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Abstract

This paper presents an extension of the cascading Indian
buffet process (CIBP) intended to learning arbitrary di-
rected acyclic graph structures as opposed to the CIBP,
which is limited to purely layered structures. The ex-
tended cascading Indian buffet process (eCIBP) essen-
tially consists in adding an extra sampling step to the
CIBP to generate connections between non-consecutive
layers. In the context of graphical model structure learn-
ing, the proposed approach allows learning structures
having an unbounded number of hidden random vari-
ables and automatically selecting the model complex-
ity. We evaluated the extended process on multivariate
density estimation and structure identification tasks by
measuring the structure complexity and predictive per-
formance. The results suggest the extension leads to
extracting simpler graphs without scarifying predictive
precision.

1 Introduction
Probabilistic graphical models are elegant representations of
multivariate joint probability distribution which use graph
structures to describe relations among variables. However,
learning the structure of probabilistic graphical models is a
difficult task, especially when it involves discovering hidden
variables. Over the last two decades, researchers have ex-
plored a variety of approaches to this problem, from frequen-
tist (Lauritzen 1996; Whittaker 1990) to Bayesian (Fried-
man and Koller 2003), but most of them assume finite sets
of hidden variables.

Nonparametric Bayesian methods are well-known for
their great flexibility regarding the unknown dimensionality
of generative models. Instead of looking for specific mod-
els having finite dimensions, the idea is rather to define
probability measures on infinite dimensional spaces and in-
fer a finite subset of active dimensions explaining the data.
The Dirichlet process (Ferguson 1973), surely the most fa-
mous of these methods, is a prior stochastic process on ran-
dom probability measure allowing for infinitely many out-
come possibilities. It has notably been applied to clustering
tasks where the number of components is not known in ad-
vance (MacEachern and Müller 1998). Another important
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prior is the Beta process (Hjort 1990), a distribution on com-
pletely random measures that has initially been used in sur-
vival analysis and later applied to construct infinite factorial
models (Paisley and Carin 2009).

The Dirichlet and Beta processes are among the most im-
portant stochastic processes to develop other nonparametric
Bayesian approaches. In machine learning, these processes
have largely been used to produce priors on infinite binary
matrices, namely the Chinese restaurant process (CRP) (Pit-
man 1995) and the Indian buffet process (IBP) (Griffiths
and Ghahramani 2011). These processes are now often used
to construct more complex processes such as hierarchi-
cal models (Teh et al. 2006; Thibaux and Jordan 2007;
Jordan 2010).

Recently, there have been attempts to combine structure
learning in graphical models and nonparametric Bayesian
methods. Wood et al. (2006) used the IBP to define graphical
models with a single hidden infinite layer of variables used
as latent features for the observable data. A more expressive
version of this model was proposed by Chen et al. (2011)
who used a hierarchy of Beta processes to construct graph-
ical models featuring three infinite hidden layers. Adding
even more flexibility to the model, Adams et al. (2010) intro-
duced the cascading Indian buffet process (CIBP) as a prior
on infinitely deep networks, significantly enlarging the set
of possible structures. However, the probability distribution
induced by the CIBP still does not support the set of all pos-
sible directed acyclic graph structures due to its specific lay-
ered structure.

In this paper, we first describe the cascading Indian buf-
fet process in terms of Beta processes. Secondly, we use
the Beta process representation to propose an extension that
allows inferring arbitrary directed acyclic graph structures
among hidden variables. Thirdly, we demonstrate the learn-
ing capability of the vanilla and extended cascading Indian
buffet process on density estimation and structure identifica-
tion tasks, and by the same occasion, report the first quantita-
tive results for the CIBP. In particular, Section 2 introduces
the specific graphical model used for this work. The pro-
posed extension is presented in Section 3 and the inference
procedure in Section 4. Experiments comparing both meth-
ods are detailed in Section 5 and discussed in Section 6.
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2 Model Description
Let us first consider a dataset {xn}Nn=1 containing D-
dimensional samples drawn from a statistical model of in-
terest. We represent the generative model of the data as a
belief network with hidden units and assume conditional
independency among observable units given the hidden
ones. In our definition, each unit belongs to a specific layer
m ∈ {0, . . . ,M} and we use notation u(m)

k to refer to the
kth unit in layer m. In this structure, units are restricted to
having parents only in strictly deeper layers, thus all observ-
able units can be associated to layer m = 0. We denote by
K(m) the number of connected (or active) units in layer m.
Moreover, to indicate whether unit u(m)

k is a parent of unit
u
(s)
i , we define the binary variable Z(s,m)

i,k which indicates
the existence of a directed edge between the two units.

