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Abstract

In this paper, we systematically study the problem of
dataless hierarchical text classification. Unlike standard
text classification schemes that rely on supervised train-
ing, dataless classification depends on understanding
the labels of the sought after categories and requires
no labeled data. Given a collection of text documents
and a set of labels, we show that understanding the la-
bels can be used to accurately categorize the documents.
This is done by embedding both labels and documents
in a semantic space that allows one to compute mean-
ingful semantic similarity between a document and a
potential label. We show that this scheme can be used
to support accurate multiclass classification without any
supervision. We study several semantic representations
and show how to improve the classification using boot-
strapping. Our results show that bootstrapped dataless
classification is competitive with supervised classifica-
tion with thousands of labeled examples.

Introduction

With the increasing growth of online textual information on
the Web, there is an important need to determine the topics
of the vast amount of documents that we have around. Many
applications, including news classification (Dagan, Karov,
and Roth 1997; Joachims 1998), search result organiza-
tion (Dumais and Chen 2000), online advertising (Agrawal
et al. 2013), etc., have placed text categorization as a key
problem. In practice, supporting hierarchical categorization
is highly preferred since it provides multiple options that
vary in their level of abstractions to better fit the context
sensitive nature of applications (Chen and Dumais 2000;
Dumais and Chen 2000; Sun and Lim 2001; Cai and Hof-
mann 2004; Liu et al. 2005; Xiao, Zhou, and Wu 2011;
Gopal and Yang 2013). This preference is supported by cog-
nitive science studies, indicating that humans favor catego-
rization at multiple levels of abstraction (Murphy 2002).

While the importance of text classification is well recog-
nized, current research has not paid enough attention to the
fact that the labels we want to assign to documents are mean-
ingful. Understanding the labels is powerful and can be used
to avoid a key bottleneck — the need for labeled data.
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Table 1: Comparing supervised and dataless hierarchical text clas-
sification on the 20NG dataset. OHLDA refers to an LDA based
unsupervised method proposed in (Ha-Thuc and Renders 2011).

#Labeled data | Best Avg. F}

Supervised 100 0.515
Supervised 200 0.637
Supervised 500 0.765
Supervised 1,000 0.825
Supervised 2,000 0.866
OHLDA 0 0.595
Dataless 0 0.682

+ Bootstrapping 0 0.837

This was observed first in (Chang et al. 2008), studying a
simpler problem of flat binary classification, and later stud-
ied in computer vision as ‘“zero-shot learning” (Palatucci et
al. 2009; Socher et al. 2013; Elhoseiny et al. 2013). In these
settings, label names or descriptions are given instead of la-
beled data associated to the labels. However, early work has
not addressed hierarchical or multi-label classification prob-
lems as we do. Moreover, we provide a comprehensive study
of what semantic representations best support dataless clas-
sification.

Given a collection of text documents and a set of cate-
gories, we show that it is possible to assign category labels
to documents without requiring any labeled training data.
Instead, understanding the labels can be used to accurately
perform this categorization. Our scheme, dataless hierarchi-
cal text classification is composed of two steps: a seman-
tic similarity step and a bootstrapping step. In the semantic
similarity step, we embed both labels and documents in a
semantic space that allows one to compute meaningful se-
mantic similarity between a document and a potential label.
While this is a generic step that makes use of external in-
formation in the form of the semantic embedding, in the
bootstrapping step we adapt to the specific document col-
lection; we use the semantic similarity step to drive a ma-
chine learning classifier that iteratively improves the cate-
gorization without a need for labeled data. We study data-
less classification in the context of two natural hierarchical
classification schemes, top-down and bottom-up. Our bot-
tom line results are summarised in Table 1, indicating that
dataless classification is competitive with supervised classi-
fication with thousands of labeled examples.



