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Abstract

Recently several inconsistency-tolerant semantics have been
introduced for querying inconsistent description logic knowl-
edge bases. Most of these semantics rely on the notion of a
repair, defined as an inclusion-maximal subset of the facts
(ABox) which is consistent with the ontology (TBox). In
this paper, we study variants of two popular inconsistency-
tolerant semantics obtained by replacing classical repairs by
various types of preferred repair. We analyze the complexity
of query answering under the resulting semantics, focusing
on the lightweight logic DL-LiteR. Unsurprisingly, query an-
swering is intractable in all cases, but we nonetheless iden-
tify one notion of preferred repair, based upon priority levels,
whose data complexity is “only” coNP-complete. This leads
us to propose an approach combining incomplete tractable
methods with calls to a SAT solver. An experimental evalua-
tion of the approach shows good scalability on realistic cases.

1 Introduction
Description logic (DL) knowledge bases consist of an on-
tology (called a TBox) expressing conceptual knowledge
about a particular domain and a dataset (or ABox) contain-
ing facts about particular individuals (Baader et al. 2003).
Recent years have seen an increasing interest in performing
database-style query answering over DL knowledge bases.
Since scalability is crucial in data-rich applications, there
has been a trend to using so-called lightweight DLs for
which query answering is tractable w.r.t. the size of the
ABox. Particular attention has been paid to DLs of the DL-
Lite family (Calvanese et al. 2007) which possess the no-
table property that query answering can be reduced to eval-
uation of standard database queries.

An important issue that arises in the context of DL query
answering is how to handle the case in which the ABox is
inconsistent with the TBox. Indeed, while it may be reason-
able to assume that the TBox has been properly debugged,
the ABox will typically be very large and subject to fre-
quent modifications, both of which make errors likely. Since
it may be too difficult or costly to identify and fix these er-
rors, it is essential to be able to provide meaningful answers
to queries in the presence of such data inconsistencies. Un-
fortunately, standard DL semantics is next to useless in such
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circumstances, as everything is entailed from a contradic-
tion. To address this issue, several different inconsistency-
tolerant semantics have been proposed for querying incon-
sistent DL knowledge bases. Among them, the AR and IAR
semantics (Lembo et al. 2010) are the most well-known
and well-studied. Both semantics are based upon the notion
of a repair, defined as an inclusion-maximal subset of the
ABox which is consistent with the TBox. The AR seman-
tics amounts to computing those answers that hold no mat-
ter which repair is chosen, whereas the more cautious IAR
semantics queries the intersection of the repairs.

When additional information on the reliability of ABox
assertions is available, it is natural to use this information to
identify preferred repairs, and to use the latter as the basis
of inconsistency-tolerant query answering. In this paper, we
investigate variants of the AR and IAR semantics obtained
by replacing the classical notion of repair by one of four
different types of preferred repairs. Cardinality-maximal re-
pairs are intended for settings in which all ABox assertions
are believed to have the same likelihood of being correct.
The other three types of preferred repairs target the scenario
in which some assertions are considered to be more reliable
than others, which can be captured qualitatively by partition-
ing the ABox into priority levels (and then applying either
the set inclusion or cardinality criterion to each level), or
quantitatively by assigning weights to the ABox assertions
(and selecting those repairs having the greatest weight).

The first contribution of the paper is a systematic study of
the complexity of answering conjunctive and atomic queries
under the eight resulting preferred repair semantics. We fo-
cus on the lightweight logic DL-LiteR that underlies the
OWL 2 QL profile (Motik et al. 2012), though many of our
results can be generalized to other data-tractable ontology
languages. For the IAR semantics, the use of preferred re-
pairs significantly impacts complexity: we move from poly-
nomial data complexity in the case of (plain) IAR semantics
to coNP-hard data complexity (or worse) for IAR semantics
based on preferred repairs. For the AR semantics, query an-
swering is known to be coNP-complete in data complexity
already for the standard notion of repairs, but adding prefer-
ences often results in even higher complexities. The sole ex-
ception is⊆P -repairs (which combine priority levels and the
set inclusion criterion), for which both AR and IAR query
answering are “only” coNP-complete in data complexity.
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Our second contribution is a practical approach to query
answering in DL-LiteR under the AR,⊆P -AR, and⊆P -IAR
semantics. We first show how to encode query answering
under these three semantics in terms of propositional unsat-
isfiability, using a reachability analysis to reduce the size of
the encodings. In the CQAPri system we have implemented,
a subset of the query results is computed using incomplete
tractable methods, and a SAT solver is used to determine the
status of the remaining possible answers. An experimental
evaluation demonstrates the scalability of the approach in
settings we presume realistic. This positive empirical result
is due in large part to the efficacy of the incomplete methods,
which leave only few cases to be handled by the SAT solver.