Although many conditional probability distributions
could be used to describe unit behaviours, in the following
we adopt the nonlinear Gaussian belief network model spec-
ification of Adams et al. (2010) for the purpose of compar-
ison. In that model, the conditional probability distribution
of unit u(s)i depends on a weighted sum of its parents, where
W

(s,m)
i,k represents the weight of parent unit u(m)

k . This sum
is also biased and is expressed as:

y
(s)
i = γ

(s)
i +

M∑
m=s+1

K(m)∑
k=1

Z
(s,m)
i,k W

(s,m)
i,k u

(m)
k (1)

where the parameter γ(s)i is the actual bias. Afterward, the
sum y

(s)
i is corrupted by a zero mean Gaussian noise of

precision ν(s)i and is passed through the sigmoid function
σ(x) = 2/(1 + e−x)− 1, yielding the output value of u(s)i .
Ultimately, the conditional probability of u(s)i is:

p(u
(s)
i |y

(s)
i , ν

(s)
i ) =

exp

{
−ν

(s)
i

2

[
σ−1(u

(s)
i )− y(s)i

]2}
σ′(σ−1(u

(s)
i ))

√
2π/ν

(s)
i

(2)
where σ′(x) = d

dxσ(x) and σ−1(x) is the inverse sigmoid
function. This distribution is particularly interesting since by
only varying ν(s)i , it can model various modes of operation
such as linear or nonlinear as continuous behaviours, and
deterministic or binary as discrete behaviours (Frey 1997).

3 Prior on Network Structures
According to the Bayesian learning framework, identify-
ing the parameters and structure of a graphical model
requires specifying appropriate prior probability distribu-
tions on these unknowns. In what follows, we present a
Bayesian prior supporting every possible directed acyclic
graph (DAG) structures among hidden units.

3.1 Infinite Dimensional Layer
In Section 2, we introduced a model where units were asso-
ciated to layers, but did not specify the effective size of the

layers. Let us first consider a case involving only two succes-
sive layers, a layer m− 1 and its parent layer m comprising
K hidden (potentially inactive) units. To learn the structure
of such graphical models, Wood et al. (2006) adopted a non-
parametric Bayesian approach allowing for an unbounded
number of hidden units. In their construction, the authors
assumed that every hidden unit u(m)

k has an associated pa-
rameter θ(m)

k determining the unit’s behaviour and a popu-
larity parameter π(m)

k reflecting its connection probability.
The prior probabilities on these parameters are:

π
(m)
k ∼ Beta(αβ/K, β − αβ/K) (3)

θ
(m)
k ∼ α−1B

(m)
0 (4)

where B(m)
0 is a base measure of mass α acting as a prior

distribution on hidden units behaviours. According to this
formulation, we can represent layer m with the following
discrete measure:

B(m) =
K∑
k=1

π
(m)
k δ

θ
(m)
k

(5)

where δθ denotes a unit point mass at θ. Basically, the
random measure B(m) is a function indicating which unit
is present in layer m by assigning positive popularity to
the specific representing parameters. When considering in-
finitely many hidden units by letting K →∞, the Beta dis-
tribution (3) on popularities degenerates and it results in a
Beta process prior B(m) ∼ BP(β,B(m)

0 ) on infinite lay-
ers of units, where β controls the expected sum of popu-
larities (Thibaux and Jordan 2007).