Datasets and Evaluation Metrics

Before introducing the algorithms with results, we first in-
troduce the datasets and the evaluation metrics. Ideally, one
wants to use a very broad ontology of categories and have
the document collection choose which category (or a set of
categories) best describes each document in the collection.
This is how we envision the use of dataless methods in prac-
tice. However, in order to evaluate the quality of our dataless
algorithms we need to use existing labeled data. Therefore,
we begin by describing the datasets we use to do the evalua-
tion to compare our framework with existing work.

20Newsgroups Data (20NG) The 20 newsgroups
data (Lang 1995) is usually used as a multi-class clas-
sification benchmark dataset. It contains about 20,000
newsgroups messages evenly distributed across 20 news-
groups. Some of the newsgroups are close to each other
so that 20 newsgroups are also categorized into six super-
classes, i.e., computers, recreation, religion, science, politics
and forsale.! We use these two levels of classes as the hi-
erarchical classification problem and, in our evaluation, we
aggregate the label descriptions of the 20 newsgroups to the
upper level’s six super-classes.

Good description of the labels is crucially important for
comparing the similarity between labels and documents;
nevertheless, we first follow the descriptions of the labels
as provided in (Chang et al. 2008). We then provide a new,
somewhat embellished, set of descriptions and show the im-
pact this has on the dataless classification performance. The
labels and their descriptions are shown in Table 2.

RCV1 Data The RCV1 dataset is an archive of manu-
ally labeled newswire stories from Reuter Ltd (Lewis et al.
2004). The news documents are categorized with respect to
three controlled vocabularies: industries, topics and regions.
We choose to use topics as our hierarchical classification
problem. There are in total 804,414 documents. To ease the
computational cost of comparison, we choose the 23,149
documents marked as training samples in the dataset. We
checked the other four parts of the test data, and the results
are similar to the training data. The RCV1 data is a multi-
label dataset; that is, a document can belong to several cat-
egories. There are 103 categories including all nodes except
for root in the hierarchy. The maximum depth is four, and 82
nodes are leaves. The dataset also provides the name and de-
scription of each label. For example, label “C11” is named as
“strategy plans” with description “strategy, new companies,
joint ventures, consortia, diversifications, and investment.”
We also aggregate all the subtree nodes’ descriptions to the
root of subtree.

Evaluation Metrics We use averaged F} scores to mea-
sure the performance of all the methods (Yang 1999). Let
TP;, FP;, FN, denote the true-positive, false-positive,
and false negative values for the ¢th label in label set
T, when we assign most confident label to each doc-
ument at each level in the label hierarchy. Then we
have the micro-averaged and macro-averaged F) scores

"http://qwone.com/ jason/20Newsgroups/
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Table 2: Description of labels for 20newsgroups data. Old descrip-
tion is used by Chang et al. (2008).

Label

Old Description

New Description

talk.politics.guns politics guns gun fbi guns weapon compound
talk.politics.mideast politics mideast israel arab jews jewish muslim
talk.politics.misc politics gay homosexual sexual

alt.atheism atheism atheist christian atheism god islamic

soc.religion.christian

society religion chris-
tianity christian

christian god christ church bible jesus

talk.religion.misc

religion

christian morality jesus god religion horus

comp.sys.ibm.pc.
hardware

computer systems ibm
pc hardware

bus pc motherboard bios board computer
dos

comp.sys.mac.hardwar

computer systems mac
macintosh apple hard-
ware

mac apple powerbook

comp.graphics

computer graphics

graphics image gif animation tiff

comp.windows.x

computer windows X
windowsx

window motif xterm sun windows

comp.os.ms.windows.
misc

computer os operating
system microsoft win-
dows

windows dos microsoft ms driver drivers
card printer

rec.autos

cars

car ford auto toyota honda nissan bmw

rec.motorcycles

motorcycles

bike motorcycle yamaha

rec.sport.baseball

baseball

baseball ball hitter

rec.sport.hocke

hockey

hockey wings espn

sci.electronics

science electronics

circuit electronics radio signal battery

sci.crypt

science cryptography

encryption key crypto algorithm security

sci.med science medicine doctor medical disease medicine patient
sci.space science space space orbit moon earth sky solar
misc.forsale for sale discount sale offer shipping forsale sell price brand
obo
as: MicroFy, = 2P+ R/(P+ R) and MacroF, =
1 IT| 2P;xR; N ) ) )
Wzl pinss Where P, = TP/(TP + FP;) and

