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Abstract

Determinantal point process (DPP) is an important proba-
bilistic model that has extensive applications in artificial in-
telligence. The exact sampling algorithm of DPP requires the
full eigenvalue decomposition of the kernel matrix which has
high time and space complexities. This prohibits the appli-
cations of DPP from large-scale datasets. Previous work has
applied the Nyström method to speedup the sampling algo-
rithm of DPP, and error bounds have been established for
the approximation. In this paper we employ the matrix ridge
approximation (MRA) to speedup the sampling algorithm of
DPP, showing that our approach MRA-DPP has stronger er-
ror bound than the Nyström-DPP. In certain circumstances
our MRA-DPP is provably exact, whereas the Nyström-DPP
is far from the ground truth. Finally, experiments on several
real-world datasets show that our MRA-DPP is more accurate
than the other approximation approaches.

Introduction
The determinantal point process (DPP) is a probabilistic
model that defines a distribution over 2n subsets of an item
set of size n. Given an item set [n] , {1, · · · , n} and an
n×n symmetric positive semidefinite (SPSD) kernel matrix
K, the probability measure of a subset S (⊂ [n]) is propor-
tional to the determinant of the submatrix of K with rows
and columns indexed by S. DPP is originated from physics
where DPP is used to capture the repulsion among particles;
as a result of repulsion, DPP encourages diversity. Specif-
ically, DPP assigns high probabilities to subsets containing
dissimilar items (Kulesza and Taskar 2012).

The diversity property of DPP can be used to solve
many real-world artificial intelligence problems. For exam-
ple, when applied to the text summarization problem, DPP
selects a subset of sentences covering distinct aspects of
an article rather than sentences focusing on one specific
issue (Kulesza and Taskar 2011b). For another example,
DPP can be applied to information retrieval to make the
search results more diverse (Kulesza and Taskar 2011a).
Diversity can be also used as a filtering prior when ap-

∗Corresponding author.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plied to the pose estimation task (Kulesza and Taskar 2012;
Affandi, Fox, and Taskar 2013; Affandi et al. 2013).

Although DPP is a distribution over 2n subsets, DPP
has a nice property that exact sampling can be done in
polynomial-time. However, the sampling algorithm devised
by Hough et al. (2006) requires the full eigenvalue decompo-
sition of the n×n kernel matrix K, costing time O(n3) and
space O(n2). When the number of data instances is large, it
is prohibitive to store K in RAM, not to mention the time ex-
pensive eigenvalue decomposition. Therefore the sampling
algorithm is limited to small-scale data.

To speedup the DPP sampling algorithm, Kulesza and
Taskar (2010) proposed to use the dual representation of
DPP (Dual-DPP) for sampling. If K has a rank-d decom-
position K = DDT where D is an n×d matrix, then the
dual-DPP-Sample algorithm only takesO(nd+d3) time and
O(nd) space. However, such an exact low-rank decomposi-
tion is in general unavailable except for some special kernel
matrices, e.g., the linear kernel. When the kernel matrix K is
not low rank, it is still possible to obtain an approximate low-
rank decomposition such that ‖K − DDT ‖ is minimized.
For example, Affandi et al. (2013) employed the Nyström
method (Nyström 1930) to generate a fast low-rank decom-
position.

The Nyström method is an efficient and effective low-rank
matrix approximation approach widely studied in the litera-
ture (Nyström 1930; Drineas and Mahoney 2005; Kumar,
Mohri, and Talwalkar 2012; Gittens and Mahoney 2013;
Wang and Zhang 2013; 2014). The Nyström method can ap-
proximate any symmetric positive semidefinite (SPSD) ma-
trix by a portion of its columns, and a rank-d Nyström ap-
proximation can be obtained in time O(d3). The Nyström
method can significantly speedup kernel methods that per-
form eigenvalue decomposition, e.g., spectral clustering
(Fowlkes et al. 2004; Li et al. 2011) and kernel PCA
(Zhang, Tsang, and Kwok 2008; Zhang and Kwok 2010;
Talwalkar et al. 2013), and kernel methods that perform ma-
trix inverse, e.g., Gaussian process regression (Williams and
Seeger 2001), kernel SVM (Zhang, Tsang, and Kwok 2008;
Yang et al. 2012), and kernel ridge regression (Cortes,
Mohri, and Talwalkar 2010).