Proofs and further details on the experiments can be found
in (Bienvenu, Bourgaux, and Goasdoué 2014).

2 Preliminaries
We briefly recall the syntax and semantics of description
logics (DLs), and some relevant notions from complexity.

Syntax A DL knowledge base (KB) consists of an ABox
and a TBox, both of which are constructed from a set NC of
concept names (unary predicates), a set of NR of role names
(binary predicates), and a set NI of individuals (constants).
The ABox (dataset) consists of a finite number of concept
assertions of the form A(a) with A ∈ NC, a ∈ NI and role
assertions of the form R(a, b) with R ∈ NR, a, b ∈ NI. The
TBox (ontology) consists of a set of axioms whose form de-
pends on the DL in question.

In DL-LiteR, TBox axioms are either concept inclusions
B v C or role inclusionsQ v S formed using the following
syntax (where A ∈ NC and R ∈ NR):
B := A | ∃Q, C := B | ¬B, Q := R | R−, S := Q | ¬Q
Semantics An interpretation has the form I = (∆I , ·I),
where ∆I is a non-empty set and ·I maps each a ∈ NI to
aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each R ∈ NR

to RI ⊆ ∆I ×∆I . The function ·I is straightforwardly ex-
tended to general concepts and roles, e.g. (R−)I = {(c, d) |
(d, c) ∈ RI} and (∃Q)I = {c | ∃d : (c, d) ∈ QI}. An
interpretation I satisfies an inclusion G v H if GI ⊆ HI ;
it satisfies A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈
RI). An interpretation I is a model of K = 〈T ,A〉 if I
satisfies all inclusions in T and assertions in A. A KB K is
consistent if it has a model, and we say that an ABox A is
T -consistent if the KB 〈T ,A〉 is consistent.

Queries Our main focus will be on conjunctive queries
(CQs) which take the form ∃~y ψ, where ψ is a conjunction of
atoms of the forms A(t) or R(t, t′), where t, t′ are variables
or individuals, and ~y is a tuple of variables from ψ. A CQ is
called Boolean if all of its variables are existentially quan-
tified; a CQ consisting of a single atom is an atomic query
(AQ). When we use the generic term query, we mean a CQ.
A Boolean CQ q is entailed from K, written K |= q, just in
the case that q holds in all models of K. For a non-Boolean
CQ q with free variables x1, . . . , xk, a tuple of individuals
a = (a1, . . . , ak) is a (certain) answer for q w.r.t. K just
in the case that K |= q[a], where q[a] is the Boolean query
obtained by replacing each xi by ai. Thus, CQ answering

is straightforwardly reduced to entailment of Boolean CQs.
For this reason, we can focus w.l.o.g. on the latter problem.

Complexity There are two common ways of measuring
the complexity of query entailment: combined complexity is
with respect to the size of the whole input (T ,A, q), whereas
data complexity is only with respect to the size of A.

In addition to the well-known complexity classes P, NP,
and coNP, our results will involve the following classes in
the polynomial hierarchy: ∆p

2 (polynomial time using an NP
oracle), ∆p

2[O(log n)] (polynomial time with at most log-
arithmically many NP oracle calls), Σp2 (non-deterministic
polynomial time with an NP oracle) and its complement Πp

2.
The following result resumes known results on the com-

plexity of reasoning in DL-LiteR under classical semantics.
Theorem 1 (Calvanese et al. 2007). In DL-LiteR, consis-
tency and AQ entailment are in P w.r.t. combined complexity,
and CQ entailment is in P w.r.t. data complexity and coNP-
complete w.r.t. combined complexity.