When determining the parents of a unit, we have to pro-
ceed according to the popularity associated with each poten-
tial parent. This means for unit u(m−1)i , that a binary vari-
able is sampled for all units in layer m according to their
respective Bernoulli distribution Z

(m−1,m)
i,k ∼ Ber(π(m)

k ).
The resulting parental connections for this unit can then be
expressed in terms of discrete measure:

C
(m−1,m)
i =

∞∑
k=1

Z
(m−1,m)
i,k δ

θ
(m)
k

(6)

where effective unit masses on parameters θ designate the
actual parents. Since there are infinitely many parents to
consider, the probability distribution of this measure can
be represented as a Bernoulli process that we denote by
C

(m−1,m)
i ∼ BeP(B(m)). In what follows, we refer to this

type of measure as connection measure as they only indicate
the existence of connections.

The conjugacy between the Beta and Bernoulli distribu-
tions extends to their stochastic process counterparts. When
provided with a set of connection measures, the posterior
distribution on hidden units’ popularity π and parameters
θ remains a Beta process. At this point, there are two pos-
sibilities: explicitly represent the popularity vector π(m),
leading to a stick-breaking representation of the Beta pro-
cess (Paisley et al. 2010), or marginalize the Beta process
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measure, producing an Indian buffet process prior on con-
nections (Thibaux and Jordan 2007). We adopt the latter rep-
resentation, leading to the following marginalized posterior
Bernoulli process on a newly introduced active unit:

C
(m−1,m)

K(m−1)+1
|C(m−1,m)

1...K(m−1) ∼

BeP

(
βB

(m)
0

β +K(m−1) +
C(m−1,m)

β +K(m−1)

)
(7)

where we defined C(m−1,m) =
∑K(m−1)

i=1 C
(m−1,m)
i to sim-

plify notation, which counts the number of connections of
each parent. When considering units in layer m − 1 as
customers and units in layer m as dishes, the sequential
process described by equation (7) coincides with the two-
parameter Indian buffet process (Griffiths and Ghahramani
2011) which we denote as Z(m−1,m) ∼ IBP(α, β).

3.2 Infinitely Deep Network
In certain cases, having a prior on graphical models able to
generating every possible valid structure is highly desirable.
Although the model presented in Section 3.1 assumes in-
finitely many units in a single hidden layer, its expressivity
is limited due to the particular nature of DAG structures sup-
ported by the resulting prior. Nevertheless, each time an ex-
tra layer is added to the network, the number of supported
structures also increases. By letting the number of layers
M → ∞, Adams et al. (2010) obtained a prior stochastic
process, called the cascading Indian buffet process (CIBP),
thus allowing greater flexibility.

The CIBP produces infinite sequences of binary matrices
by recursively sampling IBPs where the number of active
columns in one random matrix determines the number of
rows in the next. When applied to belief network structures,
this correspondence concerns the units’ incoming and out-
going connections. For unit u(m)

k , it means that row vec-
tor Z(m,m+1)

k,· only appears when column vector Z(m−1,m)
·,k

is non-zero. The CIBP begins by sampling Z(0,1) accord-
ing to an IBP(α, β) with K(0) rows. Even though there are
infinitely many units per layer, the IBP only selects a fi-
nite subset of them with probability one. The sampling pro-
cedure continues by recursively sampling the connections
Z(m,m+1) ∼ IBP(α, β) of the successive layers, each of
them having an (almost surely) finite number of rows and
columns.

3.3 Jumping Connections
In order to specify a prior assigning positive probability to
every possible directed acyclic graph structures, we propose
an extension to the CIBP allowing connections between non-
consecutive layers. The downside of this limitation is that
representing a fully connected graph with 3 variables would
require adding a 4th unit in the intermediate layer to pass
activities deterministically from the root variable to the leaf
variable. Likewise, the more layers activities have to go-
through, the less likely it is to see the appropriate chain of
units added to the structure. The proposed solution to this

problem consists in by-passing intermediate layers via what
we call jumping connections.