It is well known that the Nyström method can preserve
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top eigenvalues of SPSD matrices. However, the Nyström
method, as well as any other low-rank approximation meth-
ods, does not preserve the small eigenvalues; it simply dis-
cards the bottom singular values. Consequently, when ap-
plied to approximating matrix determinants, the Nyström
approximation can be extremely far from the truth, which
was demonstrated by the three examples of (Affandi et al.
2013). Therefore the Nyström method and other low-rank
approximation methods are not good choices for speeding-
up DPP, and it is of great interest to find some fast matrix
approximation methods that preserve large and small eigen-
values alike.

We notice that a recently proposed matrix approxima-
tion method called the Matrix Ridge Approximation (MRA)
(Zhang 2014) preserves eigenvalues both large and small.
Unlike the low-rank matrix decomposition K ≈ DDT gen-
erated by the Nyström method, MRA approximates K by
K ≈ ÂÂT + δ̂In, where δ̂ is the arithmetic mean of the
bottom eigenvalues of K and helps to preserve the bottom
eigenvalues. This motivates us to apply MRA to speedup
DPP, targeting at higher accuracy than the Nyström-DPP
method. We call our method MRA-DPP. In this paper we
provide theoretical analysis, examples, and experiments to
demonstrate that our MRA-DPP is much more accurate than
the Nyström-DPP of (Affandi et al. 2013).

The remainder of this paper is organized as follows. We
first define the notation used in this paper and then intro-
duce DPP, the Nyström method, the Nyström-DPP, and the
matrix ridge approximation. Then we describe our proposed
MRA-DPP-Sample algorithm in Algorithm 1 and provide
theoretical analysis in Theorems 1 and 2 and Corollary 3,
showing that our approach is better than the Nyström-DPP.
Finally, we provide empirical comparisons on several real-
world datasets to demonstrate the superiority of MRA-DPP
over the other approximate methods.

Notation and Preliminary
Given an m × n matrix A, we let a(i) be its i-th row, aj be
its j-th column, and aij be its (i, j)-th entry. For index sets
I ⊂ [m] and J ⊂ [n], we let A(I) be the rows of A indexed
by I, AJ be the columns of A indexed by J , and A

(I)
J be

the corresponding submatrix of A. We let In be the n × n
identity matrix.

The eigenvalue decomposition of an n× n real matrix K
is defined by

K = UKΛKUT
K

= [UK,k, ŪK,k]

[
ΛK,k 0

0 Λ̄K,k

] [
UT

K,k

ŪT
K,k

]
,

where UK,k (n × k) and ΛK,k (k × k) correspond to the
top k eigenvalues. We denote the i-th largest eigenvalue by
λi(K), which is the i-th diagonal entry of ΛK. If K is SPSD,
then λi(K) equals to its i-th largest singular value σi(K).

The singular value decomposition (SVD) of an m×n ma-
trix costs time O(min{m2n,mn2}), and the eigenvalue de-
composition of an n×n matrix costs timeO(n3). Although
multiplying an m × n matrix by an n × p matrix runs in

O(mnp) flops, the constant in the big-O notation is tremen-
dously smaller than that of SVD and eigenvalue decompo-
sition. Moreover, matrix multiplication can be implemented
in a parallel fashion. So we instead denote the time com-
plexity of matrix multiplication by Tmultiply(mnp), which is
far less than O(mnp) in practice (Halko, Martinsson, and
Tropp 2011).

Background
In this section we formally introduce DPPs, the Nyström
method and Nyström-DPP, and MRA.

