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Abstract

Halpern and Pearl introduced a definition of actual causal-
ity; Eiter and Lukasiewicz showed that computing whether
X = zisacause of Y = y is NP-complete in binary models
(where all variables can take on only two values) and »h-
complete in general models. In the final version of their pa-
per, Halpern and Pearl slightly modified the definition of ac-
tual cause, in order to deal with problems pointed by Hopkins
and Pearl. As we show, this modification has a nontrivial im-
pact on the complexity of computing actual cause. To charac-
terize the complexity, a new family Di , k = 1,2,3,..., of
complexity classes is introduced, which generalizes the class
DY introduced by Papadimitriou and Yannakakis (DT is just
D). We show that the complexity of computing causality
under the updated definition is D2 -complete.

Chockler and Halpern extended the definition of causality by
introducing notions of responsibility and blame. The com-
plexity of determining the degree of responsibility and blame
using the original definition of causality was completely char-
acterized. Again, we show that changing the definition of
causality affects the complexity, and completely characterize
it using the updated definition.

1 Introduction

There have been many attempts to define causality going
back to Hume (1739), and continuing to the present (see,
for example, (Collins, Hall, and Paul 2004; Pearl 2000) for
some recent work). The standard definitions of causality are
based on counterfactual reasoning. In this paper, we focus
on one such definition, due to Halpern and Pearl, that has
proved quite influential recently.

The definition was originally introduced in 2001 (Halpern
and Pearl 2001), but then modified in the final journal ver-
sion (Halpern and Pearl 2005) to deal with problems pointed
out by Hopkins and Pearl (2003). (For ease of reference,
we call these definitions “the original HP definition” and
“the updated HP definition” in the sequel.) In general,
what can be a cause in both the original HP definition and
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the updated definition is a conjunction of the form X;

z1 A ... N\ X < x5, abbreviated X « Z; what is caused
can be an arbitrary Boolean combination ¢ of formulas of
the form Y = y. This should be thought of as saying that
setting X7 to x; and ... and setting X}, to zj results in ¢
being true. As shown by Eiter and Lukasiewicz (2002) and
Hopkins (2001), under the original HP definition, we can al-
ways take causes to be single conjuncts. However, as shown
by Halpern (2008), this is not the case for the updated HP
definition.

Using the fact that causes can be taken to be single con-
juncts, Eiter and Lukasiewicz(2002) showed that deciding
causality (that is, deciding whether X = z is a cause of ¢) is
NP-complete in binary models (where all variables can take
on only two values) and ¥.£’-complete in general models. As
we show here, this is no longer the case for the updated HP
definition. Indeed, we completely characterize the complex-
ity of causality for the updated HP definition. To do so, we
introduce a new family of complexity classes that may be of
independent interest. Papadimitriou and Yannakakis (1984)
introduced the complexity class DT, which consists of all
languages L3 such that there exists a language L, in NP and
a language Lo in co-NP such that Ly = L; N Ls. We gen-
eralize this by defining DY to consist of all languages L3
such that there exists a language L € Ef and a language
Lo € Hkp such that Ls = Ly N Lo.

Since ¥¥ is NP and I1¥ is co-NP, DY is Papadimitriou
and Yannakakis’s DT, We then show that deciding causal-
ity under the updated HP definition is D complete. Pa-
padimitriou and Yannakakis (1984) showed that a number
of problems of interest were D’ complete, both for binary
and general causal models. To the best of our knowledge,
this is the first time that a natural problem has been shown
to be complete for DE.

Although, in general, causes may not be single conjuncts,
as observed by Halpern (2008), in many cases (in particular,
in all the standard examples studied in the literature), they
are. In an effort to understand the extent to which the dif-
ficulty in deciding causality stems from the fact that causes
may require several conjuncts, we consider what we call the



singleton cause problem; that is, the problem of deciding if
X = xisacause of ¢ (i.e., where there is only a single con-
junct in the cause). We show that the singleton cause prob-
lem is simpler than the general causality problem (unless the
polynomial hierarchy collapses): it is 34" complete for both
binary and general causal models. Thus, if we restrict
to singleton causes, the complexity of deciding causality in
general models is the same under the original and the up-
dated HP definition, but in binary models, it is still simpler
under the original HP definition.