The proposed process operates in two steps. First,
a sequence of binary matrices Z(0,1), Z(1,2), Z(2,3), . . .
is drawn according to the CIBP, which results in
K(1),K(2),K(3), . . . active hidden units in the respective
layers. We recall from Section 3.1 that what underlies the
connection process for adjacent layer m − 1 and m is the
unknown popularity measureB(m) we chose to marginalize.
For the sake of consistency, the probability of units in layers
s ∈ {0, . . . ,m − 2} to connect to a unit in layer m should
also be governed by this measure B(m) characterizing the
layer. We consequently propose the following hierarchical
prior probability distribution:

B(s,m)|C(m−1,m)

1...K(m−1) ∼ BP
(
β′,

C(m−1,m)

β +K(m−1)

)
(8)

where the base measure is the connection measures used in
posterior update (7) with the novelty partB(m)

0 removed. We
also introduce β′ to point out that layer-specific parameters
could be defined.

As we did for equation (7), we can marginalize the pos-
terior Beta process random measure to obtain a Bernoulli
process representing the sequential process on jumping con-
nections:

C
(s,m)

K(s)+1
|C(s,m)

1...K(s) , C
(m−1,m)

1...K(m−1) ∼

BeP
(

β′

β′ +K(s)

C(m−1,m)

β +K(m−1) +
C(s,m)

β′ +K(s)

)
(9)

where the parameter β′ controls the impact of the observed
connection frequencies between layerm−1 andm on which
we condition.

The previous probability model on jumping connections
is motivated in two ways. Firstly, the probabilities respect
the underlying popularity vector associated to each layer. In
fact, using a hierarchical BP has the advantage of allowing
a flexible number of grandparent units by conditioning on
these popularity vectors and it also remains consistent with
the CIBP construction. Secondly, the model prevents jump-
ing connections to activate new units and restricts them to
already-active grandparent units. In other words, a unit can
only connect to a new unconnected unit if this unit belongs
to its immediate parent layer, thus preventing the total num-
ber of active units to diverge. Since new units can only con-
nect to the network based on the underlying CIBP, using the
extension will not modify the convergence properties.

3.4 Prior on Parameters
Defining a prior on belief networks also requires considering
parameters uncertainty. To this end, we specified typical pri-
ors on the parameters, namely Gaussian prior distributions
on the weights and biases, and gamma prior distributions on
precisions. These priors have been mainly chosen for their
conjugacy property with the likelihood function defined in
equation (2).
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4 Inference
This section presents the inference procedure used to learn
belief networks when provided with sets of observations.
Since the posterior distribution on belief networks is gener-
ally highly complex, we rely on Markov chain Monte Carlo
(MCMC) methods to draw samples from it. The state of
the Markov chain contains the connections and weights of
all connected units, as well as their biases and precisions.
Moreover, the particular values taken by hidden units to gen-
erate the observations are also unknown. Since we cannot
marginalize these values analytically, they are also included
as part of the Markov chain. In what follows, we present the
transition operators related to unit activations and the struc-
ture. For brevity, the conditional distributions for weights,
precisions and biases are not included.

Sampling the Unit Activations. Unlike other parameters
of the model, the posterior distribution on unit activation
u
(m)
k has no analytical form. Consequently, we followed the

sampling method suggested by Adams et al. (2010) and used
a specific variant of the multiple-try Metropolis-Hastings1

of Liu et al. (2000). The approach consists first in sampling
2q−1 proposals u1, . . . , u2q−1 from the prior determined by
the parent units, then computing the following acceptance
ratio:

au = min

{
1,

f(u1) + · · ·+ f(uq)

f(uq+1) + · · ·+ f(u2q−1) + f(u
(m)
k,n )

}
(10)

where f is used to denote the likelihood function on unit u.
When the proposal is accepted, the new value for u(m)

k,n is
selected among u1, . . . , uq with probability proportional to
their likelihood.

Sampling the Edges. To perform structure inference, var-
ious network proposals are generated by adding or remov-
ing edges from the current network and are accepted in a
way that it remains consistent with the posterior distribu-
tion. When removing an edge, the action might render the
parent unit inactive, implying we no longer need the infor-
mation concerning that unit. On the other hand, adding an
edge might activate a new unit in the network. In that case,
we have to sample its deeper connections according to the
extended CIBP prior, which might activate even more units
and create new connections to already active units. These
two cases actually refer to singleton units since they point to
exactly one children unit and we deal with them in the sec-
ond phase of structure inference. In the first phase, we deal
with non singleton units, a case where the random outcome
of adding or removing an edge does not influence any unit
activation. These phases are applied by iterating on every
active unit of the network.