Determinantal Point Processes
Formally speaking, for an n× n SPSD kernel matrix K, the
probability measure of the standard DDP is defined by

PK(S) =
det(K

(S)
S )

det(K + In)
for all S ⊂ [n]. (1)

The DPP satisfies
∑
S⊂[n] PK(S) = 1. Hough et al. (2006)

provided an exact sampling algorithm for DPP which re-
quires the full eigenvalue decomposition of K, so learning
DPP can be done in time O(n3).

In applications where the cardinality of the sampled sub-
sets is fixed, say k, we are interested in probability measures
that only assign positive probability to subsets of cardinal-
ity k. This variant is called the kDPP (Kulesza and Taskar
2011a). The kDPP P kK is defined by

P kK(S) =
det(K

(S)
S )∑

|I|=k det(K
(I)
I )

for all sets S ⊂ [n] with cardinality k. The sampling algo-
rithm of kDPP is similar to that of the standard DPP.

Let K̃ be an arbitrary approximation of K, Affandi et
al. (2013) used the `1 variational distance between the DPP
with kernel K and the DPP with kernel K̃ as an approxima-
tion quality criterion. The `1 variational distance is defined
by ∥∥PK − PK̃

∥∥
1

,
1

2

∑
S⊂[n]

∣∣PK(S)− PK̃(S)
∣∣. (2)

The `1 variational distance of kDPP is similarly defined.

The Nyström Method and Nyström-DPP
Given an n×n SPSD kernel matrix K, the Nyström method
approximates K by a subset of its columns. There are vari-
ous ways to choose columns of K, e.g., uniform sampling,
adaptive sampling (Boutsidis, Drineas, and Magdon-Ismail
2011; Deshpande et al. 2006), statistical leverage based sam-
pling (Drineas, Mahoney, and Muthukrishnan 2008), vol-
ume sampling (Guruswami and Sinop 2012), etc. Let the
selected columns be indexed by a set J (J ⊂ [n] and
|J | = d� n). The Nyström approximation is given by

K̄ = KJ︸︷︷︸
n×d

(
K

(J )
J
)†︸ ︷︷ ︸

d×d

(
KJ

)T︸ ︷︷ ︸
d×n

= DDT ,

2122



where D = KJ
((

K
(J )
J
)†)1/2 ∈ Rn×d.

The decomposition above can be used to speedup eigen-
value decomposition as follows. We let C = DTD ∈
Rd×d and compute the eigenvalue decomposition C =
UCΛCUT

C, then the eigenvalue decomposition of K̄ is

K̄ =
(
DUCΛ

−1/2
C

)
ΛC

(
DUCΛ

−1/2
C

)T
.

Therefore it is feasible to make the sampling algorithm
of DPP (DPP-Sample) more efficient by employing the
Nyström method to speedup eigenvalue decomposition. Af-
fandi et al. (2013) showed that Nyström-DPP is still efficient
even for large-scale matrix where the exact eigenvalue de-
composition is prohibitive.

Previous work (Gittens and Mahoney 2013) has shown
that if sufficiently many columns are selected to construct
the Nyström approximation, the incurred error ‖K − K̄‖F
is small. However, small ‖K− K̄‖F does not implies small
`1 variational distance ‖PK − PK̄‖1. Affandi et al. (2013)
presented three examples, showing that ‖PK − PK̄‖1 may
tend to some nonzero constants even when ‖K−K̄‖F → 0.
It is because the Nyström method does not preserve the bot-
tom eigenvalues, and small eigenvalues has big influence on
the matrix determinant. Therefore, it is useful to find an ap-
proximation that preserves large and small eigenvalues alike.

The Matrix Ridge Approximation (MRA)
In one latest work, Zhang (2014) proposed a called matrix
ridge approximation (MRA), which is able to preserve large
and small eigenvalues of any SPSD matrix and is provably a
tighter approximation than the truncated SVD.