Causality is a “0-1" concept; X = Zis either a cause of %
or it is not. Now consider two voting scenarios: in the first,
Mr. G beats Mr. B by a vote of 11-0. In the second, Mr. G
beats Mr. B by a vote of 6-5. According to both the original
and the updated HP definition, all the people who voted for
Mr. G are causes of him winning. While this does not seem
so unreasonable, it does not capture the intuition that each
voter for Mr. G is more critical to the victory in the case
of the 6-5 vote than in the case of the 11-0 vote. The no-
tion of degree of responsibility, introduced by Chockler and
Halpern (2004), does so. The idea is that the degree of re-
sponsibility of X = x for pis 1/(k+1), where k is the least
number of changes that have to be made in order to make
X = x critical. In the case of the 6-5 vote, no changes have
to be made to make each voter for Mr. G critical for Mr. G’s
victory; if he had not voted for Mr. G, Mr. G would not have
won. Thus, each voter has degree of responsibility 1 (i.e.,
k = 0). On the other hand, in the case of the 11-0 vote, for a
particular voter to be critical, five other voters have to switch
their votes; thus, £ = 5, and each voter’s degree of respon-
sibility is 1/6. This notion of degree of responsibility has
been shown to capture (at a qualitative level) the way peo-
ple allocate responsibility (Gerstenberg and Lagnado 2010;
Lagnado, Gerstenberg, and Zultan 2013).

Chockler and Halpern further extended the notion of de-
gree of responsibility to degree of blame. Formally, the de-
gree of blame is the expected degree of responsibility. This
is perhaps best understood by considering a firing squad with
ten excellent marksmen. Only one of them has live bul-
lets in his rifle; the rest have blanks. The marksmen do
not know which of them has the live bullets. The marks-
men shoot at the prisoner and he dies. The only marks-
man that is the cause of the prisoner’s death is the one with
the live bullets. That marksman has degree of responsibil-
ity 1 for the death; all the rest have degree of responsibil-
ity 0. However, each of the marksmen has degree of blame
1/10.The complexity of determining the degree of respon-
sibility and blame using the original definition of causality
was completely characterized (Chockler and Halpern 2004;
Chockler, Halpern, and Kupferman 2008). Again, we show
that changing the definition of causality affects the complex-
ity, and completely characterize the complexity of determin-
ing the degree of responsibility and blame with the updated
definition.

The rest of this paper is organized as follows. In Section 2,
we review the relevant definitions of causality. In Section 3,
we briefly review the relevant definitions from complexity
theory and define the complexity classes D,f . In Section 4
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we prove our results on complexity of causality.’

2 Causal Models and Causality: A Review

In this section, we review the details of Halpern and Pearl’s
definition of causal models and causality, describing both the
original definition and the updated definition. This material
is largely taken from (Halpern and Pearl 2005), to which we
refer the reader for further details.

2.1 Causal models

A signature is a tuple S = (U, V,R), where U is a finite
set of exogenous variables, V is a finite set of endogenous
variables, and R associates with every variable Y € Y UV
a finite nonempty set R(Y") of possible values for Y. Intu-
itively, the exogenous variables are ones whose values are
determined by factors outside the model, while the endoge-
nous variables are ones whose values are ultimately deter-
mined by the exogenous variables. A causal model over sig-
nature S is a tuple M = (S, F), where F associates with
every endogenous variable X € V a function F’x such that
Fy + (xveuR(U) X (xyew\(x3R(Y))) = R(X). That
is, F'x describes how the value of the endogenous variable
X is determined by the values of all other variables in /U .
If R(Y') contains only two values for each Y € &/ UV, then
we say that M is a binary causal model.