Phase 1: We consider connection between candidate par-
ent unit u(m)

k and unit u(s)i . To sample the existance of such

1We used the MTM (II) algorithm with independent proposal
function T (x, ·) defined as the prior distribution induced by parents
and symmetric function λ(x,y) = [T (x,y)T (y,x)]−1.

connection according to the posterior distribution, we need
to compute the prior probability of the edgeZ(s,m)

i,k . As men-
tioned in Section 3, there are two possible priors. When con-
sidering adjacent layers, m = s+ 1, the prior is the same as
in the CIBP:

Z
(s,m)
i,k ∼ Ber

(
n
(s,m)
−i,k

β +K(s) − 1

)
(11)

where n(s,m)
−i,k is the number of outgoing connections from

unit u(m)
k to any unit in layer s, excluding unit i. When layers

are such that m > s+ 1, we have the following prior:

Z
(s,m)
i,k ∼ Ber

(
β′

β′ +K(s)

n
(m−1,m)
k

β +K(m)
+

n
(s,m)
−i,k

β′ +K(s)

)
(12)

which corresponds to the jumping connections we propose
as an extension to the CIBP. Notice that equation (12) be-
comes part of the likelihood when considering adjacent lay-
ers due to its hierarchical definition. To obtain the posterior
probability of an edge, we also have to evaluate the units’
likelihood function from Z

(s,m)
i,k W

(s,m)
i,k ∼ N (µe, 1/ρe)

having the following mean and precision:

µe =

∑
n u

(m)
k,n

(
σ−1(u

(s)
i,n)− ξ

(s,m)
i,k,n

)
∑
n(u

(m)
k,n )

2
(13)

ρe = ν
(s)
i

∑
n

(u
(m)
k,n )

2 (14)

where the exact acceptance probabilities are obtained after
normalization.

Phase 2: We next consider adding or removing connec-
tion between unit u(m−1)i and singleton parents with a
Metropolis-Hastings operator using a birth/death process.
With probability 1/2, we propose adding a new singleton
parent by drawing it from the prior and accepting it with
probability:

a(+)
z =

(K◦ + 1)−2αβ

(β +K(m) − 1)

N∏
n=1

f(u
(m)
k,n |Z

(m−1,m)
i,k = 1)

f(u
(m)
k,n |Z

(m−1,m)
i,k = 0)

(15)
where K◦ is the current number of singleton parents con-
necting to unit u(m−1)i . On the other hand, if we do not pro-
pose to add a new parent unit, we consider removing one of
the existing singleton parents by uniformly selecting among
them. The acceptance probability in that case is:

a(−)z =
(β +K(m) − 1)

K−2◦ αβ

N∏
n=1

f(u
(m)
k,n |Z

(m−1,m)
i,k = 0)

f(u
(m)
k,n |Z

(m−1,m)
i,k = 1)

(16)
with u(m)

k representing the randomly selected singleton par-
ent to deactivate. Notice that removing a singleton parent
having grandchildren units is impossible as it would lead
to jumping connections having null probabilities under the
prior, making the transition probability equals to 0.
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Table 1: Kullback-Leibler Divergence Estimations

Dataset CIBP eCIBP DPMoG KDE

Ring (2) 0.049± 0.055 0.030± 0.034 0.051± 0.029 0.085± 0.034
Pinwheel (2) 0.162± 0.049 0.161± 0.041 0.154± 0.080 0.216± 0.043
Geyser (2) 0.078± 0.150 0.075± 0.145 0.077± 0.120 0.143± 0.099
Iris (4) 0.207± 0.333 0.177± 0.280 0.231± 0.269 0.305± 0.227
Abalone (9) 0.074± 0.080 0.070± 0.108 4.760± 0.220 2.934± 0.134