R; = TP,/(TP; + FN;,) are the precision and recall for
ith label, 7 = Y\"'7P,/S"N(TP, + FP) and R =

ZLT‘ TP,/ ZLT‘ (T'P;+ F N,) are the average precision and
recall for all labels in 7.

Dataless Hierarchical Classification

In the simplest sense, a dataless classification performs a
nearest neighbor classifier in an appropriately selected se-
mantic feature space (Chang et al. 2008). Let ¢(l;) be the
vector for the semantic representation of label /;, and ¢(d)
the representation of document d. We select that category
I¥ = argmin, ||¢(l;) — #(d)||. When a label hierarchy is
available, we can reduce the classification complexity by
considering the structure of hierarchy. Then, with available
unlabeled data, we can further improve classification using
bootstrapping. In this section, we first introduce several pos-
sible semantic representation approaches for text, and then
show how to design a dataless hierarchical classifier.

The Importance of Semantic Representation

The semantic representation of textual content is one of
the most important issues for text classification. Traditional
supervised classification makes use of the bag-of-words
(BOW) representation of documents. It breaks a document
into words, and formalizes the term frequency (TF) or the
term frequency-inverse document frequency (TFIDF) scores
of words as a high-dimensional sparse vector. Then, taking
linear kernel support vector machine (SVM) as an example,
the classifier uses a linear combination of training data as the
weight vector, to represent a classification hyperplane.

In the dataless setting, we do not assume the availabil-
ity labeled data. We only assume that we have the names of
labels. Directly comparing the BOW representations of the



documents with the label description may not be sufficient
due to sparsity. For example, a news article discussing sport
may only mention names of players, teams, or activities of a
match without mentioning the word sport. Therefore, find-
ing a better semantic representation is essential for dataless
classification. In this section, we propose several possible
representations.

Explicit Semantic Analysis (ESA) Explicit semantic
analysis (ESA) uses Wikipedia as an external knowl-
edge base to generate concepts for a given fragment of
text (Gabrilovich and Markovitch 2006; 2007). It assumes
that each Wikipedia article corresponds to a concept, and
uses the title of the article as the name of the concept.

ESA first represents a given text fragment as a TFIDF vec-
tor, then uses an inverted index for each word to search the
Wikipedia corpus, and finally merges the retrieved concepts
weighted by the TFIDF scores of words (Gabrilovich and
Markovitch 2006; 2007). The text fragment representation
is thus a weighted combination of the concept vectors corre-
sponding to its words. We implemented ESA using the lat-
est dump of Wikipedia, which contains about 13 millions
pages, including redirection and disambiguation pages. Af-
ter filtering out pages with less than 100 words and those
containing less than 5 hyperlinks, we finally obtain 3.1 mil-
lion concepts. To evaluate the effectiveness of this concept
representation, we use for each text fragment representations
of size 50, 100, 200, 500, and 1,000 concepts.

While ESA has been used before for text categorization,
we propose to study its effectiveness in dataless classifica-
tion in comparison to two additional semantic representa-
tions, using Brown clusters of words and using neural net-
work embedding of words, discussed next.

Brown Clusters The Brown clusters of words was pro-
posed by Brown et al. (1992) as a way to support abstrac-
tion in NLP tasks; it was further used in several NLP works,
such as by Liang (2005), to measure words’ distributional
similarity. This method generates a hierarchical tree of word
clusters by evaluating the word co-occurrence based on an
n-gram model. Then, paths traced from root to leaves can
be used as word representations. We use the implementation
by Liang (2005) and generated Brown clusters of words us-
ing three corpora in different settings:

BCsyong: We first performed the Brown clustering on the
20NG data, and set the maximum number of clusters to 50,
100, 200, 500, and 1,000.

