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Abstract

The conventional statistical machine translation (SMT)
methods perform the decoding process by composit-
ing a set of the translation rules which are associated
with high probabilities. However, the probabilities of
the translation rules are calculated only according to
the cooccurrence statistics in the bilingual corpus rather
than the semantic meaning similarity. In this paper,
we propose a Recursive Neural Network (RNN) based
model that converts each translation rule into a compact
real-valued vector in the semantic embedding space and
performs the decoding process by minimizing the se-
mantic gap between the source language string and its
translation candidates at each state in a bottom-up struc-
ture. The RNN-based translation model is trained us-
ing a max-margin objective function. Extensive experi-
ments on Chinese-to-English translation show that our
RNN-based model can significantly improve the trans-
lation quality by up to 1.68 BLEU score.

Introduction
The conventional statistical machine translation (SMT)
models, such as phrase-based models (Koehn et al. 2007),
formal syntax-based models (Chiang 2007; Xiong, Liu, and
Lin 2006) and linguistically syntax-based models (Liu, Liu,
and Lin 2006; Huang, Knight, and Joshi 2006; Galley et al.
2006; Zhang et al. 2008), perform the decoding process and
generate the translation result by compositing a set of trans-
lation rules which are associated with high probabilities. The
probabilities of the translation rules (e.g. the phrasal trans-
lation probabilities and the lexical weights in phrase-based
and formal syntax-based models) are all computed based on
the cooccurrence statistics of the rule’s source- and target-
sides in the bilingual corpus. However, the cooccurrence
statistics is much biased to the bilingual corpus and is not
sufficient to show whether the source- and target-sides in a
translation rule are in the same meaning, especially for the
low frequent but correct translation rules. Accordingly, the
conventional SMT models cannot guarantee that the gener-
ated translations are in the most similar semantic meanings
with the source-side inputs.
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Figure 1: An example for the RNN-based translation model
with (string and semantic vector) representations for source-
and target-side in each node. The leaf nodes are translation
rules (phrase pairs), and the nonterminals S and M deter-
mines which network will be applied to combine the chil-
dren to yield translations of the longer strings. S means
the target-side phrases of the two children will be swapped
after combination, and M denotes monotone combination.
At each nonterminal node, the semantic gap between the
source- and target-side vector representations are utilized to
guide the process of choosing the best translation candidates.

Aiming at retaining the semantic meaning during the
translation process, we propose a Recursive Neural Network
(RNN) based translation model. Like the previous SMT
models, the RNN-based model induces the translation rules
from the bitexts. Unlike them, the RNN-based model learns
how to represent each lexical translation rule with two com-
pact semantic vectors, and learns how to perform decoding
using the merging type (swap or monotone) dependent recur-
sive neural networks that attempt to find the best translation
candidate having the minimal semantic gap with the source
string.

Fig. 1 shows an example for our RNN-based translation
model. The overall objective of our model is to search the
best hidden derivation tree with the minimal sum of the se-
mantic gaps in each node. The nodes in Fig. 1 are divided
into two groups: the leaf nodes and the nonterminal nodes.
Our RNN-based model designs two sub-models to handle
the leaf nodes and the nonterminal nodes respectively.

Since the leaf nodes denote the basic translation rules
which are directly induced from the bitexts, both of the
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source- and target-sides of the leaf nodes are grammati-
cal and the semantic gap between them should be a fixed
value. We apply the bilingually-constrained recursive auto-
encoders (BRAE) (Zhang et al. 2014) to semantically em-
bed each source and target grammatical phrase with com-
pact real-valued vectors and find the fixed semantic gaps.
The BRAE is learned by minimizing the semantic gap be-
tween the high-quality translation equivalents and maximiz-
ing the semantic gap between non-translation pairs simul-
taneously. With the learned BRAE model, each translation
rule is represented with two compact semantic vectors (one
for the source-side string and the other for the target-side
string), and each leaf node is denoted with a tuple (bilingual
strings and two vectors).