3 Preferred Repair Semantics
In this section, we recall two important inconsistency-
tolerant semantics and introduce variants of these semantics
based upon different notions of preferred repairs. For sim-
plicity, we state the definitions in terms of query entailment.

A central notion in inconsistency-tolerant query answer-
ing is that of a repair, which corresponds to a minimal way of
modifying the ABox so as to restore consistency. Typically,
minimality is defined in terms of set inclusion, yielding:
Definition 1. A repair of a KB K = 〈T ,A〉 is an inclusion-
maximal subset of A that is T -consistent.

Several inconsistency-tolerant semantics have been pro-
posed based on this notion of repair. The most well-known,
and arguably the most natural, is the AR semantics (Lembo
et al. 2010), which was inspired by consistent query answer-
ing in relational databases (cf. (Bertossi 2011) for a survey).
Definition 2. A Boolean query q is entailed by K = 〈T ,A〉
under AR semantics if 〈T ,B〉 |= q for every repair B of K.

The intuition underlying the AR semantics is as follows.
In the absence of further information, we cannot identify the
“correct” repair, and so we only consider a query to be en-
tailed if it can be obtained from each of the repairs.

The IAR semantics (Lembo et al. 2010) adopts an even
more cautious approach: only assertions which belong to ev-
ery repair (or equivalently, are not involved in any contradic-
tion) are considered when answering the query.
Definition 3. A Boolean query q is entailed by a KB K =
〈T ,A〉 under IAR semantics if 〈T ,B∩〉 |= q where B∩ is the
intersection of all repairs of K.

It is easy to see that every query that is entailed under
IAR semantics is also entailed under AR semantics, but the
converse does not hold in general.

The above notion of repair integrates a very simple prefer-
ence relation, namely set inclusion. When additional infor-
mation on the reliability of ABox assertions is available, it is
natural to use this information to identify preferred repairs,
and to use the latter as the basis of inconsistency-tolerant
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⊆ ≤ ⊆P ≤P ≤w

AR coNP ∆p
2 [O(log n)] coNP ∆p

2
† ∆p

2
†

IAR in P ∆p
2 [O(log n)] coNP ∆p

2
† ∆p

2
†

⊆ ≤ ⊆P ≤P ≤w

AR Πp
2 Πp

2 Πp
2 Πp

2 Πp
2

IAR NP ∆p
2 [O(log n)] ∆p

2 [O(log n)] ∆p
2
† ∆p

2
†

Figure 1: Data [left] and combined [right] complexity of CQ entailment over DL-Lite KBs under AR and IAR semantics for
different types of preferred repairs. For AQs, the data and combined complexity coincide with the data complexity for CQs. All
results are completeness results unless otherwise noted. New results in bold. † ∆p

2[O(log n)]-complete under the assumption
that there is a bound on the number of priority classes (resp. maximal weight).

reasoning. This idea leads us generalize the earlier defini-
tions1, using preorders to model preference relations.
Definition 4. Let K = 〈T ,A〉 be a KB, and let � be a pre-
order over subsets of A. A �-repair of K is a T -consistent
subset of A which is maximal w.r.t. �. The set of �-repairs
of K is denoted Rep�(K).
Definition 5. A Boolean query q is entailed by K = 〈T ,A〉
under the �-AR semantics, written K |=�-AR q, if 〈T ,B〉 |=
q for every B ∈ Rep�(K); it is entailed by K under the �-
IAR semantics, written K |=�-IAR q, if 〈T ,B∩〉 |= q where
B∩ =

⋂
B∈Rep�(K) B.

In this paper, we consider four standard ways of defining
preferences over subsets, cf. (Eiter and Gottlob 1995).

Cardinality (≤) A first possibility is to compare subsets us-
ing set cardinality: A1 ≤ A2 iff |A1| ≤ |A2|. The result-
ing notion of ≤-repair is appropriate when all assertions are
believed to have the same (small) likelihood of being erro-
neous, in which case repairs with the largest number of as-
sertions are most likely to be correct.