Definition 1 (Zhang 2014). The Matrix Ridge Approxima-
tion (MRA) of K is defined by

K̂ = ÂÂT + δ̂In,

where

Â = UK,d

(
ΛK,d − δ̂Id

) 1
2 V,

δ̂ =
1

n− d

n∑
i=d+1

λi(K),

and V is an arbitrary d× d orthogonal matrix.

MRA has a closed-form solution by performing the rank-
d truncated eigenvalue decomposition. To avoid eigenvalue
decomposition, Zhang (2014) provided an EM algorithm for
computing Â and δ̂. The EM algorithm alternates the fol-
lowing steps until convergence:

A(t+1) = KA(t)

(
δ(t)Id + Σ−1

(t) AT
(t)KA(t)

)−1

,

δ(t+1) =
1

n

(
tr(K)− tr

(
AT

(t+1)Σ
−1
(t) AT

(t)K
))
,

Σ(t+1) = δ(t+1)Id + AT
(t+1)A(t+1).

The algorithm costs time O(Td3) + Tmultiply(Tn2d) where
T is the maximum iterative number, and T is usually much
smaller than n.

Algorithm 1 MRA-DPP-Sample.
1: Input: kernel matrix K.
2: {Â, δ̂} ←−MRA of K;
3: {(λ̂i, ûi)}di=1 ←− eigenvalue decomposition of ATA;
4: λi ←− λ̂i + δ̂ for i = 1 to d; λi ←− δ̂ for i = d to n;
5: ui ←− λ̂−1/2

i Âûi for i = 1 to d;
6: S ←− ∅;
7: S ←− S ∪ {i} with probability λi

λi+1
for i = 1 to n;

8: V ←− {ui}i∈S∩[d];
9: r ←− cardinality of the set S ∩ {d+ 1, · · · , n};

10: W ←− r arbitrary orthonormal bases that are orthogonal to
u1, · · · ,ud; V ←− V ∪W;

11: Y ←− ∅;
12: while |V| > 0 do
13: select i ∈ [n] with probability 1

|V|
∑

u∈V
(
uT ei

)2;
14: Y ←− Y ∪ i;
15: V ←− the orthonormal bases of the subspace of V or-

thogonal to ei;
16: end while
17: return Y .

In fact, MRA can be solved much more efficiently by
randomized SVD (Halko, Martinsson, and Tropp 2011). By
using randomized SVD to compute Â and δ̂, MRA can
be solved within arbitrary approximation accuracy in time
O(nd2) +Tmultiply(n2d) and spaceO(nd). Therefore, MRA
by randomized SVD still works efficiently when n is large,
and MRA can be potentially applied to big data problems.
Though currently MRA by randomized SVD has no theo-
retical guarantee when applied to speedup DPP, we still rec-
ommend the readers to compute MRA by randomized SVD,
which is faster than the EM algorithm.

Methodology
As is discussed in the previous section, a high quality ap-

proximation of DPP should preserve both of the large and
the small eigenvalues of the kernel matrix. It is thus very
intuitive to use the MRA method to approximate the ker-
nel matrix of DPP. Following the DPP-Sample algorithm
of Hough et al. (2006), we derive a sampling algorithm for
MRA-DPP and describe it in Algorithm 1. We also provide
theoretical analysis for MRA-DPP, showing that MRA-DPP
is more accurate than the Nyström-DPP of (Affandi et al.
2013). The error bound of kDPP can be obtained in a simi-
lar way as the work of (Affandi et al. 2013), so we leave it
out in this paper.

The MRA-DPP-Sample algorithm (Algorithm 1) is de-
rived as follows. Let K̂ = ÂÂT + δ̂In be the MRA of
the kernel matrix K, and let λ̂i and ûi be the i-th top eigen-
value and eigenvector of the d× d matrix ÂT Â. It is easily
verified that λi = λ̂i + δ̂ and ui = λ̂

−1/2
i Âûi are the i-th

(i ∈ [d]) top eigenvalue and eigenvector of K̂. The d+1 to n
eigenvalues of K̂ are all δ, and the eigenvectors are arbitrary
orthonormal bases of the subspace orthogonal to {ui}di=1.
With the full eigenvalue decomposition of K̂ at hand, the
MRA-DPP-Sample algorithm is immediately obtained fol-
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lowing the DPP-Sample algorithm of (Hough et al. 2006).
We analyze the approximation quality of MRA-DPP in

Theorem 1, and then in the remainder of this section we dis-
cuss the error bound given in the theorem.

