lems, such as Iterative Closest Point (ICP) (Besl and McKay
1992) and Expectation-maximization (EM) (McLachlan and
Basford 1988) algorithms.

For our problem of minimizing EMD under affine trans-
formation, the flow-transformation iterative algorithm is ap-
plicable after some modification. In each iteration, the flow
step is still the same as in (Cohen and Guibas 1999), and
the transformation step needs to compute an optimal affine
transformation rather than an optimal rigid transformation.
Let T be any affine transformation containing a linear trans-
formation (i.e., a 2 × 2 matrix) M and a translation (i.e.,
a 2 × 1 matrix) S. Then, for any point qi ∈ B, T (qi) =

Algorithm 1 Median point-set (outline)
Input: {P1, · · · , Pn} and m ∈ Z+.
repeat

1. Dynamic step.
2. Static step, with the following inner loop:

(a) Location updating.
(b) Weight updating.

until The objective value becomes stable.

Mqi + S, and the cost function from Definition 1 becomes

Cost(A, T (B)) =

∑n
i=1

∑m
j=1 fij ||pi − (Mqi + S)||
min{WA,WB} . (3)

Note that the flows {fij} are obtained in the transformation
step. From the cost function (3), it is easy to see that it is
convex on the 6 variables (4 from M and 2 from S). To
minimize the cost function (3), we can relax it to L2

2-norm
(i.e., replace the Euclidean distance ||pi − (Mqi + S)|| by
the squared Euclidean distance ||pi − (Mqi + S)||2). Then
the problem of miniming (3) becomes a standard L2

2-norm
convex optimization problem with respect to the 6 variables,
which can be easily solved in linear time.

4 Algorithm for Median Point-Set
4.1 Overview
Before discussing the details of the algorithm, we first out-
line the main steps in Algorithm 1. The terms “dynamic”
and “static” are used to indicate the status of the n input
point-sets. “Dynamic” means that the position of each Pi is
changed using some transformation, and “static” means that
the position of each Pi remains unchanged.

In each iteration, we maintain an estimation for Memd

(which is the current best solution of Memd). In the dynamic
step, we fix this estimation, and find a good transformation
for each Pi using the algorithm in Section 3. In the static
step, we update the estimation based on the n transformed
point-sets from the dynamic step. The static step is a loop
consisting of two sub-steps in its body, location updating and
weight updating. Location updating modifies the location of
each point in the current estimation, and weight updating
changes the distribution of the weight. We will unfold our
ideas for each step in the following sections.

4.2 Initial Estimation for Memd

As mentioned in the overview, the algorithm computes an
estimation for Memd in each iteration. We first show that a
good initial estimation leads to a good approximation.
Theorem 1. Let Pl be a point-set randomly selected from
the input (i.e., Pl is one of n point-sets in the input). Then
with probability 1/2, there exists an affine transformation T̃
such that T̃ (Pl) yields a 3-approximation for Memd (with
respect to the objective function (2)).

Proof. Let Ti be the affine transformation for Pi in the opti-
mal solution. By Markov inequality, we have

EMD(Memd, Tl(Pl)) ≤ 2×
1

n

n∑
i=1

EMD(Memd, Ti(Pi)) (4)

1783

with probability 1/2. In Definition 3, we have assumed that
the weights of each Pi and Memd are normalized to be the
same. This means thatEMD satisfies the triangle inequality
(Giannopoulos and Veltkamp 2002). Thus, we have

1

n

n∑
i=1

EMD(Tl(Pl), Ti(Pi))

≤ 1

n

n∑
i=1

(EMD(Tl(Pl),Memd) + EMD(Memd, Ti(Pi)))

≤ 3× 1

n

n∑
i=1

EMD(Memd, Ti(Pi)) (5)

with probability 1/2, where the first inequality follows
from triangle inequality and the second inequality follows
from (4). This means that we can choose Tl as T̃ , and the
theorem follows from inequality (5).

After fixing Pl, we still need to resolve one issue in order
to obtain an initial estimation for Memd: Pl may have more
than m points. Thus, we perform k-medians clustering (let
k = m) on Pl and use the m median points {c1, · · · , cm}
as the initial estimation, where each cj is associated with a
weight equal to the total weight of the corresponding cluster.