Priority levels (⊆P , ≤P ) We next consider the case in
which ABox assertions have been partitioned into prior-
ity levels P1, . . . ,Pn based on their perceived reliability,
with assertions in P1 considered most reliable, and those
in Pn least reliable. Such a prioritization can be used to
separate a part of the dataset that has already been vali-
dated from more recent additions. Alternatively, one might
stratify assertions based upon the concept or role names
they use (when some predicates are known to be more re-
liable), or the data sources from which they originate (in
information integration applications). Given a prioritization
P = 〈P1, . . . ,Pn〉 of A, we can refine the ⊆ and ≤ pre-
orders as follows:
• Prioritized set inclusion:A1 ⊆P A2 iffA1∩Pi = A2∩Pi

for every 1 ≤ i ≤ n, or there is some 1 ≤ i ≤ n such that
A1 ∩ Pi ( A2 ∩ Pi and for all 1 ≤ j < i, A1 ∩ Pj =
A2 ∩ Pj .
• Prioritized cardinality: A1 ≤P A2 iff |A1 ∩ Pi| = |A2 ∩
Pi| for every 1 ≤ i ≤ n, or there is some 1 ≤ i ≤ n
such that |A1 ∩ Pi| < |A2 ∩ Pi| and for all 1 ≤ j < i,
|A1 ∩ Pj | = |A2 ∩ Pj |.

Notice that a single assertion on level Pi is preferred to any
number of assertions from Pi+1, so these preorders are best
suited for cases in which there is a significant difference in
the perceived reliability of adjacent priority levels.

1Ours is not the first work to consider preferred repairs – see
Section 7 for references and discussion.

Weights (≤w) The reliability of different assertions can be
modelled quantitatively using a function w : A → N assign-
ing weights to the ABox assertions. The weight function w
induces a preorder ≤w over subsets of A in the expected
way: A1 ≤w A2 iff

∑
α∈A1

w(α) ≤
∑
α∈A2

w(α). If the
ABox is populated using information extraction techniques,
the weights may be derived from the confidence levels out-
put by the extraction tool. Weight-based preorders can also
be used in place of the ≤P preorder to allow for compensa-
tion between the priority levels.

4 Complexity Results
In this section, we study the complexity of query entailment
under preferred repair semantics. We focus on knowledge
bases formulated in DL-LiteR, since it is a popular DL for
OBDA applications and the basis for OWL 2 QL (Motik et
al. 2012). However, many of our results hold also for other
DLs and ontology languages (see end of section).

Figure 1 recalls existing results for query entailment un-
der the standard AR and IAR semantics and presents our
new results for the different preferred repair semantics.
Theorem 2. The results in Figure 1 hold.

Proof idea. The upper bounds for AR-based semantics in-
volve guessing a preferred repair that does not entail the
query; for the IAR-based semantics, we guess preferred re-
pairs that omit some ABox assertions and verify that the
query is not entailed from the remaining assertions. For the
lower bounds, we were able to adapt some proofs from (Bi-
envenu 2012; Bienvenu and Rosati 2013); the ∆p

2[O(log n)]
lower bounds proved the most challenging and required sig-
nificant extensions of existing reductions.

Let us briefly comment on the obtained results. Concern-
ing data complexity, we observe that for preferred repairs,
the IAR semantics is just as difficult as the AR semantics.
This is due to the fact that there is no simple way of comput-
ing the intersection of preferred repairs, whereas this task
is straightforward for ⊆-repairs. However, if we consider
combined complexity, we see that the IAR semantics still
retains some computational advantage over AR semantics.
This lower complexity translates into a concrete practical
advantage: for the IAR semantics, one can precompute the
intersection of repairs in an offline phase and then utilize
standard querying algorithms at query time, whereas no such
precomputation is possible for the AR semantics. Finally, if
we compare the different types of preferred repairs, we find
that the⊆P preorder leads to the lowest complexity, and≤P
and≤w the greatest. However, under the reasonable assump-
tion that there is a bound on the number of priority classes
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(resp. maximal weight), we obtain the same complexity for
the semantics based on ≤-, ≤P - and ≤w-repairs.