We can describe (some salient features of) a causal model
M using a causal network. A causal network is a graph
with nodes corresponding to the random variables in V and
an edge from a node labeled X to one labeled Y if Fy de-
pends on the value of X. Intuitively, variables can have a
causal effect only on their descendants in the causal net-
work; if Y is not a descendant of X, then a change in the
value of X has no affect on the value of Y. For ease of
exposition, we restrict attention to what are called recursive
models. These are ones whose associated causal network
is a directed acyclic graph (that is, a graph that has no cy-
cle of edges). Actually, it suffices for our purposes that, for
each setting u for the variables in U/, there is no cycle among
the edges of the causal network. We call a setting « for the
variables in U a context. It should be clear that if M is a re-
cursive causal model, then there is always a unique solution
to the equations in M, given a context.

The equations determined by {Fx : X € V} can be
thought of as representing processes (or mechanisms) by
which values are assigned to variables. For example, if
Fx(Y,Z,U) =Y + U (which we usually write as X =
Y +U), thenif Y = 3 and U = 2, then X = 5, regardless
of how Z is set. This equation also gives counterfactual in-
formation. It says that, in the context U = 4, if Y were 4,
then X would be 8, regardless of what value X and Z actu-
ally take in the real world. That is, if U = 4 and the value of
Y were forced to be 4 (regardless of its actual value), then
the value of X would be 8.

While the equations for a given problem are typically ob-
vious, the choice of variables may not be. Consider the
following example (due to Hall (2004)), showing that the

"Missing proof details can be found at
http://www.cs.cornell.edu/home/halpern/papers/newcause.pdf.



choice of variables influences the causal analysis. Suppose
that Suzy and Billy both pick up rocks and throw them at
a bottle. Suzy’s rock gets there first, shattering the bottle.
Since both throws are perfectly accurate, Billy’s would have
shattered the bottle had Suzy not thrown.

In this case, a naive model might have an exogenous vari-
able U that encapsulates whatever background factors cause
Suzy and Billy to decide to throw the rock (the details of
U do not matter, since we are interested only in the context
where U’s value is such that both Suzy and Billy throw), a
variable ST for Suzy throws (ST = 1 if Suzy throws, and
ST = 0 if she doesn’t), a variable BT for Billy throws, and
a variable BS for bottle shatters. In the naive model, whose
graph is given in Figure 1, BS'is 1 if one of ST and BT is 1.

U

ST BT

BS

Figure 1: A naive model for the rock-throwing example.

This causal model does not distinguish between Suzy and
Billy’s rocks hitting the bottle simultaneously and Suzy’s
rock hitting first. A more sophisticated model might also
include variables SH and BH, for Suzy’s rock hits the bot-
tle and Billy’s rock hits the bottle. Clearly BS is 1 iff one
of SH and BH is 1. However, now, SH is 1 if ST is 1, and
BH = 1if BT = 1 and SH = 0. Thus, Billy’s throw hits if
Billy throws and Suzy’s rock doesn’t hit. This model is de-
scribed by the following graph, where we implicitly assume
a context where Suzy throws first, so there is an edge from
SH to BH, but not one in the other direction (and omit the
exogenous variable).

ST BT

SH BH

BS
Figure 2: A better model for the rock-throwing example.

Given a causal model M = (8, F), a (possibly empty)
vector X of variables in V, and a vector T of values for

the variables in X , we define a new causal model, denoted

M I which is identical to M, except that the equation

for the variables X in F is replaced by X =z Intuitively,
this is the causal model that results when the variables in
X are set to & by some external action that affects only the
variables in X (and overrides the effects of the causal equa-
tions). For example, if M is the more sophisticated model
for the rock-throwing example, then Mg7. ¢ is the model
where Suzy doesn’t throw.

Given a signature S = (U, V, R), a formula of the form
X =z, for X € Vand z € R(X), is called a prim-
itive event. A basic causal formula has the form [Y; «
Y1,---, Yk < yg]e, where ¢ is a Boolean combination of
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primitive events; Y7, ..., Y} are distinct variables in V; and
y; € R(Y;). Such a formula is abbreviated as [Y « 7]¢p.
The special case where k£ = 0 is abbreviated as ¢. Intu-
itively, [Y1 < y1,...,Yr < yi]o says that ¢ holds in the
counterfactual world that would arise if Y; is set to y;, for
t=1,...,k. A causal formula is a Boolean combination of
basic causal formulas.