BCrcvi: We also use the Brown clusters from Ratinov
and Roth (2009) and Turian, Ratinov, and Bengio (2010).2
The Brown clusters are generated based on the RCV1 cor-
pus, and the maximum numbers of clusters are set to 100,
320, 1,000, and 3,200.

BCwixi: Finally, for a fair comparison with ESA, we ran
Brown clustering over the latest Wikipedia dump, and set
the maximum number of clusters to 50, 100, 200, and 500.

Neural Network Word Embedding Word embedding
trained by neural networks has been used widely in the NLP

*http://metaoptimize.com/projects/wordreprs/
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community and has become a hot trend recently. In this pa-
per, we test the suitability of several different word embed-
dings for dataless classification.

WESsenna: We downloaded the word embedding used by
Senna neural network (Collobert et al. 2011).3 The word em-
bedding is trained using an earlier dump of Wikipedia, and
results in a 50-dimension embedding of words.

WEyrian: This is the embedding trained by Turian, Rati-
nov, and Bengio (2010) over the RCV 1 data. The dimensions
of word vectors are 25, 50, 100, and 200.

WEikolov: We finally used the tool released by Mikolov,
Yih, and Zweig (2013) and Mikolov et al. (2013) over the
latest Wikipedia dump, resulting in word vectors with di-
mensions 50, 100, 200, 500, and 1,000.

Given the above semantic representation of words, we
follow the scheme used for ESA to generate the document
semantic representation using a TFIDF weighted combina-
tion of word vectors in the documents. Note that the Brown
clusters obtained from 20NG data (BCsong) and RCV1
data (BCrcvy1), and the word embedding of RCV1 data
(WETurian) should not be available as external knowledge
if we want to have a pure dataless setting.

Dataless Hierarchical Classification Algorithms

Our dataless scheme for hierarchical classification consists
of two steps: the first is an initial, “pure”, dataless classifica-
tion, and the second performs bootstrapping.

Pure Dataless Initialization Given the external knowl-
edge of word representation, the most basic idea is to per-
form dataless hierarchical classification by comparing the
semantic representations of a document and candidate la-
bels. This primitive step can be run in a top-down or bottom-
up way, if one wants to consider the structure of the hierar-
chical label tree. A top-down algorithm starts from the root
node, and greedily finds the best children to further com-
pare. A bottom-up algorithm first compares all the leaves
nodes in the tree, and propagates the labels with high con-
fidence scores to the root. Summaries of the algorithms are
shown in Algorithms 1 and 2. The threshold § shown in the
algorithms is empirically set to be 0.95. Note that while in
standard classification schemes it is essential to go top-down
due to lack of supervised data (Chen and Dumais 2000;
Dumais and Chen 2000; Sun and Lim 2001; Cai and Hof-
mann 2004; Liu et al. 2005; Xiao, Zhou, and Wu 2011;
Gopal and Yang 2013), in dataless, which builds on “under-
standing” the labels and the documents, it is not essential,
especially in cases when the meaning of a leaf node is quite
well distinguished from other labels.

Dataless + Bootstrapping Inspired by the dataless flat
classification paper (Chang et al. 2008), we also propose a
bootstrapping procedure for dataless hierarchical classifica-
tion. This is a natural step to follow since it is free (no la-
beled data is needed) and it provides the dataless algorithm
a way to weigh the generic semantic representation in a way
that best fits the specific data collection. The bootstrapping

*http://ml.nec-labs.com/senna/



Algorithm 1 Top-down Pure Dataless HC.

Algorithm 2 Bottom-up Pure Dataless HC.