We should point out that the only properties of DL-LiteR
that are used in the upper bound proofs are those stated in
Theorem 1. Consequently, our combined complexity upper
bounds apply to all ontology languages having polynomial
combined complexity for consistency and instance checking
and NP combined complexity for CQ entailment, and in par-
ticular to the OWL 2 EL profile (Motik et al. 2012). Our data
complexity upper bounds apply to all data-tractable ontol-
ogy languages, which includes Horn DLs (Hustadt, Motik,
and Sattler 2007; Eiter et al. 2008) and several dialects of
Datalog +/- (Calı̀, Gottlob, and Lukasiewicz 2012).

5 Query Answering via Reduction to SAT
In this section, we show how to answer queries over DL-
LiteR KBs under ⊆P -AR and ⊆P -IAR semantics by trans-
lation to propositional unsatisfiability. We chose to focus on
⊆P -repairs as they offer the lowest complexity among the
different forms of preferred repairs, and seem natural from
the point of view of applications.

To simplify the presentation of our encodings, we intro-
duce the notions of conflicts of a KB and causes of a query.

Definition 6. A conflict for K = 〈T ,A〉 is a minimal T -
inconsistent subset of A. A cause for a Boolean CQ q is a
minimal T -consistent subset C ⊆ A such that 〈T , C〉 |= q.

Fact 1. In DL-LiteR, conflicts have cardinality at most two.

The encodings presented in this section use variables to
represent ABox assertions, so that each valuation corre-
sponds to a subset of the ABox. In the case of the ⊆P -AR
semantics, the most obvious encoding would stipulate that
the subset corresponding to a valuation (i) contains no cause
for q, (ii) is maximal w.r.t. ⊆P , and (iii) contains no con-
flicts. However, such an encoding would contain as many
variables as ABox facts, even though most of the ABox may
be irrelevant for answering the query at hand.

In order to identify potentially relevant assertions, we in-
troduce the notion of an oriented conflict graph (inspired
by the conflict hypergraphs from (Chomicki, Marcinkowski,
and Staworko 2004)). In what follows, we use α �P β to
signify that there exist i ≤ j such that α ∈ Pi and β ∈ Pj .
Definition 7. Let K = 〈T ,A〉 be a DL-LiteR KB and P be
a prioritization of A. The oriented conflict graph for K and
P , denoted GPK, is the directed graph whose set of vertices
is A and which has an edge from β to α whenever α �P β
and {α, β} is a conflict for K.

We now give a more succinct encoding, which can be
seen as selecting a set of assertions that contradict all of the
query’s causes (thereby ensuring that no cause is present),
and verifying that this set can be extended to a ⊆P -repair.
Importantly, to check the latter, it suffices to consider only
those assertions that are reachable in GPK from an assertion
that contradicts some cause.

Theorem 3. Let q be a Boolean CQ , K = 〈T ,A〉 be a
DL-LiteR KB, and P = 〈P1, . . . ,Pn〉 be a prioritization
of A. Consider the following propositional formulas having

variables of the form xα for α ∈ A:

ϕ¬q =
∧

C∈causes(q)

(
∨
α∈C

∨
β∈confl(α)
β�Pα

xβ)

ϕmax =
∧
α∈Rq

(xα ∨
∨

β∈confl(α)
β�Pα

xβ)

ϕcons =
∧

α,β∈Rq

β∈confl(α)

¬xα ∨ ¬xβ

where causes(q) contains all causes for q in K, confl(α)
contains all assertions β such that {α, β} is a conflict forK,
and Rq is the set of assertions reachable in GPK from some
assertion β such that xβ appears in ϕ¬q . Then K |=⊆P -AR q
iff ϕ¬q ∧ ϕmax ∧ ϕcons is unsatisfiable.

We observe that for the plain AR semantics, we can fur-
ther simplify the encoding by dropping the formula ϕmax.

For the ⊆P -IAR semantics, a query is not entailed just
in the case that every cause is absent from some ⊆P -repair.
This can be tested by using one SAT instance per cause.