5 Experimental Results
5.1 Density Estimation
We now compare the benefits of using the extended CIBP
(eCIBP) on learning graphical models as opposed to the
vanilla version of the CIBP. Theoretically, the extended ver-
sion should allow infering smaller, more densely-connected
networks to explain a given dataset. We evaluated both ap-
proaches on five density estimation tasks, two synthetic and
three real-world datasets, where posterior belief network
samples were used to generate fantasy data. The predic-
tive performances have been measured by estimating the
Kullback-Leibler (KL) divergence between test sets and fan-
tasy data obtained from the learned models (Pérez-Cruz
2008). For comparison purposes, we include results from
other learning methods: the Dirichlet process mixture of
Gaussians (DPMoG), a nonparametric Bayesian approach
used to learn density functions composed of infinitely many
Gaussians (Görür and Rasmussen 2010); kernel density esti-
mation (KDE) using Gaussian kernels with automatic band-
width selection based on local leave-one-out likelihood cri-
terion (Barnard 2010).

The learning procedure of eCIBP consists in applying the
MCMC operators described in Section 4 to draw samples
from the posterior distribution on belief networks. For the
vanilla CIBP, the procedure is exactly the same, except for
jumping connections transitions. Both priors were specified
with identical fixed hyperparameters α = β = 1. The ad-
ditional hyperparameter for eCIBP has been set to β′ = 1.
The priors on weights, precisions and biases were N (0, 1)
and Gamma(1, 1). These values were selected to obtain a
nonparametric Bayesian prior that does not provide precise
information about the model and thus force the data to bring
the relevant information in the posterior distribution. Finally,
all Markov chains were initialized with networks containing
only D observable units in the first layer and having no hid-
den units.
Experiments on Synthetically Generated Data. We first
evaluated the learning approaches on synthetic data exhibit-
ing obvious structures, the ring and pinwheel data sets. The
ring data are generated by uniformly sampling points on the
unit circle and apply Gaussian noise to the radius. On the
other hand, the pinwheel data are generated by stetching
and rotating four Gaussian distributions, resulting in a spi-
ral shape. Both training sets contained 2000 points and their
respective generative process had to be encapsulated in the
learned belief network structures and parameters.

For the inference, we ran Markov chains for 500,000 iter-

ations. The burn-in period was set to 250,000 iterations and
a thinning of 100 has been applied to compile results. To
compare the posterior structure complexity of the learned
belief networks, we used the total number of hidden units
and the total number of edges composing the structure. Since
simpler structures might be obtained at the cost of predic-
tive performance, we evaluated the difference of the learned
models from the true distribution by estimating the KL di-
vergence with fantasy data and fixed test sets of 2000 data
points. In Table 1, we report the average posterior KL di-
vergence estimations computed for all chains and include 2
standard deviations to reflect the variance of the posterior.
As a point of reference, the estimated KL divergence of the
training set from the test set is 0.003 on ring and 0.025 on
pinwheel. Additionally, the posterior structure complexity
can be compared based on the total number of hidden units
and the number of connections reported in Table 2.

Experiments on Real-World Data. To assess the perfor-
mances of our approach on more realistic learning tasks,
we conducted experiments on three real-world datasets,
Geyser, Iris and Abalone. The first dataset, Geyser, con-
sists of 2-dimensional data collected from the Old Faithful
geyser (Scott 1992). We used the eruption durations along
with the waiting time to next eruptions and learned the
joint distribution using all approaches. On this problem, 272
observations were available and halved to make the train-
ing and test sets, both containing 136 samples. The second
dataset, Iris, contains 4 physical measurements from differ-
ent types of iris plants (Fisher 1936). From the 150 obser-
vations available, 75 were used for training and 75 for test-
ing. Lastly, the Abalone dataset consists of various physical
measurements of abalone shells along with the age and sex
of each individual (Bache and Lichman 2013). In particular,
it has 7 positive continuous dimensions and 2 discrete di-
mensions. For this one, the training set had 2000 examples
as well as the test set.