Given the leaf nodes in tuples, another sub-model is pro-
posed to learn how to composite any two children recur-
sively. Following the bracketing transduction grammars (Wu
1997), we adopt two types of composition operators: mono-
tone and swap. We then design two type-dependent networks
for monotone composition and swap composition respec-
tively. The networks learn four functions: two vector compo-
sition functions for the source and target language strings re-
spectively, and two transformation functions that transform
the semantic vectors between the source-side embedding
space and the target-side embedding space. The source-side
vector composition function takes the source-side vectors
in the left and right children as input, and outputs a vector
to represent the semantic meaning of the combined source
string. The source-side vector composition function is the
same for both monotone and swap operator. As target-side
strings are combined in different ways according to mono-
tone or swap composition, two target-side vector composi-
tion functions are involved: one for monotone operator and
the other for swap operator. The four functions in the net-
works are optimized using an objective of max-margin loss
which prefers the gold derivation trees generated by success-
ful forced decoding to the kbest trees generated by the con-
ventional SMT models.

With the learned RNN-based translation model, we con-
duct the large-scale experiments on Chinese-to-English
translation. The experimental results show that our RNN-
based model can significantly outperform the state-of-the-
art, with an improvement up to 1.68 BLEU score.

Related Work
In the recent years, many researchers attempt to model
the translation process with continuous vector representa-
tions for words, phrases and even sentences. Almost all of
them address only some aspects of the statistical machine
translation, such as the language model (Duh et al. 2013;
Vaswani et al. 2013), more context usage for target language
word prediction and the sparsity problem in translation prob-
ability estimation (Mikolov et al. 2010; Auli et al. 2013;
Kalchbrenner and Blunsom 2013; Liu et al. 2013; Zou et
al. 2013), and the phrase reordering problem (Li, Liu, and
Sun 2013).

For language modelling in the statistical machine trans-
lation, rather rather depending on the Markov assumptions,
the recurrent neural network based language model (Duh et

al. 2013; Vaswani et al. 2013) represents the sequence of
words with continuous vectors and can make full use of the
whole history information before the current word in target
language. This model has shown a significant reduction of
the perplexity of the language model and can improve the
translation quality.

Besides the target-side history words, more source-side
context can lead to better prediction of target word trans-
lation. The works (Mikolov et al. 2010; Auli et al. 2013;
Kalchbrenner and Blunsom 2013; Liu et al. 2013) maps both
of the source-side context and the target-side history into
a real-valued vector, and utilizes the continuous vector to
better predict the target word generation. Zou et al. (2013)
learn word embeddings with bilingual constraints and aug-
ment the lexical translation probability.

Phrase reordering is an important problem in statistical
machine translation. Instead of using lexical words as con-
crete features, (Li, Liu, and Sun 2013) has proposed a recur-
sive auto-encoder method to convert each phrase into a con-
tinuous real-valued vector which can encode the reordering
tendency of the phrases (e.g. swap or monotone).

Different from the previous works, we aim at learning the
semantic vector representation for any source- and target-
side phrases, and the model to perform decoding by min-
imizing the semantic gap between a source string and its
translation candidate.

RNN-based Translation Framework
This section presents our proposed RNN-based translation
framework. First, we introduce the formal syntax-based
baseline translation system, namely the bracketing trans-
duction grammar (BTG) based system. Then, we propose
the bilingually-constrained recursive auto-encoders to se-
mantically embed each phrasal translation rules with com-
pact real-valued vectors. Finally, we present the RNN-based
translation model with the objective to minimize the seman-
tic gap between a source string and its translation candidates.

BTG-based Translation Model
The BTG-based translation (Wu 1997; Xiong, Liu, and Lin
2006) can be viewed as a monolingual parsing process, in
which only lexical rules A ! (x, y) and two binary merging
rules A ! [A

l

, A

r

] and A ! hAl

, A

ri are allowed.
During decoding, the source language sentence is first

divided into phrases (sequence of words), then the lexical
translation rule A ! (x, y) translates each source phrase
x into target phrase y and forms a block A. The mono-
tone merging rule A ! [A

l

, A

r

] (or the swap merging rule
A ! hAl

, A

ri) combines the two neighboring blocks into a
bigger one until the whole source sentence is covered.