Input Data: A hierarchy of label tree 7. A representation mapping function ¢, (-),
where z can be ESA, BC, or WE. A document d for classification.
Input Parameters: Cutoff threshold §. Top K labels at each level.
Initialization: For each node I € T, get ¢ (1). Let I = root. Output label set
L=0.
Call TD(d, 1) as:
if |children ()| > O then
for all [; € children(l) do
si = cos( (1), 6o (d))
end for
SOrt 1, ... |children(1)] a5 §75
izeas >, s, = 1.
fori =1, ..., |children(l)| do
S0 < So + sé
if so > ¢ then
break
end if
L+ LU (1, 8h)
Call TD(d, ;)
end for
end if
Output: Sort the labels in £ at each level (depth), and reports the top K labels at

"'S\/chil(lren(l)\ in descent order and normal-

each level.

step makes use of unlabeled data (the given document col-
lection or additional unlabeled data if so desired), and it la-
bels the most confident documents in each iteration, start-
ing with the labels given in the “pure” initial step. Then, it
trains a new classifier to improve its accuracy and incorpo-
rate more labeled data. The procedure is as follows:

Step 1: Initialize N documents for each label, using con-
fident pure dataless classifications.

Step 2: For each iteration, train a hierarchical classifier
based on BOW representation to label N more documents
for each label.*

Step 3: Continue until no unlabeled documents remain.

To compare with the dataless scheme, we also imple-
mented supervised hierarchical classifiers in top-down and
bottom-up fashions. For the top-down approach, we train
a multi-class classifier for each node in the hierarchy tree.
As in the dataless case, it greedily searches for the best top
K children for further classification. For the bottom-up ap-
proach, we train a multi-class classifier for all the leaves
nodes, and then propagate the labels to the root. The su-
pervised classification proceeds in exactly the same manner
done during bootstrapping, with the only difference that in
the supervised case the labels are the gold labels given, and
in the dataless scheme the labels are provided by previous
bootstrapping stages.

Experiments

Our experiments are designed to study the effectiveness of
dataless hierarchical classification in comparison to “stan-
dard” supervised classification algorithms, and to study the
contribution of different semantic representations to the suc-
cess of the dataless scheme.

*Our experiments show that bootstrapping with BOW features
is the best choice among the different semantic representations.
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Input Data: A hierarchy of label tree 7. A representation mapping function ¢, (-),
where = can be ESA, BC, or WE. A document d for classification.
Input Parameters: Cutoff threshold §. Top K labels at each level.
Initialization: For each node I € leaves(T ), get ¢4 (). Output label set £ = &.
forall I; € leaves(7 ) do
s; = cos(¢z (l:), ¢z (d))
end for
Sort 51, ... 8| leaves(T)| a5 57,
Zi S; = 1.
fori =1, ..., |leaves(7)| do
So < Sso + s;
if so > 9 then
break
end if
L+ LU (li, S:)
for all Ancestors , of [; do
L+ LU (lg,s])
end for

, . .
-S| leaves(7)| I descent order and normalize as

end for
Output: Sort the labels in £ at each level (depth), and reports the top K labels at
each level.

Evaluation of Semantic Representation We first com-
pare the different semantic representations mentioned be-
fore, using pure dataless top-down and bottom-up algo-
rithms. The results of MicroF} scores are shown in Fig. 1.
It is evident that the performance of the ESA representation
is, by far, the best for both datasets and both top-down and
bottom-up algorithms. In general, with more concepts in the
representation, the ESA classification results are better.

For word embedding approaches, WEikolov, Which is
trained on Wikipedia, results in better MicroF} scores than
WEsgenna and WEmyian but, still, significantly inferior to
ESA. WEgsenna is also trained on Wikipedia, but the em-
bedding only has 50 dimensions, and it is trained on an ear-
lier Wikipedia dump, which might explain the better per-
formance of WEp1ikolov for the same dimensionality. For
WETurian, Which is trained on RCV1 data, it is clear that
the results on 20NG data are much worse than WEgenn, and
WEikolovs but comparable to WEyriko1ov 0n RCV1.