Theorem 1. Given an n × n SPSD matrix K, we let K̂ =
ÂÂT + δ̂In be an size-d MRA of K defined in Definition 1.
For an index set S ⊂ [n], the relative set-wise error satisfies
that ∣∣PK(S)− PK̂(S)

∣∣ / PK(S)

≤

∣∣∣∣∣ 1−
∏n
i=d+1

(
1 + λi(K)

)
(1 + δ̂)n−d

[ |S|∏
i=1

λi
(
K̂

(S)
S
)

λi
(
K

(S)
S
)]
∣∣∣∣∣.

We note that 1+δ̂ is the arithmetic mean of 1 +

λd+1(K), · · · , 1+λn(K), while
(∏n

i=d+1(1+λi(K))
) 1

n−d

is the geometric mean. When the bottom n − d eigenval-
ues λd+1(K), · · · , λn(K) are small, 1 +λd+1(K), · · · , 1 +
λn(K) have small variance, and thus the arithmetic mean
and the geometric mean approach each other (Aldaz 2012).
Therefore, when the d to n eigenvalues of K are small, the
term

∏n
i=d+1(1+λi(K))

(1+δ̂)n−d
approaches 1.

We bound the difference between λi
(
K̂

(S)
S
)

and
λi
(
K

(S)
S
)

in the following theorem. We will discuss in Re-
mark 1 that our theoretical result is stronger than that of (Af-
fandi et al. 2013).

Theorem 2. Given an n×n SPSD matrix K, let K̂ be a size-
dMRA of K. Then for any index set S ⊂ [n], the eigenvalues
of any submatrices of K and K̂ indexed by S satisfy that∣∣∣λi(K(S)

S
)
− λi

(
K̂

(S)
S
)∣∣∣ ≤ max

{
λd+1(K)− δ̂, δ̂ − λn(K)

}
,

where δ̂ is defined in Definition 1.

Remark 1. The result in Theorem 2 is stronger than the
corresponding results of (Affandi et al. 2013) because

max
{
λd+1(K)− δ̂, δ̂ − λn(K)

}
≤ λd+1(K)

≤ ‖K− K̄‖2,

where K̄ is the size-d Nyström approximation of K. The first
inequality holds if and only if λd+1(K) = · · · = λn(K) =
0. Thus in general settings the error bound of our method is
strictly better than that of (Affandi et al. 2013). The inequal-
ity means that using MRA to approximate DPP is more accu-
rate than using the truncated SVD and the Nyström method.

As a special case, when the bottom n − d eigenvalues of
K have zero variance, the error incurred by MRA-DPP is
zero. Under the same condition, the error incurred by the
truncated SVD or the Nyström approximation is in general
nonzero (see Examples 1 and 2 of Affandi et al. 2013).

Corollary 3. Let K̂ be the size-d MRA of K. When
λd+1(K) = · · · = λn(K), the `1 variational distance be-
tween the DPP with kernel K and the DPP with kernel K̂ is
zero. That is,

∥∥PK − PK̂

∥∥
1

= 0.

Experiments
We conduct experiments on several real-world datasets
from UCI (Frank and Asuncion 2010) and Statlog (Michie,
Spiegelhalter, and Taylor 1994) to evaluate the kernel ap-
proximation methods for DPP. For each dataset, we gen-
erate a radial basis function (RBF) kernel K defined by
kij = exp(− 1

2α‖xi − xj‖22), where xi and xj are data in-
stances, and α is the scaling parameter defining the scale of
the kernel matrix. We set α = 0.2, 0.5, and 1 in our ex-
periments. All of the compared methods are implemented in
MATLAB and run on a PC with Intel Core i5 CPU, 8GB
RAM, and Windows 7 64bit system.