The lexical translation rule A ! (x, y) plays the same
role as the phrasal translation pairs (tuples consisting of a
source phrase and its target translation hypothesis) in the
conventional phrase-based translation models (Koehn et al.
2007). The monotone merging rule A ! [A

l

, A

r

] combines
the two consecutive blocks into a bigger block by concate-
nating the two partial target translation candidates in order
while the swap rule A ! hAl

, A

ri yields the bigger block
by swapping the two partial target translation candidates.
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Typically, a log-linear model (Och and Ney 2002) is ap-
plied to find the optimal derivation which consists of a set of
translation rules (lexical rules and merging rules). The opti-
mal derivation yields the best translation and the conditional
probability is calculated in the log-linear formulation:

Pr(e|f) = p

�

(e, f) =

exp(

P
i

�

i

h

i

(f, e))P
e

0 exp(
P

i

�

i

h

i

(f, e

0
))

(1)

in which h

i

’s are feature functions, such as the bidirectional
phrasal translation probabilities, the language model and the
reordering model. �’s are feature weights.

Vector Representations for Translation Rules
To perform decoding in the semantic vector space with re-
cursive neural networks, the first task is to convert each lexi-
cal translation rule into a semantic vector representation. As
we known that the lexical translation rule is a tuple consist-
ing of a source language phrase and a target language phrase,
we just need to represent the source and target phrases with
semantic vector representations. We apply the bilingually-
constrained recursive auto-encoders (BRAE) to learn the se-
mantic vector representation for each phrase. Our BRAE
views any phrase as a meaningful composition of its internal
words, and the key idea is to learn the word vector represen-
tation and the way of composition. We first present the word
vector representations and then introduce the BRAE model
for learning the way of semantic composition.

Word Vector Representations Recently, the word vector
representations are typically learned with the Deep Neural
Networks (DNN), which convert a word into a dense, low
dimensional, real-valued vector (Bengio et al. 2003; 2006;
Collobert and Weston 2008; Mikolov et al. 2013). After
learning with DNN, each word in the vocabulary V corre-
sponds to a vector x 2 Rn, and all the vectors are stacked
into a word embedding matrix L 2 Rn⇥|V |.

Given a phrase which is an ordered list of m words, each
word has an index i into the columns of the embedding ma-
trix L. The index i is used to retrieve the word’s vector repre-
sentation using a simple multiplication with a binary vector
e which is zero in all positions except for the ith index:

x

i

= Le

i

2 Rn (2)

Unsupervised Phrase Vector Representations Given a
phrase w1w2 · · ·wm

, it is first projected into a list of vectors
(x1, x2, · · · , xm

) using Eq. 2. The Recursive Auto-encoder
(RAE) learns the vector representation of the phrase by re-
cursively combining two children vectors in a bottom-up
manner (Socher et al. 2011). Fig. 2 illustrates an instance
of a RAE applied to a binary tree, in which a standard auto-
encoder (in box) is re-used at each node. For two children
c1 = x1 and c2 = x2, the standard auto-encoder computes
the parent vector y1 as follows:

p = f(W

(1)
[c1; c2] + b

(1)
) (3)

Where W

(1) 2 Rn⇥2n, [c1; c2] 2 R2n⇥1, and f = tanh(·).
The standard auto-encoder then reconstructs the children:

[c

0
1; c

0
2] = f(W

(2)
p+ b

(2)
) (4)

x1 x2 x3 x4 

y1=f(W(1)[x1; x2]+b) 

y2=f(W(1)[y1; x3]+b) 

y3=f(W(1)[y2; x4]+b) 

Figure 2: A recursive auto-encoder for a four-word phrase.
The empty nodes are the reconstructions of the input.

Source Reconstruction Error 

Source Prediction Error 

Ws
(1) 

Ws
(2) 

Ws
(label) 

Target Reconstruction Error 

Wt
(1) 

Wt
(2) 

Wt
(label) Target Prediction Error 

Source Language Phrase Target Language Phrase 

Figure 3: An illustration of the bilingual-constrained recur-
sive auto-encoders. The two phrases are translation equiva-
lents induced with forced decoding with the baseline SMT.

Finally the standard auto-encoder tries to minimize the re-
construction errors between inputs and reconstructions:

E

rec

([c1; c2]) =
1

2

||[c1; c2]� [c

0
1; c

0
2]||

2 (5)

Given y1 = p, we can use Eq. 3 again to compute y2 by
setting [c1; c2] = [y1;x3]. The same auto-encoder is re-used
until the vector of the whole phrase is generated.