4.3 Dynamic Step
The dynamic step is relatively simple. In this step, we fix
the position of the current estimation for Memd, and deter-
mine an appropriate transformation (using the algorithm in
Section 3) for each input point-set Pi so as to minimize the
EMD from the estimation to Pi. Clearly, the value of the
objective function (2) can only be improved in this step.

4.4 Static Step
In this step, we fix the position of each input point-set af-
ter performing its corresponding transformation determined
in the dynamic step, and update the position and weight of
the current estimation. Let Et = {et1, · · · , etm} be the es-
timation in the t-th iteration of the inner loop in the static
step, where etj is associated with a weight wt

j . The updating
is done iteratively on the location of each etj and the weight
distribution among Et.

For ease of discussion, we let {pi1, · · · , piNi
} be the point-

set Pi, αi
s ≥ 0 be the weight of pis, and W be the normal-

ized weight of each Pi. With a slight abuse of notation, we
still use Pi and pis to denote the corresponding point-set and
point after performing the transformation obtained in the dy-
namic step. Let f is,j be the weight flow from pis to etj under
the current matching between Et and Pi (see Definition 1).
Location updating: From the functions (1) & (2), we know
that the contribution of etj to the objective function (2) is

1

W

n∑
i=1

Ni∑
s=1

f i
s,j ||etj − pis||. (6)

To determine the new location of etj , consider the set of
input points {pis | 1 ≤ i ≤ n, 1 ≤ s ≤ Ni}. We can imagine
that each input point pis is associated with a “new weight”
f is,j . Then, the value of (6) is minimized when the location

of etj is at the geometric median of the set of “weighted”
points. This means that we can use the algorithm (Weiszfeld
1937) to calculate the new location of etj . Obviously, after
performing this location updating for each etj , the value of
the objective function (2) can only be improved.
Weight updating: In this step, we fix the position of each
etj , and re-calculate the weight distribution among these m
points in the estimation. Below we formulate the problem as
a linear programming problem. We treat wt

j and f is,j as vari-
ables, then we have the following LP-model for minimizing
the objective function (2).

min g =
1

W

n∑
i=1

m∑
j=1

Ni∑
s=1

f i
s,j ||etj − pis|| (7)

Ni∑
s=1

f i
s,j ≤ wt

j , ∀1 ≤ i ≤ n, 1 ≤ j ≤ m (8)

m∑
j=1

f i
s,j ≤ αi

s,∀1 ≤ i ≤ n, 1 ≤ s ≤ Ni (9)

m∑
j=1

Ni∑
s=1

f i
s,j = W, ∀1 ≤ i ≤ n (10)

m∑
j=1

wt
j = W (11)

In the above linear programming, g in (7) is equivalent to
the total EMD fromEt to the n input point-sets, and (8)-(11)
are constraints for the flows based on Definition 1. Note that
||etj − pis|| in (7) is a constant since the positions of both
etj and pis are fixed. Figure 1b gives an illustration for the
LP-model. From the above LP formulation, we immediately
have the following theorem.

Theorem 2. Finding the optimal weight distribution on Et

in the weight updating step is equivalent to solving the LP-
model (7)-(11).

The static step repeatedly conduct the location updat-
ing and weight updating until the solution becomes stable
(note that the objective value decreases in both location and
weight updatings).

4.5 Summary of the Algorithm
From Sections 4.3 and 4.4, we know that the objective value
of (2) keeps improving in both dynamic and static steps.
Thus we have the following theorem.

Theorem 3. Algorithm 1 for determining the median point-
set converges on its objective value defined by (2).

5 Further Improvements
In this section, we introduce several improvements for the
above algorithm, which could significantly reduce the run-
ning time and improve the performance of our approach.

5.1 Improving the LP-Model Using Geometry
In the LP-model (7)-(11), we have a total of (m

∑n
i=1Ni +

m) variables (all f is,j and wt
j). Although efficient algorithms

1784

et
j

pi
1 pi

2

pi
3

et
a

et
b

et
c

et
b

et
c

et
a

P1 P2 Pn

Final prototype

(a) (b) (c) (d)

Figure 2: (a) is an example for the idea in Section 5.1: the matching between etj and pi3 is deleted since their distance is larger
than some threshold; (b) and (c) illustrate the greedy jump procedure; (d) shows the divide-merge approach.

exist for solving LP (e.g., simplex algorithm), it could still
be slow if the dataset becomes very large.