To make the experiments simple, we compare the perfor-
mance of the approximation methods for kDPP. For a dataset
of n instances, there are (nk ) subsets of size k, so it is pro-
hibitive to directly compute the `1 variational distance∥∥P kK − P kK̃∥∥1

,
1

2

∑
S⊂[n],|S|=k

∣∣P kK(S)− P k
K̃

(S)
∣∣,

where K̃ is an arbitrary approximation of K. We instead
evaluate the approximation accuracy by the empirical `1
variational distance which is defined as follows. We gen-
erate m sets S1, · · · ,Sm ⊂ [n] uniformly at random, each
of cardinality k, and define

P̃ kK(Si) =
det(K

(Si)
Si )∑m

j=1 det(K
(Sj)
Sj )

;

the empirical `1 variational distance is defined by

∥∥P̃ kK − P̃ kK̃∥∥1
,

1

2

m∑
i=1

∣∣P̃ kK(Si)− P̃ kK̃(Si)
∣∣.

We set k = 10 and m = 106 in our experiments.
We mainly compare our MRA-DPP with the Nyström-

DPP of (Affandi et al. 2013). The MRA is computed by
the EM algorithm of (Zhang 2014). The Nyström approx-
imation is constructed by uniform sampling or the adaptive
sampling algorithm of (Wang and Zhang 2013). Since the
uniform sampling and the adaptive sampling algorithms are
both randomized, we run each algorithm ten times and use
the sampled columns that achieve the minimal Frobenius
norm error ‖K − K̄‖F where K̄ is the Nyström approxi-
mation. We also employ the truncated SVD for comparison,
although it is impractical in real-world applications. We let
d be the size of MRA or the rank of the Nyström approx-
imation or the truncated SVD; we range d and report the
empirical `1 distance in Figures 1–6.

We can see from the experiment results that our MRA-
DPP is much more accurate than the Nyström-DPP in all ex-
periments. Especially, when the scaling parameter α is set as
a small value, say α = 0.2, the `1 variational distances cor-
responding to the Nyström method and the truncated SVD
are near 1; that is, the two low-rank approximation meth-
ods are ineffective approximations of DPP. This is because
when the scaling parameter α takes a small value, the bottom
eigenvalues are not sufficiently small, and discarding these
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(a) RBF kernel with σ = 0.2.
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(b) RBF kernel with σ = 0.5.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d

Em
pir

ica
l L

1 
Va

ria
tio

na
l D

ist
an

ce

 

 

Nystrom (uniform)
Nystrom (adaptive)
d−SVD
MRA

(c) RBF kernel with σ = 1.

Figure 1: Results on the Letters dataset (5, 000 instances, 16 attributes, Statlog).
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(a) RBF kernel with σ = 0.2.

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

d

Em
pir

ica
l L

1 
Va

ria
tio

na
l D

ist
an

ce

 

 

Nystrom (uniform)
Nystrom (adaptive)
d−SVD
MRA

(b) RBF kernel with σ = 0.5.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d

Em
pir

ica
l L

1 
Va

ria
tio

na
l D

ist
an

ce

 

 

Nystrom (uniform)
Nystrom (adaptive)
d−SVD
MRA

(c) RBF kernel with σ = 1.

Figure 2: Results on the Wine Quality dataset (4, 898 instances, 12 attributes, UCI).
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(a) RBF kernel with σ = 0.2.
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(b) RBF kernel with σ = 0.5.
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(c) RBF kernel with σ = 1.

Figure 3: Results on the Satimage dataset (4, 435 instances, 36 attributes, Statlog).
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(a) RBF kernel with σ = 0.2.
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(b) RBF kernel with σ = 0.5.
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(c) RBF kernel with σ = 1.