The BRAE model Without supervision, the above unsu-
pervised method can only induce general representations of
the multi-word phrases. Although no gold semantic phrase
vector representations exist for supervision, we know the
fact that the translation equivalents should share the same
semantic meaning and thus should share the same semantic
vector representation ideally. Therefore, the source phrase
and the target phrase in a translation equivalent can super-
vise each other to induce their semantic meanings. Accord-
ingly, we adopt our proposed Bilingually-constrained Recur-
sive Auto-encoders (Zhang et al. 2014) (Fig. 3 shows the
network structure). For a phrase pair (s, t), two kinds of er-
rors are involved:

1. reconstruction error E

rec

(s, t; ✓): how well the
learned vectors p

s

and p

t

represent the phrase s and t?

E

rec

(s, t; ✓) = E

rec

(s; ✓) + E

rec

(t; ✓) (6)

2. semantic error E
sem

(s, t; ✓): what is the semantic dis-
tance between the learned vector representations p

s

and p

t

?
Since word embeddings for two languages are learned

separately and locate in different vector space, we do not

1659



enforce the phrase embeddings in two languages to be in the
same semantic vector space. We suppose there is a transfor-
mation between the two semantic embedding spaces. Thus,
the semantic distance is bidirectional:

E

sem

(s, t; ✓) = E

sem

(s|t, ✓) + E

sem

(t|s, ✓) (7)

Where E

sem

(s|t, ✓) = E

sem

(p

t

, f(W

l

s

p

s

+ b

l

s

)) and
E

sem

(s|t, ✓) is then calculated as follows:

E

sem

(s|t, ✓) = 1

2

||p
t

� f(W

l

s

p

s

+ b

l

s

)||2 (8)

We then further enhance the semantic error with both
translation equivalents and non-translation pairs 1, and the
corresponding max-semantic-margin error becomes:

E

⇤
sem

(s|t, ✓) = max{0, E
sem

(s|t, ✓)
� E

sem

(s|t0, ✓) + 1}
(9)

E

⇤
sem

(t|s, ✓) can be calculated in exactly the same way.
For the phrase pair (s, t), the joint error is:

E(s, t; ✓) = ↵E

rec

(s, t; ✓) + (1� ↵)E

sem

(s, t; ✓) (10)

The hyper-parameter ↵ weights the reconstruction and se-
mantic error. The final BRAE objective over the phrase pairs
training set (S, T ) becomes:

J

BRAE

=

1

N

X

(s,t)2(S,T )

E(s, t; ✓) +

�

2

||✓||2 (11)

The parameters ✓ can be divided into the source-side pa-
rameters ✓

s

and the target-side parameters ✓
t

. As seen from
Fig. 3 that if the target phrase representation p

t

is available,
the optimization of the source-side parameters becomes a
supervised learning problem. We apply the Stochastic Gra-
dient Descent (SGD) algorithm to optimize each parameter.
Word vector representations ✓

L

are initialized with a DNN
toolkit Word2Vec (Mikolov et al. 2013) using the large-scale
monolingual data, and other parameters are randomly initial-
ized.

The optimization of the target-side parameters can be per-
formed in the same way if the source phrase representation
p

s

is available. It seems a paradox that updating ✓

s

needs p
t

while updating ✓

t

needs p
s

. To solve this problem, we apply
a co-training style algorithm which includes three steps:

1. Pre-training: applying unsupervised phrase embed-
ding with standard RAE to pre-train the source- and target-
side phrase representations p

s

and p

t

respectively;
2. Fine-tuning: with the BRAE model, using target-side

phrase representation p

t

to update the source-side parame-
ters ✓

s

and obtain the fine-tuned source-side phrase repre-
sentation p

0
s

, and meanwhile using p

s

to update ✓

t

and get
the fine-tuned p

0
t

, and then calculate the joint error over the
training corpus;

3. Termination Check: if the joint error reaches a local
minima or the iterations reach the pre-defined number (25 is
used in experiments), we terminate the training procedure,
otherwise we set p

s

= p

0
s

, p
t

= p

0
t

, and go to step 2.
1For each translation equivalent, we randomly change the

words in the target phrase and obtain a non-translation pair.

After parameter training, the BRAE model can learn a
semantic vector representation for each source and target
phrase respectively. Thus, each lexical translation rule can
be represented with two semantic compact vectors.