All the Brown cluster based representations do not show
promising results on the two datasets. This may be because
Brown cluster uses a hierarchial representation of word clus-
ters. When we aggregate all the words’ clusters into a docu-
ment representation, it may become less discriminative since
multiple documents might share a lot of common word clus-
ters near the root. More experiments might be needed to bet-
ter understand this. However, we can still see that BCyong
performs better than the other two Brown cluster based rep-
resentations on 20NG data, while BCrcy1 performs better
on RCV1 data.

Unsupervised Baseline In order to demonstrate the qual-
ity of our dataless approach, we compare it to some existing
unsupervised hierarchical text classification; specifically the
recent work on Ontology Guided Hierarchical Latent Dirich-
let Allocation (OHLDA). We implemented OHLDA (Ha-
Thuc and Renders 2011) for the sake of this experiment.
The original OHLDA retrieves 50 documents using a gen-



0.7
S ESA
0.6 P o e
o5 . n v = BC-20NG
b + BC-RCV1
® 04 +
5 X ® BC-Wiki
503
s X WE-Senna
0.2 u = X WE-Turian
¥ = R
01 % + WE-Mikolov
0
25 250 2500
# Concepts (ESA) / # Clusters (BC) / # Dimentions (WE)
(a) 20newsgroups: top-down (BOW: 0.200)
0.4
0.35 - . @ @ ESA
*
03 + + m BC-20NG
o X % X F
§025 ¥ A BC-RCV1
% 0.2 X @ BC-Wiki
§ 0.15 n A X WE-Senna
n
01 L4 e o . X WE-Turian
0.05 - ] L] + WE-Mikolov
0
25 250 2500
# Concepts (ESA) / # Clusters (BC) / # Dimentions (WE)

(c) RCV1: top-down (BOW: 0.279)

I
~

06 s ¢ o S ESA

05 + + m BC-20NG
o + BC-RCVL
@04 +
= o.
i X @ BC-Wiki
§ 03 X WE-Senna

] n ’
0.2 X WE-Turian
¥ &, A
0.1 + WE-Mikolov
0 T
25 250 2500

# Concepts (ESA) / # Clusters (BC) / # Dimentions (WE)
(b) 20newsgroups: bottom-up (BOW: 0.251)

0.4

0.35 s ¢ * @ ESA
0.3 + mBC-20NG
® 025 - . + 4 BC-RCV1
% 0.2 % £ X ® BC-Wiki
§ 0.15 B . X WE-Senna
0.1 2 L ) - X WE-Turian
0.05 + WE-Mikolov
0 |

25 250 2500
# Concepts (ESA) / # Clusters (BC) / # Dimentions (WE)

(d) RCV1: bottom-up (BOW: 0.276)

Figure 1: MicroF;@1 results of different representations for pure dataless hierarchical classification. “ESA” represents the method using
explicit semantic analysis. “BC” represents the methods using Brown clusters. “WE” represents the methods using word embedding. “BOW”
represents the classification using the bag-of-words representation. It is clear the ESA is the best semantic representation in all conditions.

eral search engine and 10 documents from Wikipedia for
each label, and trains a hierarhical topic model using this
data. Here we only retrieve from Wikipedia, but make use of
a much larger set of documents, 100 and 500, for each label.

The results of OHLDA are shown in Table 3. Because
OHLDA does not support a bootstrapping step, we compare
it here only with the initial, pure, dataless process. Even this
way, our dataless approach is clearly superior. It is inter-
esting to observe that using more documents may not im-
prove OHLDA’s accuracy: for both dataset, using 100 re-
trieved Wikipedia pages outperforms the results using 500
pages. We believe that using a larger number of retrieved
documents introduces that the topic models cannot tolerate.
Moreover, since 20NG has 26 labels and RCV1 has 103 la-
bels, training OHLDA with 100 Wikipedia articles per label
requires a large number of documents. Indeed, training and
testing (prediction with new data) using OHLDA is signifi-
cantly more time consuming than all the other algorithms.