To learn the belief network generative model for these
datasets, we ran Markov chains for 350,000 iterations. A
burn-in period of 200,000 was used in this case, together
with a thinning of 100 to compile results. As for the syn-
thetic data, we present the predictive precision in Table 1 and
structure complexity in Tables 2. For real-world datasets, the
estimated KL divergence of the training set from the test
set is less than 0.001 on Geyser, 0.113 on Iris and 0.109 on
Abalone.
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Table 2: Posterior Means and Deviations on Structure Complexity

Number of units Number of edges

Dataset CIBP eCIBP CIBP eCIBP

Ring (2) 11.6± 4.1 9.3± 3.2 20.3± 8.4 20.6± 7.3
Pinwheel (2) 22.4± 3.0 19.7± 1.6 105.4± 11.1 104.1± 9.3
Geyser (2) 9.1± 4.3 8.7± 3.9 13.1± 9.9 13.1± 9.5
Iris (4) 14.2± 4.4 10.3± 3.4 28.4± 11.4 20.5± 7.2
Abalone (9) 54.2± 12.3 45.2± 11.2 233.8± 23.0 210.4± 23.8

5.2 Structure Identification
We evaluated the structure learning performance of eCIBP
in identifying the exact structure of a known belief network.
Depending on the data, however, the original belief network
might not be identifiable since multiple structures could be
equally good to explain the data. To reduce the effect of
learning the posterior distribution on an equivalence class
of belief networks, we carried out experiments on a simpler
network, facilitating the evaluation of the learned structures.

The belief network used for this experiment produces
bidimensional data. It has 2 observable units in layer 0, 2
hidden units in layer 1 and 3 hidden units in layer 2. Using
the notation described in Section 2, the parameters of the
structure are:

W (0,1) =

[
1.0 0.0
0.0 1.0

]
W (1,2) =

[
1.0 0.3 0.0
0.0 0.3 1.0

]
W (0,2) =

[
−0.15 0.0 −0.15
0.3 0.3 0.0

]

The precisions are 104 in the first 2 layers, 10−2 in the top
layer and all biases are set to 0. When sampling this network,
the generated data form a pattern resembling to the edges of
a rotated cube.

The learning procedure used for this experiment was iden-
tical to the one used for synthetical datasets. We used train-
ing and test sets of 2000 data points and generated fan-
tasy data from posterior models. The average KL divergence
for this data set was 0.203 ± 0.054, meaning that predic-
tions were accurate. Concerning the posterior distribution on
network features, the total number of units and edges was
7.2 ± 0.8 and 11.2 ± 1.1 respectively, while the network
depth was 3.1 ± 0.6. These results are close to the origi-
nal model having 7 units, 10 edges and a depth of 3. When
looking at posterior structures, we observe that all existing
edges are often identified with appropriate weight. However,
an extra edge connecting a top layer node to an observ-
able node is frequently incorrectly introduced with a small
weight. The underestimated precisions in the intermediate
layer and the overestimated ones in the observable layer are
the main source of KL divergence.

As a measure of comparison, we also performed network
inference with CIBP and obtained an average KL divergence
of 0.207±0.043. The posterior distributions on network fea-
tures are: 10.2 ± 2.4 on units; 20.2 ± 5.0 on edges; and

4.2 ± 0.9 on depth. These results are in line with our hy-
pothesis that more complex networks are produced with this
prior compared to the extended version.

6 Discussion
In this paper, we extended the cascading Indian buffet pro-
cess (CIBP) to learn arbitrary directed acyclic graphs (DAG)
and applied it to structure learning of belief networks. By
introducing connections between non-consecutive layers,
the proposed approach was able to learn structures with
fewer hidden units than the cascading Indian buffet process
while retaining predictive performances. This is mainly at-
tributable to the increased flexibility provided by the exten-
sion, combined with the fact that the method implicitly in-
corporates a model complexity tradeoff based on the data.