To reduce the number of variables, we observe that the
median point-set problem lies in Euclidean space. Thus it
is natural to consider using the geometric information of
the space to improve the efficiency of the LP-model. In for-
mula (7), each variable f is,j has a coefficient ||etj−pis||. From
the definition of EMD, we know that if the distance between
etj and pis is very large, it is unlikely that there will be a flow
f is,j from pis to etj , and the flow will be small even if there ex-
ists one. This means that in implementation, we can choose
a threshold and ignore the the variable f is,j (i.e., f is,j = 0)
if ||etj − pis|| is larger than the threshold. Figure 2a shows
an example. For a properly chosen threshold, this can sig-
nificantly reduce the number of variables, and improve the
efficiency of the algorithm.

5.2 Avoiding Local Optimum Trap: Greedy Jump
From Theorem 3, we know that the objective value will
eventually converge. A possible problem is that it may con-
verge to some local optimum. To have a better understand-
ing, consider the example in Figure 2b. In this example, the
black points denote the current estimation Et, and the point
with the same color denote one point-set Pi. All input points
form three clusters. It is easy to see that an optimal solution
should have one estimation point in each cluster. But in the
example, eta and etb are trapped into the same cluster and etc
is at the median point of the other two clusters. In such a sce-
nario, a good strategy is to let eta jump to a new position near
etc, and re-run the algorithm such that eta and etc can move to
two different clusters (see Figure 2c).
Greedy jump: To avoid the local optimum trap, we first
check whether there exist any pair of points from Et which
are very close. If there exist a close pair eta and etb, we find
the point from Et which has the largest contribution to the
objective function (2), say etc, i.e.,

c = arg max
1≤j≤k

1

W

n∑
i=1

Ni∑
s=1

f i
s,j ||etj − pis||. (12)

Then we shift the weight wt
a from eta to etb, i.e., the weight

of eta becomes 0, and the weight of etb becomes wt
a + wt

b.
Finally, we move the point eta to etc, i.e., eta become a new
point coincident with etc, and re-run the static step on the
new estimation Et. See Figure 2b and 2c for an illustration.

5.3 A Divide-Merge Approach for Speedup
To further improve our algorithm for large datasets, we
consider the case that there are a large number of point-sets
in the input. In this case, the algorithm could be slow if
each point-set has a large number of points. For example,
if there are 1000 point-sets with each containing 30 points
and m is 20, the total number of variables in the LP-model
will be more than 20× 30× 1000 = 6× 105. Even though
we may reduce this number by using the idea presented in
Section 5.1, it could still be quite challenging in practice.

Main idea: When the number of point-sets is large, our idea
is to first divide the large dataset into a number of small
groups, then compute the prototype for each small group,
and finally compute the prototype for the prototypes from
these small groups. This strategy can be easily extended to
multi-levels. In each level, we divide the dataset into mul-
tiple small groups, solve them separately, and return the re-
sulting prototypes to upper level; the bottom level is the orig-
inal dataset, and the top level is the final output prototype.
Figure 2d gives the hierarchical structure of this approach.

6 Experiments
We test our prototype reconstruction algorithm (from Sec-
tion 4) on two datasets: a random dataset and a benchmark
dataset, handwriting Chinese characters (KAIST Hanja DB2
database). We consider two quality measurements: (1) the
difference between the output prototype and the ground truth
(i.e., reconstruction error), and (2) the accuracy for query
test (i.e., recognition error).

For comparisons, we use the graph-based approaches in
(Demirci, Shokoufandeh, and Dickinson 2009; Trinh and
Kimia 2010; Ferrer et al. 2011). Note that for Chinese char-
acters, we only use median graph method in (Ferrer et al.
2011). This is because the methods in (Demirci, Shokoufan-
deh, and Dickinson 2009; Trinh and Kimia 2010) require
that each object be a connected region without any hole, and
obviously this is not the case for Chinese characters.
Random data: We generate 6× 10 random datasets with 6
different noise levels. For each noise level t%, we randomly
generate 10 weighted point-set Q1

t , · · · , Q10
t with the size

varying from 30 to 60 in 2D, and 10 corresponding datasets
with each containing 100 weighted point-sets as follows: for
each point q ∈ Qj

t associating a weight wq , 1 ≤ j ≤ 10, we
replace it by multiple weighted points {q1, · · · , qs} around

1785

(a) (b) (c) (d) (e) (f) (g)

Figure 3: (a) shows one case of the ground truth and the selected feature points; (b)-(g) depict the alignments of the ground
truth and the reconstructed prototypes (represented by feature points) under 6 noise levels respectively.