A causal formula ¢ is true or false in a causal model, given
a context. We write (M, @) = ¢ if ¢ is true in causal model
M given context @. (M,@) = [Y « (X = x) if the
variable X has value z in the unique (since we are dealing

with recursive models) solution to the equations in My, - in
Yy

context u (i.e., the unique vector of values for the exogenous
variables that simultaneously satisfies all equations F; Eg,

Z €V —Y, with the variables in U/ set to ). We extend the
definition to arbitrary causal formulas in the obvious way.

2.2 Causality
We now review the updated HP definition of causality.

Definition 2.1 X = 7 is a cause of ¢ in (M, @) if the fol-
lowing three conditions hold:

ACL. (M,@) = (X =2) Ao
AC2. There exist a partition (Z , W) of V wjth _X C Zand
some setting (Z',0) of the variables in (X, W) such that
if (M,d) = Z = z* for Z € Z, then
(a) (M,7) = [X « &, W « @]
(b) (M, 11_2) E [_X < W — @, 2 « ?]gafor all sub-
sets Z' of Z \ X and all subsets W' of W, where we

abuse notation and write W' < 0 to denote the as-
signment where the variables in W' get the same values
as they would in the assignment W « &, and similarly
for Z' « z*. That is, setting any subset W' of W to
the values in W should have no effect on p as long as
X has the value Z, even if all the variables in an arbi-

trary subset of Z are set to their original values in the
context .

AC3. (X = Z) is minimal; no subset of X satisfies AC2.

If Xisa singleton, then X = =z is said to be a singleton
cause of ¢ in (M, @).

ACI1 just says that A cannot be a cause of B unless both
A and B are true. The core of this definition lies in AC2. In-
formally, the variables in Z should be thought of as describ-
ing the “active causal process” from X to ¢. These are the
variables that mediate between X and ¢. AC2(a) is reminis-
cent of the traditional counterfactual criterion, according to
which X = z is a cause of ¢ if changing the value of X re-
sults in ¢ being false. However, AC2(a) is more permissive
than the traditional criterion; it allows the dependence of ¢
on X to be tested under special structural contingencies, in
which the variables W are held constant at some setting .
AC2(b) is an attempt to counteract the “permissiveness” of
AC2(a) with regard to structural contingencies. Essentially,
it ensures that X alone suffices to bring about the change



from ¢ to —p; setting W to @ merely eliminates spurious
side effects that tend to mask the action of X.

To understand the role of AC2(b), consider the rock-
throwing example again. Let M be the model in Figure 1,
and let @ be the context where both Suzy and Billy throw.
It is easy to see that both Suzy and Billy are causes of the
bottle shattering in (M, @): Let Z = {ST, BS}, and con-
sider the structural contingency where Billy doesn’t throw
(BT = 0). Clearly (M,U) [ [ST < 0,BT «+ 0](BS = 0)
and (M,u) = [ST < 1,BT < 0}(BS = 1), so Suzy is a
cause of the bottle shattering. A symmetric argument shows
that Billy is also a cause.

But now consider the model M’ described in Figure 2;
again, u is the context where both Suzy and Billy throw. It
is still the case that Suzy is a cause of the bottle shattering
in (M, u). We can take W = {BT} and again consider the
contingency where Billy doesn’t throw. However, Billy is
not a cause of the bottle shattering in (M’ u). For suppose

that we now take W = {ST} and consider the contingency
where Suzy doesn’t throw. Clearly AC2(a) holds, since if
Billy doesn’t throw (under this contingency), then the bot-
tle doesn’t shatter. However, AC2(b) does not hold. Since
BHc 7 , if we set BH to 0 (its original value), then AC2(b)
would require that (M’,u) = [BT < 1,ST < 0,BH <«
0](BS = 1), but this is not the case. Similar arguments
show that no other choice of (Z , W) makes Billy’s throw a
cause of the bottle shattering in (M’, u).