On density estimation tasks, we observed that the ex-
tended cascading Indian buffet process (eCIBP) and the
Dirichlet process mixture of Gaussian (DPMOG) obtained
similar results. This suggest that eCIBP could be used to
develop efficient density estimation algorithms that also ex-
tract compact graphical model representations. However,
the computation time associated with the proposed Markov
Chain Monte Carlo inference procedure limits its applica-
tion to relatively small problems.

In practice, the computational cost attributed to the ex-
tended version was not significantly higher comparatively to
the original version. During the experiments, we observed
that on average it roughly takes twice the amount of time
for the eCIBP to complete a Markov chain. The additional
computation time is mainly due to the O(n2) extra connec-
tion sampling steps the eCIBP introduces over the CIBP for
a given network with n nodes. However, since the CIBP
tends to produce larger networks than the eCIBP to compen-
sate the unallowed connections, it necessarily requires more
computation time, which balanced the computational cost of
the two methods in our experiments.

As part of our future work, we currently explore other
nonparametric Bayesian priors on infinite DAGs producing
simpler posterior on the underlying Bernoulli probabilities.

References
Adams, R. P.; Wallach, H. M.; and Ghahramani, Z. 2010.
Learning the structure of deep sparse graphical models. In
Proceedings of the 13th International Conference on Artifi-
cial Intelligence and Statistics.

1779



Bache, K., and Lichman, M. 2013. UCI machine learning
repository. University of California, Irvine, School of Infor-
mation and Computer Sciences.
Barnard, E. 2010. Maximum Leave-one-out Likelihood for
Kernel Density Estimation. In Proceedings of the Twenty-
First Annual Symposium of the Pattern Recognition Associ-
ation of South Africa.
Chen, B.; Polatkan, G.; Sapiro, G.; Carin, L.; and Dunson,
D. B. 2011. The hierarchical beta process for convolutional
factor analysis and deep learning. In Proceedings of the 28th
International Conference on Machine Learning.
Ferguson, T. S. 1973. A bayesian analysis of some nonpara-
metric problems. Annals of Statistics 1(2):209–230.
Fisher, R. A. 1936. The use of multiple measurements in
taxonomic problems. Annals of Human Genetics 7(2):179–
188.
Frey, B. J. 1997. Continuous sigmoidal belief networks
trained using slice sampling. In Advances in Neural Infor-
mation Processing Systems 9, 452–458. MIT Press.
Friedman, N., and Koller, D. 2003. Being bayesian about
network structure. a bayesian approach to structure discov-
ery in bayesian networks. Machine learning 50(1):95–125.
Görür, D., and Rasmussen, C. E. 2010. Dirichlet process
gaussian mixture models: Choice of the base distribution.
Journal of Computer Science and Technology 25(4):653–
664.
Griffiths, T. L., and Ghahramani, Z. 2011. The indian buffet
process: An introduction and review. The Journal of Ma-
chine Learning Research 12:1185–1224.
Hjort, N. 1990. Nonparametric bayes estimators based on
beta processes in models for life history data. The Annals of
Statistics 18(3):1259–1294.
Jordan, M. I. 2010. Hierarchical models, nested models,
and completely random measures. In Chen, M.-H.; Dey, D.;
Muller, P.; Sun, D.; and Ye, K., eds., Frontiers of Statistical
Decision Making and Bayesian Analysis: In Honor of James
O. Berger. New York, NY: Springer. 207–217.
Lauritzen, S. L. 1996. Graphical models, volume 17. Oxford
University Press.
Liu, J. S.; Liang, F.; and Wong, W. H. 2000. The multiple-try
method and local optimization in metropolis sampling. Jour-
nal of the American Statistical Association 95(449):121–
134.
MacEachern, S., and Müller, P. 1998. Estimating mixture
of dirichlet process models. Journal of Computational and
Graphical Statistics 7(2):223–238.
Paisley, J., and Carin, L. 2009. Nonparametric factor anal-
ysis with beta process priors. In Proceedings of the 26th
Annual International Conference on Machine Learning.
Paisley, J.; Zaas, A.; Woods, C.; Ginsburg, G.; and Carin,
L. 2010. A stick-breaking construction of the beta process.
In Proceedings of the International Conference on Machine
learning.
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