RNN-based Translation Model
With translation rules represented as the semantic compact
vectors, we propose the RNN-based model to find for a test
source language sentence the best derivation tree using a
CKY algorithm. For ease of exposition, we first describe
how to score an existing derivation tree in which each node
consists of the string and vector representations.

Scoring Derivation Trees with RNN Assuming we are
given a derivation tree as shown in Fig 1. We define the rep-
resentations of the leaf nodes (lexical translation rules) as
(sp, tp, sv, tv) in which sp is the source phrase, tp is the tar-
get phrase, sv and tv are the semantic vector representations
for sp and tp respectively. sv and tv are learned using the
BRAE model. We then define the representations of the non-
terminal nodes (merging rules) as (type, sp

0
, tp

0
, sv

0
, tv

0
)

where type denotes how the two children are combined
(monotone or swap) to generate this current node. sp0 is a
source phrase, tp0 is a translation candidate (may be not in
grammar) which is different from tp (normal natural lan-
guage phrase). sv0 and tv

0 are both learned with the type-
dependent recursive neural networks.

For each non-terminal node, the semantic vector represen-
tation for the source phrase sv

0 is generated in a same way
no matter what type of the merging rule we apply:

sv

0
= f(W

s

[sv

l

; sv

r

] + b

s

) (12)

in which, svl and sv

r are semantic vector representations of
the source phrases for the left and right child respectively.
W

s is the weight matrix of the neural network, bs is the bias
term, and f = tanh(·).

For the semantic vector representation of the target phrase
tv

0, the weight matrix and bias term depend on the type of
the merging rule:

tv

0
= f(W

type

[tv

l

; tv

r

] + b

type

) (13)

where tvl and tv

r are semantic vector representations of the
target partial translations for the left and right child respec-
tively. W type

= W

mono if we adopt the monotone merging
rule and W

type

= W

swap if we employ the swap merging
rule. The bias term b

type is similar.
With the semantic vector representations for the source

phrase and its target translation candidates in each node, we
can measure the semantic distance gap between the source
phrase and the translation candidate. Since the vector repre-
sentations are in different semantic space, we design a trans-
formation function from source to target and from target to
source as it is done in the BRAE model. The semantic dis-
tance gap becomes:

S

node

gap

(sv, tv) = S

node

gap

(sv|tv) + S

node

gap

(tv|sv) (14)

where S

node

gap

(sv|tv) = S

node

gap

(tv, f(W

l

s

sv + b

l

s

)), and
S

node

gap

(·) is computed with Euclidean distance. It is obvious
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that the smaller the semantic gap, the better the translation
candidate.

Finally, the RNN score for the derivation tree is the sum of
the semantic distance gap over all the tree nodes (including
the leaf nodes and the non-terminal nodes):

S

RNN

=

X

node

S

node

gap

(sv, tv) (15)

We hope that using the above RNN model, the optimal
derivation tree indeed leads to the best translation. To guar-
antee this, we need to design a good objective function
for RNN parameters training. Accordingly, we propose the
max-margin training objective.

Max-Margin Training Objective Given the bilingual
sentences in the training data, we can perform forced de-
coding for the source sentence to find the gold derivation
trees goldTs which lead to exactly the corresponding trans-
lation reference. At the same time, we can decode the source
sentences of the training data with the baseline BTG-based
translation model and find the kbest (k can be 100, 200, 500,
...) derivation trees kbestTs. Ideally, we want the RNN score
of the gold derivation tree S

RNN

(goldT ) is much smaller
than that of the kbest tree S

RNN

(kbestT ).
We first define a structured margin loss

�(goldT, kbestT ). The discrepancy between the gold
tree and the kbest tree is measured by counting the number
of nodes N(kbest) having different source phrase spans in
the kbest tree with that in the gold tree.