The original HP definition differs from the updated def-
inition in only one respect. Rather than requiring that
(M, @) = [X « &, W' « @, Z" + 2*]p for all subsets
W' of W, it was required to hold only for W. That is, the
following condition was used instead of AC2(b).

AC2(Y) (M, @) = [X « &, W « &, Z' + Z¥]p for all
subsets 7’ of Z.

The requirement for AC2(b) to hold for all subsets of W
in the updated definition prevents situations where W “con-
ceals other causes for ¢”. The role of this requirement is
perhaps best understood by considering the following ex-
ample, due to Hopkins and Pearl (2003) (the description is
taken from (Halpern and Pearl 2005)): Suppose that a pris-
oner dies either if A loads B’s gun and B shoots, or if C'
loads and shoots his gun. Taking D to represent the pris-
oner’s death and making the obvious assumptions about the
meaning of the variables, we have that D = (A A B) v C.
Suppose that in the actual context u, A loads B’s gun, B
does not shoot, but C' does load and shoot his gun, so that
the prisoner dies. Thatis, A = 1, B = 0, and C' = 1.
Clearly C' = 1 is a cause of D = 1. We would not want
to say that A = 1 is a cause of D = 1, given that B did
not shoot (i.e., given that B = 0). However, with AC2(b"),
A = 1isacause of D = 1. For we can take W = {B,C}
and consider the contingency where B = 1 and C = 0. It
is easy to check that AC2(a) and AC2(b”) hold for this con-
tingency, so under the original HP definition, A = 1 is a
cause of D = 1. However, AC2(b) fails in this case, since
(M,u) E [A + 1,C « 0](D = 0). The key point is that
AC2(b) says that for A = 1 to be a cause of D = 1, it must
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be the case that D = 0 if only some of the values in W are
set to w. That means that the other variables get the same
value as they do in the actual context; in this case, by set-
ting only A to 1 and leaving B unset, B takes on its original
value of 0, in which case D = 0. AC2(b’) does not consider
this case.

Using AC2(b) rather than AC2(b’) has been shown to have
a significant benefit (and to lead to more intuitive results)
when causality is applied to program verification, with the
goal of understanding what in the code is the cause of a pro-
gram not satisfying its specification (Beer et al. 2012).

3 Relevant Complexity Classes

In this section, we briefly recall the definitions of the com-
plexity classes that we need for our results, and define the
complexity class D5.

Recall that the polynomial hierarchy is a hierarchy of
complexity classes that generalize the classes NP and co-
NP. Let ¥ = NP and IIY' = co-NP. For i > 1, define
»P = NPE1 and nf = (co-NP)Ef—l, where, in general,
XY denotes the class of problems solvable by a Turing ma-
chine in class A augmented with an oracle for a problem
complete for class B. (See (Meyer and Stockmeyer 1972;
Stockmeyer 1977) for more details and intuition.)

We now define the classes D} as follows.

Definition 3.1 Fork =1,2,...,
DF ={L:3Ly,Ly: L1 € P Ly e 1P L = L, N L,}.

For k = 1, the class DY is the well-known complexity
class D?, defined by Papadimitriou and Yannakakis (1984).
It contains exact problems such as the language of pairs
(G, k), where G is a graph that has a maximal clique of size
exactly k. As usual, we say that a language L is DY com-
plete if it is in Df and is the “hardest” language in D}, in
the sense that there is a polynomial time reduction from any
language L' € D¥ to L.

Recall that a guantified Boolean formula (QBF) is a gen-
eralization of a propositional formula, where some proposi-
tional variables are quantified. Thus, for example, JxVy(xV
y) is a QBF. A closed QBF (CQBF) is one where there are
no free propositional variables. A CQBF is either true or
false, independent of the truth assignment. The “canonical”
languages complete for ¥5 and TI% consist of the CQBFs
with k alternations of quantifiers starting with 3 (resp., V)
that are true. In particular, let

>P (SAT) =
{3XVY ¢ | 3XVY ¢ is a CQBF, 3XVY ¢ = true}
1% (SAT) =
{vX3Y | VX3Y ¢ is a CQBF, VX 3Y ¢ = true}.