0.05 0.1 0.15 0.2 0.25 0.34

6

8

10

12

14x 104

Noise level

Av
er

ag
e

EM
D

 Input data
Abstraction
Shock graph
Median graph
Without greedy jump
Greedy jump

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

0.4

0.5

Noise level

R
ec

og
ni

tio
n

er
ro

r r
at

e

Ground truth
Our method
Abstraction
Shock graph
Median graph

0.05 0.1 0.15 0.2 0.25 0.30

0.5

1

1.5

2x 104

Noise level

Av
er

ag
e

EM
D

Input data
Median graph
Without greedy jump
Greedy jump

0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

Noise level

R
ec

og
ni

tio
n

er
ro

r r
at

e

Ground truth
Our method
Median graph

(a) (b) (c) (d)

Figure 4: (a) and (b) depict the prototype construction errors and recognition errors for random data; (c) and (d) show the
prototype construction errors and recognition errors for Chinese characters.

it (s < 20) with total weight equal to wq , where the posi-
tion of each qi is randomly selected following a Gaussian
distribution with variance t% of the spread diameter of Qj

t ;
then

⋃
q∈Qj

t
{q1, · · · , qs} forms a weighted point-set; repeat

this procedure 100 times to generate 100 point-sets. We set
the noise level t% to be {5%, 10%, 15%, 20%, 25%, 30%},
and for each noise level, use the initial point-sets Qj

t , 1 ≤
j ≤ 10, as the ground truth of the prototype. We measure
the performance by the EMD between our output prototype
and Qj

t for each dataset. Figure 4a shows the average EMD
for j = 1, · · · , 10 under different noise levels. Further, for
each noise level, we randomly generate another dataset con-
taining 10× 100 point-sets via the same generation method.
Then we use the obtained prototypes to classify these 1000
point-sets (based on their EMD to prototypes). Figure 4b
shows the recognition errors (i.e., the number of wrong clas-
sifications over the total number of point-sets).
Chinese characters: We test our method on 50 charac-
ters. For each character, we build 6 datasets with dif-
ferent noise percentages {5%, 10%, 15%, 20%, 25%, 30%},
and each dataset contains 100 images of the character trans-
formed by different affine transformations. Since each image
contains thousands of pixels and it is too expensive to han-
dle them directly, in the data representation step, we gener-
ate a set of weighted feature points to represent each image.
More specifically, for an N × N gray level image, we con-
sider the N2 pixels as N2 weighted points (with weights
equal to their gray levels), then perform a k-means cluster-
ing (using Lloyd’s algorithm) on them, and finally output
the k mean points as the feature points, with each associ-
ated with a weight equal to the total weight of the corre-
sponding cluster (see Figure 3a for an example). We set the
value of k between 20 and 40. To measure the performance,
we compute the EMD between the output prototype and the

original character (ground truth). Figure 4c shows the re-
sults under different noise levels. Similar to random data,
Figure 4d shows the recognition errors under different noise
levels. In Figure 3, we give an example for the alignment of
the computed prototypes (represented by feature points) and
the ground truth under different noise levels.
Analysis: Comparing to the average EMD between the in-
put datasets and the ground truth, our method can reduce
the EMD obviously under each noise level in Figure 4a & c.
As a comparison, we also run the graph-based approaches
in (Demirci, Shokoufandeh, and Dickinson 2009; Trinh and
Kimia 2010; Ferrer et al. 2011) on the same datasets. Results
suggest that our method significantly outperforms the graph-
based methods under all noise levels, and the advantage (for
both of prototype construction error and recognition error)
become even more obvious when the noise level increases,
which indicates that our method is robust to noise. We at-
tribute the improved performance to the following two facts:
(1) Our method is purely geometric and therefore does not
need to map the objects between Euclidean space and graph
domain; (2) Our method adopts affine transformation to cal-
culate EMD. These together help to improve both efficiency
and robustness of our approach.

7 Conclusions
In this paper, we present a purely geometric approach for
the prototype learning problem. Different from the exist-
ing graph-based methods, our approach does not need to
map the object between Euclidean space and graph domain,
and consequently, avoids the problem of information los-
ing in existing methods. Experiments on random data and
the benchmark data (handwriting Chinese characters) sug-
gest that our approach significantly outperforms the existing
graph-based methods, and is more robust to noise.

