Echo-State Conditional Restricted Boltzmann Machines


  • Sotirios Chatzis Cyprus University of Technology



Conditional Restricted Boltzmann Machine, Echo-State Network, Contrastive Divergence


Restricted Boltzmann machines (RBMs) are a powerful generative modeling technique, based on a complex graphical model of hidden (latent) variables. Conditional RBMs (CRBMs) are an extension of RBMs tailored to modeling temporal data. A drawback of CRBMs is their consideration of linear temporal dependencies, which limits their capability to capture complex temporal structure. They also require many variables to model long temporal dependencies, a fact that might provoke overfitting proneness. To resolve these issues, in this paper we propose the echo-state CRBM (ES-CRBM): our model uses an echo-state network reservoir in the context of CRBMs to efficiently capture long and complex temporal dynamics, with much fewer trainable parameters compared to conventional CRBMs. In addition, we introduce an (implicit) mixture of ES-CRBM experts (im-ES-CRBM) to enhance even further the capabilities of our ES-CRBM model. The introduced im-ES-CRBM allows for better modeling temporal observations which might comprise a number of latent or observable subpatterns that alternate in a dynamic fashion. It also allows for performing sequence segmentation using our framework. We apply our methods to sequential data modeling and classification experiments using public datasets. As we show, our approach outperforms both existing RBM-based approaches as well as related state-of-the-art methods, such as conditional random fields.




How to Cite

Chatzis, S. (2014). Echo-State Conditional Restricted Boltzmann Machines. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1).



Main Track: Novel Machine Learning Algorithms