Ei(SAT) is complete for ¥1’ and [T’ (SAT) is complete for
IT5 (Wrathall 1976).

The following lemma provides a useful condition suffi-
cient for a language to be D,f -complete.

Lemma 3.2 [f L, is Z}: -complete and Lo is Hf -complete,
then L3 = L1 N Ly is D,f—complete.



Proof: The fact that L3 is in Df is immediate from the
definition of DY . For hardness, let L} be a language in DY .
Then there exist L} and L} such that Lj € P L} € TIY,
and L' = L} N Lj. Let f be a polynomial-time reduction
from L] to Lj, and let g be a polynomial-time reduction
from L) to Ly (the existence of such reductions f and g
follows from the fact that L and Lo are Ekp -complete and
I} -complete, respectively). Then, (f,g) is a polynomial-
time reduction from L} to L3, as required.

Essentially the same argument shows that if L4 is ka -hard
and Lo is Hkp-hard, then L3 = L; N Ly is le-hard.

Determining whether X =  is a cause of ¢ in (M, u)
is a decision problem: we define a language and try to de-
termine whether a particular tuple is in that language. (See
Section 4 for the formal definition.) Determining degree of
responsibility and blame is a different type of problem, since
we are determining which number represents the degree of
responsibility (resp., blame). Formally, these are function
problems. For ease of exposition, we restrict attention to
functions from some strings over some fixed language X to
strings over X (i.e., we are considering functions from ¥* to
3*). For a complexity class A in the polynomial hierarchy,
FPA1°8 "] consists of all functions that can be computed by
a polynomial-time Turing machine with an A-oracle which
on input x asks a total of O(log |z|) queries (Papadimitriou
1984). A function f(z) is FPAl°®™hard iff for every func-
tion g(z) in FPA°8 ™ there exist polynomially computable
functions R, S : ¥* — X* such that g(x) = S(f(R(x))). A
function f () is complete in FPAI8 ™) iff it is in FPAlce ™)
and is FPA1° "]_hard.

Finally, for a complexity class A in polynomial hierar-
chy, FPﬁis the class of functions that can be computed
by a polynomial-time Turing machine with parallel (i.e.,
non-adaptive) queries to an A-oracle. (For background
on these complexity classes, see (Jenner and Toran 1995;
Johnson 1990).)

4 Complexity for the Updated HP Definition

In this section, we prove our results on the complexity of de-
ciding causality. We start by defining the problem formally.
In the definitions, M stands for a causal model, « is a con-
text, X is a subset of variables of M , and ¥ is the set of
values of X in (M, @):

Lcause = {<M,ﬁ,¢,i,f> : ()_(' =17)
is a cause of ¢ in (M, u)}.
One of our goals is to understand the cause of the complex-

ity of computing causality. Towards this end, it is useful to
define two related languages:

—

Laco = {(M, 1, ¢, X,Z) : (X = T) satisfies conditions
AC1 and AC2 of Def. 2.1 for ¢ in (M, @)},
Lacy = {(M,d,¢,X,T) : (X = %) satisfies conditions

AC1 and AC3 of Def. 2.1 for ¢ in (M, @)}.

It is easy to see that Leause = Laco N Lacs-
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Let Ll use be the subset of Lcause Where X and T are
singletons; this is the singleton causality problem. We can
sirlnilarly dfﬁne Lo and L) . Agailn, we have1 Liause =
L {\CZ NnL /}C3’ but, 1T1 fact, we have'Lcause = L AC2 since
Ly cy © Ly for singleton causality, the minimality con-
dition AC3 trivially holds.

