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Abstract

Supervised metric learning plays a substantial role in
statistical classification. Conventional metric learning
algorithms have limited utility when the training data
and testing data are drawn from related but different
domains (i.e., source domain and target domain). Al-
though this issue has got some progress in feature-based
transfer learning, most of the work in this area suffers
from non-trivial optimization and pays little attention
to preserving the discriminating information. In this pa-
per, we propose a novel metric learning algorithm to
transfer knowledge from the source domain to the tar-
get domain in an information-theoretic setting, where
a shared Mahalanobis distance across two domains is
learnt by combining three goals together: 1) reducing
the distribution difference between different domains;
2) preserving the geometry of target domain data; 3)
aligning the geometry of source domain data with its
label information. Based on this combination, the learnt
Mahalanobis distance effectively transfers the discrimi-
nating power and propagates standard classifiers across
these two domains. More importantly, our proposed
method has closed-form solution and can be efficiently
optimized. Experiments in two real-world applications
demonstrate the effectiveness of our proposed method.

Introduction

Distance metric learning is of fundamental importance in
machine learning. Previous research has demonstrated that
appropriate distance metrics learnt from labeled training
data can greatly improve classification accuracy (Jin, Wang,
and Zhou 2009). Depending on whether the geometry in-
formation is used, state-of-the-art supervised metric learn-
ing methods can be classified into two categories, i.e., glob-
ality and locality. Globality metric learning methods aim
at keeping all the data points in the same class close to-
gether for compactness while ensuring those from differ-
ent classes far apart for separability (Davis et al. 2007;
Globerson and Roweis 2006; Wang and Jin 2009; Xing et
al. 2002). Locality metric learning methods incorporate the
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geometry of data with the label information to accommo-
date multimodal data distributions and to further improve
classification performance (Weinberger and Saul 2009; Yang
et al. 2006). Existing metric learning methods always per-
form well when there are sufficient labeled training samples.
However, in some real-world applications, obtaining the la-
bel information of data points drawn from the task-specific
domain (i.e., target domain) is extremely expensive or even
impossible. One may turn to find labeled data drawn from
a related but different domain (i.e., source domain) and ap-
ply it as prior knowledge. Apparently, distance metrics learnt
only in source domain cannot be directly reused in target do-
main, although these two domains are closely related. It is
because that the significant distribution difference between
the data drawn from source and target domains is not explic-
itly taken into considerations, and this difference will make
classifiers trained in source domain invalid in target domain.
Therefore, it is important and necessary to reduce the distri-
bution difference between labeled source domain data and
unlabeled target domain data in distance metric learning.

Recently, some feature extraction approaches in transfer
learning (Caruana 1997; Pan and Yang 2010) have been
proposed to address this problem by implicitly exploring a
metric (similarity) as a bridge for information transfer from
the source domain to the target domain (Geng, Tao, and
Xu 2011; Long et al. 2013; Pan, Kowok, and Yang 2008;
Pan et al. 2011; Si, Tao, and Geng 2010). These feature ex-
traction methods learn a shared feature representation across
domains by 1) reducing the distribution difference, 2) pre-
serving the important properties (e.g., variance or geometry)
of data, especially the target domain data. However, most
work in this area does not focus on incorporating the geom-
etry with the label information of source domain data to im-
prove the classification performance in target domain. More-
over, these methods formulate a semidefinite programming
(SDP) (Boyd and Vandenberghe 2004) or a non-convex op-
timization problem, resulting in expensive computation.

In this paper, we address the transfer learning problem
from the metric learning view and propose a novel algorithm
named Cross-Domain Metric Learning (CDML). Specifi-
cally, CDML first minimizes the distance between different
distributions such that the marginal distributions of target
domain and source domain data are close under the learnt
distance metric. Second, two Gaussian distributions are con-



structed, one based on the Mahalanobis distance to be learnt
and the other based on the geometry of target domain data.
By minimizing the relative entropy between these two dis-
tributions, the geometry of target domain data is preserved
in the learnt distance metric. Third, another two Gaussian
distributions are constructed, one based on the Mahalanobis
distance to be learnt as well and the other based on the labels
and the geometry of source domain data. By minimizing the
relative entropy between these two distributions, the learnt
distance metric pulls the source domain data in the same
class close together, while pushing differently labeled data
far apart. Finally, the three terms above are combined into
the unified loss function of CDML. This combination ef-
fectively transfers the discriminating power gained from the
labeled source domain data to the unlabeled target domain
data. To the best of our knowledge, our method has made
the first attempt to cross-domain metric learning based on
relative entropy. We emphasize that CDML has the closed-
form solution, leading to efficient optimization.