Figure 4: Results on the German dataset (1, 000 instances, 24 attributes, Statlog).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

Em
pir

ica
l L

1 
Va

ria
tio

na
l D

ist
an

ce

 

 

Nystrom (uniform)
Nystrom (adaptive)
d−SVD
MRA

(a) RBF kernel with σ = 0.2.
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(b) RBF kernel with σ = 0.5.
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(c) RBF kernel with σ = 1.

Figure 5: Results on the Diabetes dataset (768 instances, 8 attributes, UCI).
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(a) RBF kernel with σ = 0.2.
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(b) RBF kernel with σ = 0.5.
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(c) RBF kernel with σ = 1.

Figure 6: Results on the Breast-Cancer dataset (683 instances, 10 attributes, UCI).

bottom eigenvalues has big influence on the matrix determi-
nants. Since the low-rank approximation methods, i.e., the
Nyström method and the truncated SVD, discard the bottom
eigenvalues, they have very low performance on the RBF
kernel with small scaling parameter α. In contrast, the error
of our MRA-DPP is small in all cases because MRA pre-
serves eigenvalues both big and small.

In some sets of experiments, the performance of MRA-
DPP is not monotonically getting better in d. This counter-
intuitive phenomenon may be explained as follows. As d
grows, the whole MRA matrix is getting closer to the orig-
inal matrix, but many submatrices of the MRA may be get-
ting farther from the ground truth. Consequently, the `1 vari-
ational distance may become worse.

Proof of Theorems
Proof of Theorem 1
Proof. The relative set-wise error is∣∣PK(S)− PK̂(S)

∣∣
PK(S)

=

∣∣∣∣∣1− det
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)
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)
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S
)
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[

n∏
i=1

1 + λi
(
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)
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(S)
S
)
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(
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(S)
S
)]
∣∣∣∣∣

=
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(
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)
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(
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S
)
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(
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(S)
S
)]
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where the last equality follows by Definition 1.

Proof of Theorem 2
Proof. The eigenvalue decomposition of the SPSD kernel
matrix K is

K = UK(ΛK − δ̂In)UT
K + δ̂In

= UK,d(ΛK,d − δ̂Id)UT
K,d + δ̂In

+ŪK,d(Λ̄K,d − δ̂In−d)ŪT
K,d

and thus the submatrix of K indexed by S (|S| = k) is

K
(S)
S = U

(S)
K,d

(
ΛK,d − δ̂Id

)(
U

(S)
K,d

)T
+ δ̂Ik

+ Ū
(S)
K,d

(
Λ̄K,d − δ̂In−d

)(
Ū

(S)
K,d

)T
.

The submatrix of K̂ (MRA of K) indexed by S is

K̂
(S)
S = U

(S)
K,d(ΛK,c − δ̂In−d)(U(S)

K,d)
T + δ̂Ik.

We can see that the difference between K
(S)
S and K̂

(S)
S is

K
(S)
S − K̂

(S)
S = Ū

(S)
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)T
.

Finally we have that∣∣∣λi(K(S)
S
)
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.

Here the first equality follows from that K
(S)
S and K̃

(S)
S are

SPSD; the first inequality follows from the singular value
inequality in (Horn and Johnson 1991, Theorem 3.3.16); the
second inequality follows from the singular value inequality
in (Horn and Johnson 1991, Theorem 3.3.1); the last equality
follows from that λd+1(K) ≥ δ̂ ≥ λn(K).

Conclusions
In this paper we have proposed to apply the matrix ridge
approximation (MRA) to speedup the determinantal point
processes (DPPs) and provided theoretical analysis for the
approximation performance. Our proposed MRA-DPP is su-
perior over the Nyström-DPP both theoretically and empir-
ically. We have shown theoretically that the error bound of
MRA-DPP is stronger than Nyström-DPP. The experiments
on several real-world datasets have shown that MRA is much
more accurate than Nyström when applied to approximate
DPP. Especially, when the spectrum of the kernel matrix de-
cays slowly, MRA achieves much higher accuracy than the
Nyström method and even the truncated SVD.
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