Theorem 4. Let q, K, P , causes(q), and confl(α) be as in
Theorem 3. For each C ∈ causes(q), consider the formulas:

ϕ¬C =
∨
α∈C

∨
β∈confl(α)
β�Pα

xβ

ϕCmax =
∧
α∈RC

(xα ∨
∨

β∈confl(α)
β�Pα

xβ)

ϕCcons =
∧

α,β∈RC
β∈confl(α)

¬xα ∨ ¬xβ

whereRC is the set of assertions reachable inGPK from some
assertion β such that xβ appears in ϕ¬C . ThenK |=⊆P -IAR q
iff there exists C ∈ causes(q) such that the formula ϕ¬C ∧
ϕCmax ∧ ϕCcons is unsatisfiable.

The above encodings can be used to answer non-Boolean
queries using the standard reduction to the Boolean case: a
tuple a is an answer to a non-Boolean CQ q iff the Boolean
query q[a] is entailed under the considered semantics.

6 Experimental Evaluation
We implemented our query answering framework in Java
within our CQAPri (“Consistent Query Answering with
Priorities”) tool. CQAPri is built on top of the relational
database server PostgreSQL, the Rapid query rewriting en-
gine for DL-Lite (Chortaras, Trivela, and Stamou 2011), and
the SAT4J v2.3.4 SAT solver (Berre and Parrain 2010).

CQAPri stores the ABox in PostgreSQL, while it keeps
the TBox in-memory together with the pre-computed set of
conflicts for the KB. Conflicts are computed by evaluating
over the ABox the SQLized rewritings of the queries looking
for counter-examples to the negative TBox inclusions. They
are stored as an oriented conflict graph (Definition 7), built
from a single priority level for the IAR and AR semantics,
and multiple levels for the ⊆P -IAR and ⊆P -AR semantics.
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ABox id #ABox %conflicts avg conflicts o.c. graph (ms)
u1p15e-4 75708 2.05 0.04 3844
u1p5e-2 76959 30.97 1.03 4996
u1p2e-1 80454 57.99 3.96 6224
u5p15e-4 499674 1.70 0.03 19073
u5p5e-2 507713 33.12 1.21 24600
u5p2e-1 531607 58.29 4.29 32087
u10p15e-4 930729 2.37 0.05 33516
u10p5e-2 945450 33.92 1.31 43848
u10p2e-1 988882 58.89 4.86 62028
u20p15e-4 1982922 2.64 0.05 95659
u20p5e-2 2014129 33.91 1.6 122805
u20p2e-1 2103366 58.78 5.49 192450

Table 1: ABoxes in terms of size, percentage of assertions
in conflicts, average number of conflicts per assertion, and
time to compute the oriented conflict graph.

When a query arrives, CQAPri evaluates it over the ABox
using its SQLized rewriting, to obtain its possible answers
and their causes. Possible answers define a superset of the
answers holding under the IAR, AR, ⊆P -IAR, and ⊆P -AR
semantics. Among the possible answers, CQAPri identifies
the IAR ones, or an approximation of the ⊆P -IAR ones,
by checking whether there is some cause whose assertions
have no outgoing edges in the oriented conflict graph. For
those possible answers that are not found to be IAR answers,
resp. in the approximation of the⊆P -IAR answers, deciding
whether they are entailed under the AR semantics, resp. the
⊆P -IAR and ⊆P -AR semantics, is done using the SAT en-
codings from the preceding section.

Experimental setting
TBox and Datasets We considered the modified LUBM
benchmark from Lutz et al. (2013), which provides the
DL-LiteR version LUBM∃20 of the original LUBM ELI
TBox, and the Extended University Data Generator (EUDG)
v0.1a (both available at www.informatik.uni-bremen.de/
∼clu/combined). We extended LUBM∃20 with negative in-
clusions, to allow for contradictions. Inconsistencies in the
ABox were introduced by contradicting the presence of an
individual in a concept assertion with probability p, and the
presence of each individual in a role assertion with probabil-
ity p/2. Additionally, for every role assertion, its individuals
are switched with probability p/10. Prioritizations of ABox
were made to capture a variety of scenarios.