In summary, the contribution of this paper is two-fold.
From the perspective of metric learning, we aim at address-
ing the challenge of distribution difference. From the per-
spective of transfer learning, a novel algorithm is proposed
to transfer knowledge by finding a shared Mahalanobis dis-
tance across domains. The optimal metric can be found ef-
ficiently in closed-form. Under this optimal metric, the data
distributions are close and points from different classes can
be well separated. As a result, we can train standard clas-
sifiers in the source domain and reuse them to correctly
classify the target domain data. Experimental results in real-
world applications verify the effectiveness and efficiency of
CDML compared with state-of-the-art metric learning meth-
ods and transfer learning methods.

Related Work
Metric Learning

Significant efforts in metric learning have been spent on
learning a Mahalanobis distance from labeled training data
for classification. Existing Mahalanobis distance learning
methods can be classified into two categories, i.e., glob-
ality and locality. A natural intention in globality learn-
ing is to formulates an SDP for keeping the same labeled
points similar (i.e., the distances between them should be
small) and differently labeled points dissimilar (i.e., the
distances should be larger) (Globerson and Roweis 2006;
Xing et al. 2002). Other notable work in globality learn-
ing is based on information theory (Davis et al. 2007;
Wang and Jin 2009). In particular, Information-Theoretic
Metric Learning (ITML) (Davis et al. 2007) formulates
the relative entropy as a Bregman optimization problem
subject to linear constraints. Information Geometry Met-
ric Learning (IGML) (Wang and Jin 2009) minimizes the
Kullback-Leibler (K-L) divergence between two Gaussian
distributions and finds the closed-form solution. Locality
metric learning methods maximally align the geometry of
data with its label information (Weinberger and Saul 2009;
Yang et al. 2006) to further improve their performance.
However, the supervised algorithms discussed above are
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limited by the underlying assumption that training data and
testing data are drawn from the same distribution.

Transfer Learning

State-of-the-art transfer learning can be organized into in-
stance reweighing (Dai et al. 2007a) and feature extrac-
tion. In the feature extraction category, recent work tries to
find a subspace shared by both domains, such that the dis-
tribution difference is explicitly reduced and the important
properties of original data are preserved (Geng, Tao, and
Xu 2011; Long et al. 2013; Pan, Kowok, and Yang 2008;
Si, Tao, and Geng 2010). In this subspace, classifiers can be
propagated between domains. Specifically, Maximum Mean
Discrepancy Embedding (MMDE) (Pan, Kowok, and Yang
2008) employs Maximum Mean Discrepancy (MMD) (Gret-
ton et al. 2006) to estimate the distance between different
distributions and learns a kernel matrix by preserving the
data variance at the same time. Joint Distribution Adaption
(JDA) (Long et al. 2013) extends MMD and constructs fea-
ture subspace by Principal Component Analysis (PCA) (Jol-
liffe 1986). Transfer Subspace Learning (TSL) (Si, Tao, and
Geng 2010) integrates the Bregman divergence with some
dimension reduction algorithms, e.g., PCA and Fisher’s lin-
ear discriminant analysis (FLDA) (Fisher 1936). However,
these methods formulate an SDP or a non-convex optimiza-
tion, which has high computational complexity and requires
iteratively updating parameters. Even worse, the non-convex
problems are prone to being trapped in local solutions. In
comparison, our metric learning method has efficient closed-
form solution and optimally transfers the discriminating
power. We would also like to mention that Transfer Compo-
nent Analysis (TCA) (Pan et al. 2011) is an efficient kernel
learning method to extend MMDE. Our work differs from
TCA significantly in the proposed optimization. In this pa-
per, an optimal Mahalanobis distance is searched by utiliz-
ing the relationship between Gaussian distributions.

Cross-Domain Metric Learning Based on
Information Theory

In this section, we present the proposed algorithm named
Cross-Domain Metric Learning (CDML) in detail.

Problem Definition

We begin with the problem definition. Table 1 lists the im-
portant notations used in this paper.

Definition 1. (The Mahalanobis Distance) Denote x;,%x; €

RY, and then the Mahalanobis distance between x; and X;
is calculated as follows:

(D

da(xi,%;) = (% — %) T A(xi — %;),

where A € R4*? is positively semi-definite.