�(goldT, kbestT ) =

X

d2N(kbestT )

1{d /2 N(goldT )}

(16)
As different derivation trees have different number of

nodes in statistical machine translation, we normalize the
above margin loss as follows:

�

⇤
(goldT, kbestT ) = �(goldT, kbestT )⇥ N(goldT )

N(kbestT )

(17)
Following (Socher et al. 2013b), we set  = 0.1 in the

experiments. And we require that the RNN score of the gold
derivation tree will be smaller up to a margin to the kbest
derivation trees:
S

RNN

(goldT )  S

RNN

(kbestT )��

⇤
(goldT, kbestT )

(18)
This leads to the regularized function over all the m bilin-

gual sentence pairs with successful forced decoding:

J

✓

=

1

m

X

i

r

i

(✓) +

�

2

||✓||2, where

r

i

(✓) = max

gt2goldTs

kt2kbestTs

(S

RNN

(gt) +�(gt, kt)

� S

RNN

(kt))

(19)

Intuitively, to minimize this objective, the RNN score of the
gold derivation tree gt is decreased and the RNN score of
the kbest derivation tree kt is increased.

We follow (Socher et al. 2013b) and adopt the diagonal
variant of AdaGrad (Duchi, Hazan, and Singer 2011) to op-
timize the above objective function for parameter training.

Experiments
With the learned RNN-based model, the baseline BTG-
based translation framework will be enhanced by the se-
mantic continuous vector grammars. The RNN score of the
derivation tree will serve as another informative feature (be-
sides the model features of the baseline) to search for the
optimal translation candidate during decoding.

Hyper-Parameter Settings
The hyper-parameters in the BRAE model and the RNN-
based model include the dimensionality of the word embed-
ding n in Eq. 2, the balance weight ↵ in Eq. 10, �s in Eq. 11
and Eq. 19.

For the dimensionality n, we have tried two settings n =

25, 50 in our experiments. We draw ↵ from 0.05 to 0.5 with
step 0.05, and �s from {10�6

, 10

�5
, 10

�4
, 10

�3
, 10

�2}.
The overall score of the BRAE and RNN-based model is
employed to guide the search procedure. Finally, we choose
↵ = 0.15, � = 10

�2.

SMT Setup
The SMT evaluation is conducted on Chinese-to-English
translation. The bilingual training data from LDC 2 contains
approximately 2 million sentence pairs with 27.7M Chinese
words and 31.9M English words. A 5-gram language model
is trained on the Xinhua portion of the English Gigaword
corpus and the English part of bilingual training data. The
NIST MT03 is used as the development data. NIST MT05,
MT06 and MT08 (news data) are used as the test data. Case-
insensitive BLEU is employed as the evaluation metric. The
statistical significance test is performed by the re-sampling
approach (Koehn 2004). In order to get the best performance
for each system (including the baseline), we run MERT four
times with different initial parameters and choose the param-
eters with the highest BLEU.

In addition, we pre-train the word vector representations
with the toolkit Word2Vec (Mikolov et al. 2013) on the
large-scale monolingual data including the aforementioned
data for SMT. The monolingual data contains 1.06B words
for Chinese and 1.12B words for English. To obtain high-
quality bilingual phrase pairs to train our BRAE model, we
perform forced decoding on the bilingual training sentences
and collect the phrase pairs used. After removing the du-
plicates, the remaining 1.12M bilingual phrase pairs (length
ranging from 1 to 7) are obtained 3. For max-margin train-
ing in the RNN-based translation model, we have chosen a
subset of high-quality sentence pairs (about 100K sentence
pairs) which have at least one gold derivation tree in the
forced decoding.

Experimental Results and Analysis
Experimental Results Table 1 shows the comparison re-
sults between the baseline BTG-based translation frame-

2LDC category numbers: LDC2000T50, LDC2002L27,
LDC2003E07, LDC2003E14, LDC2004T07, LDC2005T06,
LDC2005T10 and LDC2005T34.

3Training the BRAE model is very efficient, and it can run in a
laptop.
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Method MT03 MT05 MT06 MT08 ALL
BTG 35.81 34.69 33.83 27.17 33.72
BTG-RNN-25 36.47 35.27 35.32 28.71 34.85+

BTG-RNN-50 36.68 35.59 35.40 28.85 35.17+

Table 1: Experimental results of the RNN-based translation
model. 25 and 50 denotes the dimensionality of the vector
space. ”ALL” combines the development and test sets. ”+”
means that the model significantly outperforms the baseline
with p < 0.01.

work and the RNN augmented translation model. In this ex-
periment, we keep 200-best derivation trees for each source
sentences in the max-margin training.