1786

References
Besl, P. J., and McKay, N. D. 1992. A method for registra-
tion of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell.
14(2):239–256.
Cabello, S.; Giannopoulos, P.; Knauer, C.; and Rote, G.
2008. Matching point sets with respect to the earth mover’s
distance. Comput. Geom. 39(2):118–133.
Cohen, S. D., and Guibas, L. J. 1999. The earth mover’s
distance under transformation sets. In ICCV, 1076–1083.
Demirci, M. F.; Shokoufandeh, A.; and Dickinson, S. J.
2009. Skeletal shape abstraction from examples. IEEE
Trans. Pattern Anal. Mach. Intell. 31(5):944–952.
Ding, H., and Xu, J. 2013. Fptas for minimizing earth
mover’s distance under rigid transformations. In Bodlaen-
der, H. L., and Italiano, G. F., eds., ESA, volume 8125 of
Lecture Notes in Computer Science, 397–408. Springer.
Ding, H.; Berezney, R.; and Xu, J. 2013. k-prototype learn-
ing for 3d rigid structures. In Burges, C. J. C.; Bottou, L.;
Ghahramani, Z.; and Weinberger, K. Q., eds., NIPS, 2589–
2597.
Ding, H.; Stojkovic, B.; Berezney, R.; and Xu, J. 2013.
Gauging association patterns of chromosome territories via
chromatic median. In CVPR, 1296–1303. IEEE.
Ferrer, M.; Karatzas, D.; Valveny, E.; Bardajı́, I.; and Bunke,
H. 2011. A generic framework for median graph computa-
tion based on a recursive embedding approach. Computer
Vision and Image Understanding 115(7):919–928.
Giannopoulos, P., and Veltkamp, R. C. 2002. A pseudo-
metric for weighted point sets. In Heyden, A.; Sparr, G.;
Nielsen, M.; and Johansen, P., eds., ECCV (3), volume 2352
of Lecture Notes in Computer Science, 715–730. Springer.
Grauman, K., and Darrell, T. 2004. Fast contour match-
ing using approximate earth mover’s distance. In CVPR (1),
220–227.
Jiang, X.; Münger, A.; and Bunke, H. 2001. On me-
dian graphs: Properties, algorithms, and applications. IEEE
Trans. Pattern Anal. Mach. Intell. 23(10):1144–1151.
Klein, O., and Veltkamp, R. C. 2005. Approximation al-
gorithms for computing the earth mover’s distance under
transformations. In Deng, X., and Du, D.-Z., eds., ISAAC,
volume 3827 of Lecture Notes in Computer Science, 1019–
1028. Springer.
Macrini, D.; Siddiqi, K.; and Dickinson, S. J. 2008. From
skeletons to bone graphs: Medial abstraction for object
recognition. In CVPR. IEEE Computer Society.
McLachlan, G., and Basford, K. 1988. Mixture Models:
Inference and Applications to Clustering. Marcel Dekker,
New York.
Pele, O., and Werman, M. 2009. Fast and robust earth
mover’s distances. In ICCV, 460–467. IEEE.
Ricci, E.; Zen, G.; Sebe, N.; and Messelodi, S. 2013. A pro-
totype learning framework using emd: Application to com-
plex scenes analysis. IEEE Trans. Pattern Anal. Mach. In-
tell. 35(3):513–526.

Rubner, Y.; Tomasi, C.; and Guibas, L. J. 2000. The earth
mover’s distance as a metric for image retrieval. Interna-
tional Journal of Computer Vision 40(2):99–121.
Sebastian, T. B.; Klein, P. N.; and Kimia, B. B. 2001. Recog-
nition of shapes by editing shock graphs. In ICCV, 755–762.
Trinh, N. H., and Kimia, B. B. 2010. Learning prototypical
shapes for object categories. In Proceedings of CVPR Work-
shop on Structured Models in Computer Vision (SMiCV’10).
IEEE.
Weiszfeld, E. 1937. On the point for which the sum of
the distances to n given points is minimum. Tohoku. Math.
Journal. 1(1):355–386.
Zen, G., and Ricci, E. 2011. Earth mover’s prototypes: A
convex learning approach for discovering activity patterns in
dynamic scenes. In CVPR, 3225–3232. IEEE.

1787