In fact, there is a close link between Mahalanobis distance
and linear transformation. If we define a linear projection
W: WI'W = A which maps x; to Wx;, the Euclidean
distance between Wx; and Wxa, i.e., [Wx; — Wx,||2 =
(Xl — Xg)TWTW(Xl — Xg) = (Xl - XQ)TA(Xl — Xg), is
actually the Mahalanobis distance between x; and xs.



Table 1: List of important notations used in this paper.
Notation Description

Xore = {(x3, z/l) L (x3,y3)}  Source domain data set
Xiar = {x4,...,x¢, Target domain data set
X = {x5,..,x3, xt1 X Input data set

Linear transformation matrix
A=W'w Mahalanobis distance matrix

L The MMD matrix

Kiar = [(Wx, W) xm The linear kernel matrix for WX,
Kr The ideal kernel matrix for X,
Kore = [(Wx5, Wx3)]nxn The linear kernel matrix for WX,
Ks The ideal kernel matrix for X,

Problem 1. (Cross-Domain Metric Learning Based on In-
Jormation Theory) Let X,,, be a set of m unlabeled testing
samples drawn from a target domain: Xyq, = {x4, ..., x5 1,
where X§ € R% Let X, be a set of n labeled train-
ing samples drawn from a related source domain: X4, =
1x5,95), -, (X3,92) ), where x§ € R and y; € Y* is
the class label. We denote Pi(Xiqr) and Ps(Xspc) as the
marginal probability distributions of X4, and X, respec-
tively, P,(Xiar) # Ps(Xgre). Our task is to learn a shared
metric distance A across domains under which 1) the dis-
tribution difference between Ps(Xg,c) and Py(Xyqr) is ex-
plicitly reduced; 2) the geometry of Xiq. is preserved; 3)
the points from Xg,.. with the same label are kept similar
according to the geometry and others are kept dissimilar.

Minimizing Distribution Difference

Conventional Mahalanobis distance learning methods per-
forms well in the classification setting based on the assump-
tion that training and testing points are drawn from the same
distribution (i.e., Ps(Xsrc) = Pi(Xtar)). When such a dis-
tance metric W, is learnt from Xj, ., it can improve clas-
sification accuracy on X, using standard classifiers such
as KNN and SVM. However, Ps(Xs,.) is usually different
from P;(X¢qr) since X and Xy, are drawn from dif-
ferent but related domains. In this case, Ps(W .X;,.) and
P.(W Xy, are still significantly different and standard
classification models trained on W .X,.. cannot be directly
applied on W X,,,.. Therefore, it is necessary to find a met-
ric W which can reduce the distance between different dis-
tributions. This issue is of particular importance and gains its
popularity in transfer learning. Inspired by the work (Long
et al. 2013; Pan, Kowok, and Yang 2008), we adopt the cri-
terion Maximum Mean Discrepancy (MMD) to measure the
distance between Ps(WX,..) and P,(WX¢,,). The empir-
ical estimate of MMD is as follows:

1 — 1 & s
HEZ;WXf—%;VVXHI =

tr(XLXTA), ()

where X = {zf,..,25, 2%, ...,al } € RX(+m) 1, ¢
R(+m)x(nt+m) with:
n% if X5, %5 € Xgre
L(j) = { 2y ifxi,%; € Xrar 3)
—-L otherwise.

By minimizing Equation (2), P;(WXj,.) and P;(WX;4,)
are close to each other.
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Transferring Discriminating Power Based on
Information Theory

The metric distance W learnt by only minimizing the distri-
bution difference may merge all data points together, which
is unsuitable for the classification task. To improve classifi-
cation accuracy, as stated in Problem 1, W should combine
minimizing the distribution difference with 1) preserving the
geometry of X;,,, 2) maximally aligning the geometry of
X ¢ With its label information. Based on this combination,
it is supposed that Ps(V*|WXg,..) ~ B(V{ WX ). W
optimally transfers discriminating power gained from the
source domain to the target domain, that is, the same la-
beled points are kept close together and the differently la-
beled points are pushed far apart. In this way, if a classifier is
trained on WX, and Y?, it can be reused to correctly clas-
sify WX,,,. Note that the combination can perform well
because X, and X, share some latent variables.