As shown in Table 1, no matter what the dimensional-
ity of the vector space n is, the RNN augmented translation
model can significantly improve the translation quality in the
overall test data (with gains of more than 1.0 BLEU score).
For the specific evaluation data sets, the largest improvement
can be up to 1.68 BLEU score (MT08 for the dimensional-
ity 50). We also see that the translation quality can be im-
proved slightly if the dimensionality of the semantic vector
space is enlarged from 25 to 50. It should be noted that, the
training time of the RNN-based model increased a lot when
we change the dimensionality of 25 to 50 (about 2 times
slower). Therefore, we believe that the dimensionality of 25
is a good choice, especially in the large-scale experiments.

Analysis The experimental results above have success-
fully shown the effectiveness of our proposed RNN-based
translation model. As the RNN-based translation model at-
tempts to minimize the semantic gap between the source
string and its translation candidates, we here conduct a hu-
man evaluation to test whether the RNN augmented trans-
lation model performs much better than the baseline BTG-
based framework on retaining the semantic meaning of the
source sentences.

We randomly choose a subset 200 sentences from MT06
test set, and we then ask two bilingual speakers (Rater 1 and
Rater 2) to compare the results of two translation systems
BTG-RNN-50 and BTG. Table 2 presents the comparison
statistics. The figures in Table 2 show that the two raters
both report that on about 40% of sentences the system BTG-
RNN-50 performs better. The inter-rater agreement Cohen
Kappa  is 0.52 in the evaluation. These results indicate that
our RNN augmented translation model does very well in re-
taining the semantic meaning of the source sentence.

As the RNN-based model is trained on the kbest deriva-
tion trees, k of kbest is an important factor that influences
the quality of the learned RNN-based model and the final
translation performance. Here, we conduct a deep analysis
to see how the translation quality is affected by the capacity
of the kbest.

When we try different ks of kbest, we fix the dimension-
ality of the vector space to be 25. It is due to two reasons.
For one hand, the time complexity of the max-margin model
training is not too high. For the other hand, setting the di-
mensionality to be 25 has shown pretty good in Table 1. We

Rater < = >

Rater 1 38 83 79
Rater 2 45 71 84

Table 2: Human evaluation results when comparing the
translation system BTG-RNN-50 with the baseline system
BTG on 200 sentences subset of MT06. ”>” means the num-
ber of sentences on which the system BTG-RNN-50 per-
forms better than the baseline system BTG in keeping the
semantic meaning of the source sentence.

Method MT03 MT05 MT06 MT08 ALL
BTG 35.81 34.69 33.83 27.17 33.72
BTG-RNN-k100 36.35 35.11 35.03 28.40 34.52+

BTG-RNN-k200 36.47 35.27 35.32 28.71 34.85+

BTG-RNN-k300 36.66 35.45 35.48 28.69 34.96+

BTG-RNN-k400 36.73 35.61 35.67 28.77 35.11+

BTG-RNN-k500 36.87 35.74 35.65 28.92 35.38+

Table 3: Experimental results for different ks of kbest. ”+”
means that the model significantly outperforms the baseline
with p < 0.01.

try five different ks (k = 100, 200, 300, 400, 500) in the ex-
periments. Table 3 gives the detailed experimental results.

The figures in Table 3 show that the final translation per-
formance can be improved slightly but stably as the k be-
comes larger and larger. The largest gains over the baseline
BTG-based translation framework can be up to 1.84 BLEU
score (MT06 for k = 400). This indicates that it benefits
much from enlarging the kbest derivation space for the max-
margin training in the RNN-based model.

Conclusion and Future Work
This paper has presented an augmented translation model
with the recursive neural networks which aim at minimiz-
ing the semantic distance gap between the source language
string and its translation candidates. First, we presented
the bilingually-constrained recursive auto-encoders to learn
the semantic vector representation for each lexical trans-
lation rule. Second, we introduced the type-dependent re-
cursive neural networks to model the translation process
and designed a max-margin objective function to learn the
model parameters. The large-scale experiments on Chinese-
to-English translation have shown that our RNN augmented
translation model can significantly outperform the baseline.

Currently, we train our RNN-based translation model us-
ing kbest derivation trees to simulate the whole derivation
space. In the future work, we plan to enhance our type-
dependent RNN-based translation model by training it in a
larger derivation space (e.g. derivation forest) so as to obtain
a much bigger improvement.
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