We denote by LE, . the language of causality for binary
causal models (i.e., where the models M in the tuple are bi-
nary models), and by L% ~, and L3~ the languages Laco
and L (3 restricted to binary causal models. Again we have
that L e = Lf‘CZ N L2C3‘ And again, we can define
Léiuse: Lngy» and L. and we have Leguse = Lingss-

We start by considering singleton causality. As we ob-
served, Eiter and Lukasiewicz (2002) and Hopkins (2001)
showed that, with the original HP definition, singleton
causality and causality coincide. However, for the updated
definition, Halpern (2008) showed that it is in fact possi-
ble to have minimal causes that are not singletons. Thus,
we consider singleton causality and general causality sepa-
rately. We can clarify where the complexity lies by consid-
ering L oo (and its sublanguages) and L3 (and its sub-
languages) separately.

B,1
Le:

AC and

Theorem 4.1 The languages Lca, Ly o,
LACZ are X¥ -complete.

Proof outline: To show all these languages are in %7,
given a tuple (M, @, p, X, &), checking that AC1 holds, that
is, checking that (M, @) = X = & A ¢, can be done in time
polynomial in the size of M, | X|, and || (the length of ¢ as
a string of symbols). For AC2, we need only guess the set
W and the assignment w. The check that assigning 0 to w
and z’ to X indeed falsifies ¢ is polynomial, and we use an
NP oracle to check that for all subsets of W and all subsets
of Z, condition AC2(b) holds. (The argument is quite sim-
ilar to Eiter and Lukasiewicz’s argument that causality is in
¥¥ for general models with the original HP definition.)

For hardness, it clearly suffices to show that Li’éz is 25 -

hard. We do this by reducing X1’ (SAT) to L/}iéZ'

a CQBF formula 3xX V?cp, we show that we can efficiently
construct a causal formula ), model M, and context u such

that EI)?V?@ = true iff (M, u,, A,0) € Lﬁéz. We leave
details to the full paper.

Given

Since, as we have observed, AC3 is vacuous in the case
of singleton causality, it follows that singleton causality is
¥ -complete.

Corollary 4.2 L., and Lfa’zise are ¥o-complete.

We now show that things are harder if we do not restrict to
binary causal models (unless the polynomial hierarchy col-
lapses). As a first step, we consider the complexity of L pc3
and L2C3'

Theorem 4.3 L¢3 and L} -3 are 115 -complete.



Proof outline: The fact that Lzc3 and L~ are in IT5 is

straightforward. Again, given a tuple (M, i, 0, X , @), we
can check that AC1 holds in polynomial time. For AC3, we
need to check that for all strict subsets X’ of X , AC2 fails.
Since checking AC2 is in 4", checking that it fails is in IT%.
Checking that it fails for all strict subsets X’ keeps it in TT&
(since it just adds one more universal quantifier).

To prove that these languages are 15 -hard, we show that
we can reduce IT5 (SAT) to L ~. The proof is similar in
spirit to the proof of Theorem 4.1; we leave details to the
full paper. UJ

We are now ready to prove our main result.
Theorem 4.4 Lcqyuse and LB s, are DY -complete.

Proof: Membership of Lcayse (and hence also Lc%use) in
Df follows from the fact that Lcause = Lacy N Lacs,
Laco € XL, and Lacy € TI5. The fact that LE, . (and
hence also Lcause) are Df -hard follows from Lemma 3.2
and Theorems 4.1 and 4.3. ]

5 Responsibility and Blame

In this section, we review the definitions of responsibility
and blame and characterize their complexity. See Chockler
and Halpern (2004) for more intuition and details.

5.1 Responsibility

The definition of responsibility given by Chockler and
Halpern (2004) was given based on the original HP defini-
tion of causality, and thus assumed that causes were always
single conjuncts. It is straightforward to extend it to allow
causes to have arbitrarily many conjuncts.

Definition 5.1 The degree of responsibility of X = Zfor ©
in (M, @), denoted dr((M,@),(X = ), ¢), is 0 if X = &
is not a cause of ¢ in (M, @); itis 1/(k+1)if X = Zisa
cause of @ in (M, @) and there exists a partition (Z, W) and
setting (Z', W) for which AC2 holds such that (a) k variables
in W have different values in W than they do in the context
i@ and (b) there is no partition (Z',W') and setting (¥, ')
satisfying AC2 such that only k' < k variables have different
values in W' than they do the context 1.