Geometry Preservation of X,,, Preserving the geome-
try of unlabeled X4, is particular useful for transfer learn-
ing (Long et al. 2012; Wang and Mahadevan 2011; Pan et al.
2011). We construct a linear kernel K;,, for WX, :

Kior = (WXtaT‘)T(WXtaT') - XZ;.TAXHM'- (4)

To introduce the information theory into the space of pos-
itive definite matrices, K;,, is related as the covariance
matrix of a multivariate Gaussian distribution with zero
mean (Wang and Jin 2009):

1

Tye—1
W&W(_Z Kiarz/2),

Pr(z|Kiar) = ®)
where z € R"™. In the ideal case, an ideal kernel matrix K
is expected to give a useful similarity such that the geometry
of X4, is preserved. K is related as the covariance matrix

of another multivariate Gaussian distribution:

1

Tpe—1
W&T})(—Z K7 'z/2),

Pr(z|Kr) = (6)
where z € R™. The distance between K,;,,- and K7, de-
noted as d(K;q,|| Kr), can be derived by the K-L divergence

between the two distributions in Equation (5) and (6):

d(Kiar||[Kr) = KL(Pr(z|Kior) || Pr(z[Kr))

K ar
/Pr z|Kiar)log P1("(| ‘IéT)))dz.

Theorem 1. The distance between K., and K1 in Equa-
tion (7) is equivalent to:

@)

1 _
d(Kear | Kr) = 5 (tr (K7 Kuar) — log|Krar| +log| K| = m).

®)

To capture the information of K, the optimal A is

searched by minimizing the distance d(K;,||Kr) in Equa-

tion (8). Therefore, the geometry of unlabeled X4, can be
preserved in the learnt distance A:

A =arg ?:—12) d(Kiar || K1)

©)

=arg Kl;% tr(K}IXELTAXmT) - log|X3;WAXmT\.



The remaining issue is to define the ideal kernel K for
geometry preservation.

1. Constructing a k-nearest neighbor graph: let G* denote
a directed graph containing a set of nodes V* numbered 1 to
m and a set of edges E?. Two nodes 7 and j are connected
by an edge (i.e., (i,7) € E') if 2! is one of the k nearest
neighbor of .

2. Choosing weights: let M¢ refer to the adjacency matrix
of G¢, and it is given by:

b o Jexp(— 24y if (i,4) € B
MG, ) = {0 otherwise, (10)
where d;; = [|x} — x!||* and o is the width.

3. Defining a kernel function K7 on G*: specific ker-
nel functions (Kondor and Lafferty 2002; Smola and Kon-
dor 2003) on G! induced by the weights can give a useful
and more global sense of similarity between instances. Let
D’ be an m x m diagonal matrix with D}, = 7 M},
The Laplacian of G* is L* = D? — M, and the Normal-
ized Laplacian is L' = (D!)"2zL(D')~2. The eigenval-
ues and eigenvectors of L’ are denoted as \! and ¢, i.e.,
Lt = 37, \(¢t)(¢4)T . In this paper, we investigate the dif-
fusion kernel (Kondor and Lafferty 2002) which is proven to
be a generalization of Gaussian kernel to graphs:

Kr =3 eap(~03/2X)(61)(91)", (1)
i=1
where K7 > 0 since all the eigenvalues are positive (i.e.,

exp(—a3/2)!) > 0).

Label Information Utilization of X,.. A linear
kernel Kg,.. is constructed for WX,,.. Kg.. =
(WX,.o)T(WX,,.) = XTI _AX,,. Label informa-

tion is critical for classification tasks and encourages the
similarities between two points if and only if they belong to
the same class. Geometry preservation is an important com-
ponent for generalization ability (Weinberger and Saul 2009;
Yang et al. 2006). By incorporating these two sources of
information, an ideal kernel Kg is defined for X,.. based
on two idealizations: 1) similarities between points with
different labels will be penalized; 2) similarities between
points in the same class will be encouraged according to the
neighborhood structure.

1. Constructing a within class graph: let G® denote a di-
rected graph which consists of a set of nodes V* numbered 1
to n and a set of edges E°. Two nodes ¢ and j are connected
by an edge (i.e., (4,7) € E®) if yj = y;.

2. Choosing the adjacency matrix M® of G*: M*(i, j) =
exp(—24) if (i, j) € E*, otherwise M*(i, ) = 0.

3. Defining a diffusion kernel function Kg on G*: Kg =
S eap(—03/2X8)(67)(6%)7 . where (X, ¢7) are cigen-
values and eigenvectors of the Normalized Laplacian.