Table 3: Comparison OHLDA and the initial (pure) dataless ver-
sion, as a function of different numbers of retrieved Wikipedia
pages for OHLDA. The numbers of document are per label and the
results are averaged over ten trails. For 20NG data, we provide the
ESA results with both old and new label descriptions (‘“old/new”).

20newsgroups | Pure Dataless 100 500
MicroF 0.625/0.682 0.59540.001 | 0.574=+0.001
MacroF 0.502/0.596 0.47940.002 | 0.463£0.001

RCV1 Pure Dataless 100 500
MicroF 0.371 0.28440.004 | 0.274+0.003
MacroF 0.183 0.114£0.002 | 0.115£0.002

Supervised Baselines To further demonstrate the effec-
tiveness of dataless hierarchical classification, we compared
it with several supervised baselines. We implement two
framework of supervised models, top-down and bottom-up
hierarchical classifiers. The bottom-up mechanism is some-
times called flat classification in the literature (Xiao, Zhou,
and Wu 2011; Gopal and Yang 2013).

Naive Bayes (NB): We first use a NB classifier for each
node, since the original dataless classification work has com-
pared with naive Bayes (Chang et al. 2008). The NB classi-
fier is implemented using LBJava (Rizzolo and Roth 2010).
The features used by this implementation are binary values
of words. For each word in the vocabulary, if a document
contains the word, then the value on that dimension is set to
be one, otherwise, zero.

Logistic Regression (LR): We also incorporate LR in the
supervised framework which has been used by Gopal and
Yang (2013). The implementation of logistic regression is
based on Liblinear (Fan et al. 2008). We choose the one-
vs-rest multi-class classification with L2-regularization ap-
proach. The features used are TFIDF vector of words. The
IDF score is computed based on the training data.

Support Vector Machine (SVM): Hierarchical SVM has
been used in many papers (Dumais and Chen 2000; Cai and
Hofmann 2004; Liu et al. 2005; Gopal and Yang 2013). We
use the Crammer & Singer’s pairwise class comparison ap-
proach which is implemented in Liblinear (Fan et al. 2008).
The features used in SVM are the same as in LR.

The results of the supervised methods for 20NG and
RCV1 data are shown in Figs. 2 and 3.

We can see that among the supervised methods, SVM per-
forms the best for 20NG. For RCV1, the number of classes
is larger and the number of examples each class is smaller. In
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Figure 2: 20newsgroups: comparison of dataless hierarchical clas-
sification with supervised baselines. All methods are evaluated
based on average of ten randomly sampled trials. “SVM (100)” rep-
resents SVM with 100 labeled data. “Dataless” means ESA (500)
+ bootstrapping. “Dataless (new)” means ESA (500) with new de-
scriptions (in Table 2) + bootstrapping.

this case, one-vs-rest approaches, i.e., NB and LR, perform
better than SVM’s pairwise approach. Moreover, NB, with
binary features, seems to be more stable in this case of large
number of classed with few examples each. It is also inter-
esting to see that, for 20NG, bottom-up is better than top-
down mechanism, but when the number of labels increases,
as in RCV1, the top-down mechanism seems to be more sta-
ble and shows higher I} scores. The reason is that in higher
levels of the hierarchy top-down has less class labels to work
with, and thus has more examples for each class.

Dataless Classification Our key experiments make use of
the two step datalass classification process: we choose ESA
with 500 concepts as the initialization approach, and use LR
as the base classifier for each node, since we find it to be
more stable across datasets. In the bootstrapping process,
when we find a labeled documents (via previous steps), we
also add the label to all the ancestors’ labeled sets. There-
fore, for each iteration, there will be more than N * |7 | doc-
uments added in the tree of classifiers. For 20NG data, we
randomly sample 50% of the document set and allow the
bootstrapping process to access it, and we use the rest as test
data. For RCV1, bootstrapping can access 80% of the doc-
uments for training, for compatibility with the supervised
methods. We empirically set N = 20 for both datasets. All
the results are average of ten trials.