Table 1 describes the ABoxes we used for our experi-
ments. Every ABox’s id uXpY indicates the number X of
universities generated by EUDG and the probability value Y
of p for adding inconsistencies as explained above (Me-P
reads M.10−P ). We chose the values for X and Y so as to
have ABoxes of size varying from small to large, and a num-
ber of conflicts ranging from a value we found realistic up to
values challenging our approach. We built 8 prioritizations
for each of these ABoxes further denoted by the id of the
ABox it derives from, and a suffix first indicating the num-
ber of priority levels and then how these levels were chosen.
lZdW indicates the number Z of priority levels: 3 and 10 in
our experiments, and the distribution W: cr=, a=, cr 6=, or
a 6= indicates whether priority levels were chosen per con-
cept/role (cr) or assertion (a), and whether choosing be-
tween these levels was equiprobable (=) or not (6=).
Queries We used the queries described in Table 2 for our ex-

Query id shape #atoms #vars #rews rew time (ms)
req2 chain 3 2 1 0
req3 dag 6 3 23 4
g2 atomic 1 1 44 0
g3 atomic 1 1 44 0
q1 chain 2 2 80 0
q2 chain 2 2 44 15
q4 dag 7 6 25 16
Lutz1 dag 8 4 3887 328
Lutz5 tree 5 3 667 16

Table 2: Queries in terms of shape, numbers of atoms vari-
ables, number of rewritings, and rewriting time (Rapid).

periments. Some queries were borrowed from LUBM-based
experiments found in the literature: Lutz1 and Lutz5
come from (Lutz et al. 2013), and req2 and req3 are
from (Pérez-Urbina, Horrocks, and Motik 2009). The other
queries we designed ourselves. They show a variety of struc-
tural aspects and rewriting sizes; they yield enough possible
answers to observe the behavior of the considered semantics.

Experimental results
We summarize the general tendencies we observed. The
main conclusion is that our approach scales when the pro-
portion of conflicting assertions is a few percent, as is likely
to be the case in most real applications.
IAR and AR query answering We observed that the AR
semantics only adds a limited number of new answers com-
pared to the IAR semantics. For 60% of our ABox and query
pairs, AR does not provide any additional answers, and it
provides at most as many new answers as IAR ones.

Also, for a given number of universities (i.e., size), when
the proportion of conflicting assertions increases, the num-
ber of IAR answers decreases, while the number of AR non-
IAR and of possible non-AR ones increases. Such an in-
crease significantly augments the time spent identifying AR
non-IAR answers using the SAT solver, as exemplified in
Figure 2 [left]. It explains that the lower the probability for
generating conflicts, the more AR query answering times
show a linear behavior w.r.t. ABox size (i.e., scales), up to
the uXp15e-4 and uXp5e-2 ABoxes in our experiments.
⊆P -IAR and⊆P -AR query answering Similarly to above,
the ⊆P -AR semantics adds a limited number of answers
compared to the ⊆P -IAR semantics. Moreover, in most
cases, the approximation of ⊆P -IAR using the ordered con-
flict graph identifies a large share of the ⊆P -IAR answers.

We also observed that adding prioritizations to the
ABoxes complicates query answering, and using 3 priority
levels typically led to harder instances than using 10 levels.

Our approach scales up to the uXp15e-4lYdZ set of
ABoxes, as answering queries against them requires in most
cases less than twice the time observed for the (plain) AR
semantics. Figure 2 [right] exemplifies the observed trend
for the uXp5e-2lYdZ ABoxes, where the use of priority
levels significantly increases runtimes, as well as the number
of queries running out of memory or producing a time-out.

7 Related Work
The closest related work is that of (Du, Qi, and Shen 2013)
who study query answering under ≤w-AR semantics for the
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Figure 2: [left] Proportion of time spent by CQAPri to get the possible, IAR, and AR answers on two ABoxes
[right] Time (in sec.) spent by CQAPri for AR and ⊆P -AR query answering on two sets of ABoxes (in millions of assertions)

expressive DL SHIQ. They focus on ground CQs, as such
queries are better-supported by SHIQ reasoners. By con-
trast, we work with DL-Lite and can thus use query rewriting
techniques to handle CQs with existential variables. We also
consider IAR-based semantics and other types of preferred
repairs that are not considered by Du et al.