4. Minimizing d(K..||Kgs): the optimal A is searched
by minimizing the distance d(Ks,.||Kg) derived from
Equation (8). Therefore, the learnt distance A maximally
aligns the geometry of X, with its label information:

A =arg gli% tr(KEIXSTrCAXsm) — log|XZTCAXsrc\- (12)
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The Cost Function

CDML aims at searching the optimal distance metric A by
minimizing Equation (2), Equation (9) and Equation (12) si-
multaneously. This combination effectively transfers the dis-
criminating power gained from the labeled source domain
data to the unlabeled target domain data. The overall cost
function is as follows:

A = arg mintr(X(K + pL)X"A) — log|X{ar AX tar |
A=0 (13)
— log| XL AX s
K;' o
0 K;')/)°
Proposition 1. The (n + m) x (n + m) matrix L in
Equation(2) and Equation (13) is positive semi-definite.

where p > 0 is a tradeoffand K > 0 = (

Proof. For any column vector z € R, we have

ALz = ( a b)(P R)(E?)

R" Q
where a = (21, ...,2n), b = (Zn41, s Znam), P € R®X™
with [P];; = 1/n% Q € R™ ™ with [Q];; = 1/m? and
R € R with [R]U = —l/nm.

z" Lz in Equation (14) is equal to:

aPa” + bQb’ + 2aRb”

(14)

n n m m n m
=S /E:QQJFE:}:@@_QE:E:E@
nn m m n o m
i=1 j=1 i=1 j=1 i=1 j=1
z21 Zn Zn+1 Zn+m\2
=+ Dm0
n n m m

Therefore, L > 0. The proposition follows. O

Based on Proposition 1, we can obtain the closed-form
solution of CDML in the following proposition.

Proposition 2. The optimal solution to Equation (13) is:

A =2(X(K + pL)X")™! (15)
Proof. The derivative of Equation (13) w.r.t. A is:

X(K + pL)X" —2A7 1, (16)
Since K > 0 and L = 0, then (K 4 L) > 0. Proposition 2
now follows by setting the derivative to 0. O

Low Dimensional Projections

The Mahalanobis distance metric A learnt in CDML is of
full rank. If A has the rank » < d, we can represent it in
the form: A = WIW,, where W, € R"*? projects the
original data to an r-dimensional space for dimension re-
duction. To compute W, a straightforward solution is to
optimize Equation (13) with a constraint rank(A) = r.
However, rank constraints on matrices are not convex (Boyd
and Vandenberghe 2004). In this paper, the projection ma-
trix W,. is computed by a substitute approach (Globerson
and Roweis 2006) as follows: 1) eigenvalues and eigenvec-
tors of full-rank A in Equation (15) are calculated: A
Zle Awul, where A\p > Ay > 0> A3 2) W, =
diag(v/A1, ..., VA )[uf; .. ;ul]. The eigen spectrum of
A wusually rapidly decays and many eigenvalues are very
small, suggesting this solution is close to the optimal one
returned by minimizing the rank constrained optimization.



Experiments

In this section, we evaluate the proposed method in two met-
ric learning related applications: 1) face recognition and 2)
text classification.

Data Preparation

Face Data Sets FERET (Phillips et al. 2000) and
YALE (Belhumeur, Hespanha, and Kriegman 1997) are two
public face data sets. FERET data set contains 13,539 face
images from 1,565 individuals with different sizes, poses, il-
luminations and facial expressions. YALE data set has 165
images from 15 individuals with different expressions or
configurations. Some example face images are shown in Fig-
ure 1. As in the previous work (Si, Tao, and Geng 2010), we
construct two cross-domain data sets: 1) Y vs F: the source
domain set is YALE, and the target domain set consists of
100 individuals randomly selected from FERET. 2) F vs Y:
the source set contains 100 individuals randomly selected
from FERET, and the target set is YALE.

=

(@)

(b)

L TEEw

Figure 1: Image examples in (a) FERET data set and (b)
YALE data set.