—

Intuitively, dr((M, @), (X = &), ) measures the mini-
mal number of changes that have to be made in @ in order

to make ¢ counterfactually depend on X, provided the con-
ditions on the subsets of W and Z are satisfied (see also the
voting example from the introduction). If there is no par-
tition of V to (Z, W) that satisfies AC2, or (X = &) does
not satisfy AC3 for ¢ in (M, @), then the minimal number
of changes in @ in Definition 5.1 is taken to have cardinality

o0, and thus the degree of responsibility of ()? =2)is0
(and hence it is not a cause).

In the original HP model, it was shown that computing re-
sponsibility is FpNPllog ”]—complete in binary causal models

(Chockler, Halpern, and Kupferman 2008) and FpTz llogn]_
complete in general causal models (Chockler and Halpern
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2004). We now characterize the complexity of computing
responsibility in the updated HP definition.

Theorem 5.2 Computing the degree of responsibility is

Fp¥s llog "_complete for singleton causes in binary and
general causal models.

Proof outline: The proof is quite similar to the proof in
(Chockler and Halpern 2004). We prove membership by de-
scribing an algorithm in Fp2 o nlgor computing the degree
of responsibility. Roughly speaking, the algorithm queries
an oracle for the language R = {(((M, @), (X = x),p,1)
such that (M, @), (X = z),¢) € Leguse and the degree
of responsibility of (X = z) for ¢ is at least ¢}. It is easy
to see that R is in X1 by using Corollary 4.2. The algo-
rithm for computing the degree of responsibility performs a
binary search on the value of dr((M, @), (X = z), ¢), each
time dividing the range of possible values for the degree of
responsibility by 2 according to the answer of R. The num-
ber of possible candidates for the degree of responsibility is
bounded by the size of the input n, and thus the number of
queries is at most [logn].

For hardness in binary causal models (which implies
hardness in general causal models), we provide a reduc-
tion from the Y -complete problem MINQSAT, (Chock-
ler and Halpern 2004) to the degree of responsibility, where
MINQSAT, (EX' V}?w) is the minimum number of 1’s in the
satisfying assignment to X for EI)?VY& if such an assign-
ment exists, and | X | 4 1 otherwise.

O

Theorem 5.3 Computing the degree of responsibility is
FPP2108"_complete in binary and general causal models.

5.2 Blame

The definition of blame addresses the situation where there
is uncertainty about the true situation or “how the world
works”. Blame, introduced in (Chockler and Halpern 2004),
considers the “true situation” to be determined by the con-
text, and “how the world works” to be determined by the
structural equations. An agent’s uncertainty is modeled by a
pair (K, Pr), where K is a set of pairs of the form (M, @),
where M is a causal model and # is a context, and Pr is a
probability distribution over K. A pair (M, @) is called a sit-
uation. We think of /C as describing the situations that the

agent considers possible before X is set to Z. The degree
of blame that setting X to Z has for ¢ is then the expected

—

degree of responsibility of X = Z for ¢ in (Mg, ., 1),
taken over the situations (M, %) € K. Note that the situ-

ation (Mg, ., ) for (M, ) € K are those that the agent

considers possible after X is set to Z.

Definition 5.4 The degree of blame of setting X to 7 for %)
relative to epistemic state (IC, Pr), denoted db(KC, Pr, X <
Z, ), is
> dr(Mg_ i), X =& ¢) Pr((M, D).
(M, @)eK



For the original HP definition of cause, Chockler and
Halpern (2004) show that computing the degree of blame is

P
complete in FPﬁ2 for general and in FPﬁIPfor binary causal

models. Again, with the updated HP definition, the com-
plexity changes.

Theorem 5.5 The problem of computing blame in recursive
P
causal models is FPﬁ2 -complete for singleton causes and

FP‘? 2-complete for (general) causes, in binary and general
causal models.
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