The bottom line is that the results of the overall dataless
process (Figs. 2 and 3) is shown to be competitive with su-
pervised training. Specifically, for 20NG, bootstrapping is
competitive with supervised methods with 500 labeled docu-
ments for old description, and with 1,000 labeled documents
for new label descriptions. For RCV1 data, although the per-
formance of dataless classification is worse than supervised
algorithms on MicroF} scores with top-down approaches,
it is shown that dataless approaches are significantly better
on MacroF} . The reason is that for RCV1, there are several
classes with no training data. While this does not impact the
dataless approach, it does affect the average result over all
labels of the supervised approaches. The results of dataless
on MacroF; are also competitive with supervised methods
with 500 labeled documents.
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Figure 3: RCV: comparison of dataless hierarchical classifica-
tion with supervised baselines. All methods are evaluated based
on average of ten randomly sampled trials. “SVM (100)” repre-
sents SVM with 100 labeled data. “Dataless” means ESA (500) +
bootstrapping.

Discussion and Conclusion

In this section we discuss some further analysis we con-
ducted to better understand our results and assess the prac-
tical use of dataless classification. The scenario we envision
for dataless classification includes a collection of documents
along with an ontology of possible categories that we want
to assign to each document. While for evaluation purpose,
we had to work with a small and closed set of category la-
bels, we believe that this type of evaluation does not reflect
the true ability of dataless classification. To validate this in-
tuition, we performed two additional experiments.

First, we renamed the categories in the 20NG dataset to
better reflect the content of the collection (shown in Table 2).
Given the new descriptions, we tested some of the semantic
representations and compared them with the previous per-
formance. The key observation is that the dataless classifica-
tion given by both ESA and WEikelov are significantly im-
proved. As a consequence, the bootstrapping results are also
improved (results of ESA are shown in Table 3 and Fig. 2).

In our second experiment we used the Yahoo! Directory’s
categories as the dataless labels. We used 661 unique cat-
egories which are the leaves in our hierarchy, taken from
the first, second and (some of the) third level of the hierar-
chy. Once we classified the 20NG documents into this large
hierarchy, we analyzed the result by comparing the labels
given by the dataless algorithm to the gold labels. The re-
sults are very satisfying. For example, the documents in the
“rec.autos” newsgroup are mostly classified to Yahoo! cat-
egories “news and media: traffic and road conditions” and
“sports: wheelchair racing.” Moreover, documents in news-
group “talk. politics.misc” that are known to contains doc-
ument on social issues are classified mostly into Yahoo!
categories “news and media: cultures and groups,” “social
science: lesbian gay bisexual and transgendered studies,’
“health: long term care,” etc. Finally, we observe that co-
herent groups are classified as such — most of documents
classified in “science: aeronautics and aerospace” are from
“sci.space” newsgroup. Our conclusion is that given a large
label hierarchy such as the Yahoo! Directory, our dataless
method allows for robust organization of the documents by
their content.



Overall, we proposed a dataless hierarchical classification
approach for text categorization. Hierarchical classification
is a more general and realistic protocol for text classification.
We studied both top-down and bottom-up mechanisms and
showed that “bottom-up” approache is more useful in the
dataless setting. We systematically compared the ESA ap-
proach to other “modern” representations, i.e., Brown clus-
ters, word embedding, and OHLDA topics, thus demonstrat-
ing the importance of representation for dataless classifica-
tion. Not surprisingly, ESA is found to be better suited for
this task. Finally, our experiments indicate that dataless hier-
archical classification is a promising and practical direction.
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