Text Data Sets 20-Newsgroups and Reuters-21578 are
two benchmark text data sets widely used for evaluating
the transfer learning algorithms (Dai et al. 2007b; Li, Jin,
and Long 2012; Pan et al. 2011). 20-Newsgroups consists of
nearly 20,000 documents partitioned into 20 different sub-
categories. The corpus has four top categories and each top
category has four subcategories as shown in Table 2. Fol-
lowing the work (Dai et al. 2007b), we construct six cross-
domain data sets for binary text classification: comp vs rec,
comp vs sci, comp vs talk, rec vs sci, rec vs talk and sci vs
talk. Specifically, for each data set (e.g., comp vs rec), one
top category (i.e., comp) is selected as the positive class and
the other category (i.e., rec) is the negative class. Then two
subcategories under the positive and the negative classes re-
spectively are selected to form the source domain, the other
two subcategories are used to form the target domain.

Table 2: Top categories and their subcategories.

[ Top Category | Subcategory [ Examples |
comp.graphics, comp.sys.mac.hardware,

comp comp.os.ms-windows.misc, 3870
comp.sys.ibm.pc.hardware
rec.autos, rec.motorcycles,

rec rec.sport.baseball, rec.sport.hokey 3968

sci sci.crypt, sci.electronics, 3945

sci.med, sci.space
talk talk.pohl{gs.guqs, Ialk.poll{lc;.mldjcasl, 3250
talk.politics.misc, talk.religion.misc

2103

Reuters-21578 has three biggest top categories: orgs, peo-
ple and places. The preprocessed version of Reuters-21578
on the web site (http://www.cse.ust.hk/TL/index.html) is
used which contains three cross-domain data sets: orgs vs
people, orgs vs place and people vs place.

Baseline Methods

We systematically compare CDML with three state-of-
the-art metric learning methods, i.e., Information-Theoretic
Metric Learning ITML) (Davis et al. 2007); Information
Geometry Metric Learning IGML) (Wang and Jin 2009);
Large Margin Nearest Neighbor (LMNN) (Weinberger
and Saul 2009); and three feature-based transfer learning
methods, i.e., Joint Distribution Adaption (JDA) (Long et
al. 2013); Semisupervised Transfer Component Analysis
(SSTCA) (Pan et al. 2011); Transferred Fisher’s Linear Dis-
criminant Analysis (TFLDA) (Si, Tao, and Geng 2010);

For the six comparison methods, the parameters spaces
are empirically searched using their own optimal param-
eter settings and the best results are reported. CDML in-
volves four parameters: o4, o, p and k. Specifically, we set
o4 by searching the values among {0.1,1,10}, o among
{0.1,1,10} and g among {0.01,0.1,1,10}. The neighbor-
hood size k& for CDML is 3. In general, CDML is found to
be robust to these parameters. The experiments are carried
out on a single machine with Intel Core 2 Quad @ 2.40Ghz
and 10 GB of RAM running 64-bit Windows 7.

Experimental Results

Results of Face Recognition In this section, we evaluate
the ability of CDML to separate different classes in target
domain. For Y vs F and F vs Y, one random point for each
target domain class is selected as the reference data set (Si,
Tao, and Geng 2010). The dimensionality of each image is
reduced to 100 by PCA. All the methods are trained as a met-
ric learning procedure without the labels of target domain
data. At the testing stage, the distance between a target point
and every reference point is calculated using the learnt dis-
tance metric, then the label of the testing point is predicted as
that of the nearest reference point. Since FERET and YALE
has different class numbers, JDA is not suitable for this task
which requires that source and target domain should share
the same class number. TFLDA can find at most ¢ — 1 mean-
ingful dimensions, where c is the class number of source
domain. Figure 2 shows the classification error rates across
different dimensions. Some observations can be concluded.

The first general trend is that conventional metric learn-
ing algorithms (i.e., ITML, IGML and LMNN) show their
limits on these cross-domain data sets. The metrics learnt
only from the source domain data fail to separate differ-
ent classes in target domain. The second general trend is
that SSTCA shows good classification performance. SSTCA
tries to learn a kernel matrix across domains such that the
label dependence is maximized and the manifold structure
is preserved. However, CDML consistently provides much
higher accuracy than SSTCA. A possible reason is that
CDML focuses on keeping the data points in the same class
close together while ensuring those from different classes far
apart. The third general trend is that although TFLDA works
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Figure 2: Comparison of ITML, IGML, LMNN, SSTCA, TFLDA and CDML on the face data sets. (a) Classification error rates
on Y-F data set. (b) Classification error rates on F-Y data set. (¢) Running time comparison.

Table 3: 1-NN classification errors (in percent) of the applied methods.