Also related is the work on preference-based semantics
for querying databases that violate integrity constraints. In
(Lopatenko and Bertossi 2007), the authors study the com-
plexity of query answering in the presence of denial con-
straints under the ≤-AR and ≤w-AR semantics. Because
of the difference in setting, we could not transfer their
complexity results to DL-Lite. Three further preference-
based semantics are proposed in (Staworko, Chomicki, and
Marcinkowski 2012), based upon partially ordering the as-
sertions that appear together in a conflict. If such an order-
ing is induced from an ABox prioritization, then the three
semantics all coincide with our ⊆P -AR semantics.

More generally, we note that the problem of reasoning on
preferred subsets has been studied in a number of other ar-
eas of AI, such as abduction, belief change, argumentation,
and non-monotonic reasoning, see (Eiter and Gottlob 1995;
Nebel 1998; Amgoud and Vesic 2011; Brewka, Niemelä,
and Truszczynski 2008) and references therein.

A recent line of work, including (Rosati 2011; Bienvenu
2012; Bienvenu and Rosati 2013), studies the complexity of
query answering under IAR and AR semantics. We extend it
by providing complexity results for variants of the IAR and
AR semantics based on preferred repairs. In some cases, we
were able to adapt proof ideas from the preference-free case.

In terms of implemented tools, we are aware of two sys-
tems for inconsistency-tolerant query answering over DL
KBs: the system of Du et al. (2013) for querying SHIQ
KBs under≤w-AR semantics, and the QuID system (Rosati
et al. 2012) that handles IAR semantics (without prefer-
ences) and DL-LiteA KBs. Neither system is directly com-
parable to our own, since they employ different semantics.
We can observe some high-level similarities with Du et al.’s
system which also employs SAT solvers and uses a reacha-
bility analysis to identify a query-relevant portion of the KB.

There are also a few systems for querying inconsistent re-
lational databases. Most relevant to our work the present pa-
per is EQUIP (Kolaitis, Pema, and Tan 2013), which reduces
AR query answering with denial constraints to binary inte-
ger programming (BIP). We considered using BIP for our
own system, but our early experiments comparing the two

approaches revealed better performances of the SAT-based
approach on difficult instances.

8 Concluding Remarks
Existing inconsistency-tolerant semantics for ontology-
based data access are based upon a notion of repair that
makes no assumptions about the relative reliability of ABox
assertions. When information on the reliability of assertions
is available, it can be exploited to identify preferred repairs
and improve the quality of the query results. While this idea
has been explored before in various settings, there had been
no systematic study of the computational properties of pre-
ferred repairs for important lightweight DLs like DL-LiteR.
We addressed this gap in the literature by providing a thor-
ough analysis that established the data and combined com-
plexity of answering conjunctive and atomic queries under
AR- and IAR-based semantics combined with four types of
preferred repairs. Unsurprisingly, the results are mainly neg-
ative, showing that adding preferences increases complexity.
However, they also demonstrate that IAR-based semantics
retain some advantage over AR-based semantics and iden-
tify ⊆P -repairs as the most computationally well-behaved.

Prior work on inconsistency-tolerant querying in DL-Lite
left open whether the IAR constitutes a good approxima-
tion, or whether the AR semantics can be feasibly computed
in practice. Encouraged by the performance of modern-day
SAT solvers and recent positive results from the database
arena, we proposed a practical SAT-based approach for
query answering in DL-LiteR under the AR, ⊆P -IAR, and
⊆P -AR semantics, which we implemented in our CQAPri
system. Our experiments show that CQAPri scales up to
large ABoxes for the IAR/AR and ⊆P -IAR/⊆P -AR seman-
tics, when the number of conflicting assertions varies from a
few percent (for all of these semantics) to a few tens of per-
cent (only for IAR/AR). We thus show that the AR semantics
can be computed in practice and that this is due to the fact
the IAR semantics often constitutes a very good approxima-
tion of the AR semantics. In a similar vein, we observed that
our simple approximation of the ⊆P -IAR semantics often
produced a large share of the⊆P -IAR answers, which them-
selves constituted a large portion of the ⊆P -AR answers.

Our long-term goal is to equip CQAPri with a portfolio
of query answering techniques and an optimizer that selects
the most appropriate technique for the query at hand. To this
end, we have started exploring other techniques for the ⊆P -
based semantics to handle difficult problem instances.
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