Method | # Dim Data Set : : :
orgs vs people | orgs vs place | people vs place | comp vs rec | comp vs sci | comp vs talk | rec vs sci | rec vs talk | scivs talk

10 47.43 5321 45.40 4291 58.81 59.32 54.85 43.34 53.04
ITML 20 58.61 60.02 52.18 43.31 60.37 60.16 52.02 45.87 51.81
30 52.24 55.99 51.81 42.11 61.80 55.57 53.21 46.92 48.72
10 52.48 51.39 48.10 47.93 50.32 49.59 50.35 47.94 47.49
IGML 20 52.57 52.92 47.35 46.64 50.04 49.76 50.56 49.13 46.99
30 52.81 52.73 50.70 46.41 50.29 50.65 52.12 47.72 47.62
10 51.32 52.09 49.76 40.83 54.52 53.29 5177 45.39 45.73
LMNN 20 51.71 52.87 48.55 41.86 54.06 53.55 51.72 45.73 45.34
30 5045 51.64 48.23 41.35 55.17 54.39 51.84 45.73 46.18
10 53.39 56.29 41.04 44.62 57.55 48.09 60.98 56.94 52.52
JDA 20 49.59 53.79 42.80 48.77 57.81 41.95 59.12 56.23 38.29
30 53.73 49.95 42.62 47.44 56.81 46.25 60.01 56.11 41.28
10 45.45 46.50 45.22 49.56 48.37 53.26 50.53 55.60 45.10
SSTCA 20 44.68 46.31 44.29 50.09 47.09 51.91 52.32 49.42 46.18
30 44.34 47.94 45.96 50.67 46.94 47.66 53.34 47.52 4591
10 44.85 49.27 46.03 47.51 45.83 42.15 50.01 51.19 46.61
CDML 20 44.62 45.64 44.98 47.18 4591 43.36 51.20 50.07 47.18
30 45.51 44.87 45.10 47.41 46.19 45.35 49.55 48.89 45.06

quite well, it can just find at most ¢ — 1 meaningful dimen-
sions. By contrast, CDML almost achieves the optimal error
rate across all the dimensions which illustrates its effective
performance in separating different target classes.

To test the efficiency of CDML, we report the average
training time in Figure 2(c). ITML, LMNN and TFLDA
are computationally expensive since they formulate an alter-
native optimization problem. Even worse, TFLDA is non-
convex and may be trapped in local solutions. Although
IGML is fast due to the closed-form solution, it shows high
classification error on these cross-domain data sets. We find
CDML and SSTCA run quite efficiently, while CDML out-
performs SSTCA in terms of classification accuracy.

Results of Text Classification In this section, we evalu-
ate the ability of CDML for text classification and a sim-
ple measurement is used: misclassification rate by 1-nearest
neighbor classifier (1-NN) without parameters tuning. The
unlabeled target instances are compared to the points in the
labeled source domain using the learnt distance metric. We
compare our proposed CDML with ITML, IGML, LMNN,
JDA, SSTCA for this binary task. The classification results
across different dimensions are shown in Table 3. Some ad-
vantages can be concluded from the results. First, the re-
sults of non-transfer metric learning methods are better than
that of the transfer algorithms on comp vs rec and rec vs
talk. A possible explanation is that on these two data sets,
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the distributions of source and target data are not signifi-
cantly varied. But we would like to mention that the transfer
methods always perform well on other cross-domain data
sets. Second, JDA provides better results on people vs place
and sci vs talk. The possible explanation is two-fold. 1) Be-
sides reducing the marginal distribution difference, the con-
ditional distribution difference is also exploited in JDA. 2)
The common assumption in transferring learning that re-
ducing the difference of marginal distributions will draw
close the conditional distributions is not always valid. Third,
CDML achieves the minimal error rate on most of the data
sets, which illustrates the reliable and effective performance
of CDML for domain adaption.

Conclusion

In this paper, we have proposed a novel metric learning algo-
rithm to address transfer learning problem based on informa-
tion theory. It learns a shared Mahalanobis distance across
domains to transfer the discriminating power gained from
the source domain to the target domain. Based on the learnt
distance, a standard classification model trained only in the
source domain can correctly classify the target domain data.
Experiments demonstrate the effectiveness of our proposed
method. In future work, it is important and promising to ex-
plore an online algorithm for cross-domain metric learning
and the nonlinear version needs to be investigated.
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