
Datalog Rewritability of Disjunctive Datalog Programs
and Its Applications to Ontology Reasoning

Mark Kaminski and Yavor Nenov and Bernardo Cuenca Grau
Department of Computer Science, University of Oxford, UK

Abstract

We study the problem of rewriting a disjunctive datalog pro-
gram into plain datalog. We show that a disjunctive pro-
gram is rewritable if and only if it is equivalent to a lin-
ear disjunctive program, thus providing a novel characterisa-
tion of datalog rewritability. Motivated by this result, we pro-
pose weakly linear disjunctive datalog—a novel rule-based
KR language that extends both datalog and linear disjunctive
datalog and for which reasoning is tractable in data complex-
ity. We then explore applications of weakly linear programs
to ontology reasoning and propose a tractable extension of
OWL 2 RL with disjunctive axioms. Our empirical results
suggest that many non-Horn ontologies can be reduced to
weakly linear programs and that query answering over such
ontologies using a datalog engine is feasible in practice.

1 Introduction
Disjunctive datalog, which extends plain datalog by allow-
ing disjunction in the head of rules, is a prominent KR for-
malism that has found many applications in the areas of de-
ductive databases, information integration and ontological
reasoning (Eiter, Gottlob, and Mannila 1997; Dantsin et al.
2001).1 Disjunctive datalog is a powerful language, which
can model incomplete information. Expressiveness comes,
however, at the expense of computational cost: fact entail-
ment is co-NEXPTIME-complete in combined complexity
and co-NP-complete w.r.t. data (Eiter, Gottlob, and Mannila
1997). Thus, even with the development of optimised imple-
mentations (Leone et al. 2006), robust behaviour of reason-
ers in data-intensive applications cannot be guaranteed.

Plain datalog offers more favourable computational prop-
erties (EXPTIME-completeness in combined complexity and
PTIME-completeness w.r.t. data) at the expense of a loss in
expressive power (Dantsin et al. 2001). Tractability in data
complexity is an appealing property for data-intensive KR;
in particular, the RL profile of the ontology language OWL
2 was designed such that each ontology corresponds to a
datalog program (Motik et al. 2009). Furthermore, datalog
programs obtained from RL ontologies contain rules of a
restricted shape, and they can be evaluated in polynomial

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Disjunctive datalog typically allows for negation-as-failure,
which we don’t consider since we focus on monotonic reasoning.

time also in combined complexity, thus providing the ground
for robust implementations. The standardisation of OWL
2 RL has spurred the development of reasoning engines
within industry and academia, such as OWLim (Bishop et
al. 2011), Oracle’s Semantic Data Store (Wu et al. 2008),
and RDFox (Motik et al. 2014).

We study the problem of rewriting a disjunctive datalog
program into an equivalent datalog program (i.e., one that
entails the same facts for every dataset). By computing such
rewritings, we can ensure tractability w.r.t. data and exploit
reasoning infrastructure available for datalog. Not every dis-
junctive datalog program is, however, datalog rewritable
(Afrati, Cosmadakis, and Yannakakis 1995).

Our first contribution is a novel characterisation of data-
log rewritability based on linearity: a restriction that requires
each rule to contain at most one body atom with an IDB
predicate (i.e., a predicate occurring in head position). For
plain datalog, linearity is known to limit the effect of re-
cursion and lead to reduced data and combined complexity
(Dantsin et al. 2001). For disjunctive programs the effects of
the linearity restriction are, to the best of our knowledge, un-
known. In Section 3, we show that every linear disjunctive
program can be polynomially transformed into an equivalent
datalog program; conversely, we also provide a polynomial
transformation from datalog into linear disjunctive datalog.
Thus, linear disjunctive datalog and datalog have the same
computational properties, and linearisability of disjunctive
programs is equivalent to rewritability into datalog.

Motivated by our characterisation, in Section 4 we pro-
pose weakly linear disjunctive datalog: a rule language that
extends both datalog and linear disjunctive datalog. In a
weakly linear (WL for short) program, the linearity require-
ment is relaxed: instead of applying to all IDB predicates,
it applies only to those that “depend” on a disjunctive rule.
Analogously to linear disjunctive programs, WL programs
can be polynomially rewritten into datalog. Thus, our lan-
guage captures disjunctive information while leaving the
favourable computational properties of datalog intact.

In Section 5, we propose a linearisation procedure based
on unfolding transformations. Our procedure picks a non-
WL rule and a “culprit” body atom and replaces it with WL
rules by “unfolding” the selected atom. Our procedure is in-
complete: if it succeeds, it outputs a WL program, which is
rewritten into datalog; if it fails, no conclusion can be drawn.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1077



In Section 6, we focus on ontology reasoning. We pro-
pose an extension of OWL 2 RL with disjunctive axioms
such that each ontology in our extended profile maps to a
WL program. We show that the resulting programs can be
evaluated in polynomial time in combined complexity; thus,
fact entailment in our language is no harder than in OWL 2
RL. Finally, we argue that the algorithm in (Hustadt, Motik,
and Sattler 2007) can be combined with our techniques to
rewrite a SHIQ ontology into a plain datalog program.

We have evaluated our techniques on a large ontology
repository. Our results show that many non-Horn ontologies
can be rewritten into WL programs, and thus into datalog.
We have tested the scalability of query answering using our
approach, with promising results. Proofs are delegated to an
extended version (see arXiv:1404.3141).

2 Preliminaries
We use standard first-order syntax and semantics and assume
all formulae to be function-free. We assume that equality ≈
is an ordinary predicate and that every set of set of formu-
lae contains the standard explicit axiomatisation of ≈ as a
congruence relation for its signature.

A fact is a ground atom and a dataset is a finite set of facts.
A rule r is a sentence of the form ∀~x∀~z.[ϕ(~x, ~z)→ ψ(~x)],
where tuples of variables ~x and ~z are disjoint, ϕ(~x, ~z) is a
conjunction of distinct equality-free atoms, and ψ(~x) is a
disjunction of distinct atoms. Formula ϕ is the body of r, and
ψ is the head. Quantifiers in rules are omitted. We assume
that rules are safe, i.e., all variables in the head occur in the
body. A rule is datalog if ψ(~x) has at most one atom, and it is
disjunctive otherwise. A program P is a finite set of rules; it
is datalog if it consists only of datalog rules, and disjunctive
otherwise. We assume that rules in P do not share variables.

For convenience, we treat> and⊥ in a non-standard way
as a unary and a nullary predicate, respectively. Given a pro-
gram P , P> is the program with a rule Q(x1, . . . , xn) →
>(xi) for each predicate Q in P and each 1 ≤ i ≤ n, and
a rule → >(a) for each constant a in P . We assume that
P> ⊆ P and > does not occur in head position in P \ P>.
We define P⊥ as consisting of a rule with ⊥ as body and
empty head. We assume P⊥ ⊆ P and no rule in P \ P⊥ has
an empty head or ⊥ in the body. Thus, P ∪ D |= >(a) for
every a in P ∪D, and P ∪D is unsatisfiable iff P ∪D |= ⊥.

Head predicates in P \ P> are intensional (or IDB) in P .
All other predicates (including >) are extensional (EDB).
An atom is intensional (extensional) if so is its predicate. A
rule is linear if it has at most one IDB body atom. A program
P is linear if all its rules are. In contrast to KR, in logic pro-
gramming it is often assumed that IDB predicates do not oc-
cur in datasets. This assumption can be lifted (see, e.g., (Bry
et al. 2007)): for every P and IDB predicate Q in P , let Q′

be a fresh predicate; the IDB expansion Pe of P is obtained
from P by renaming each IDB predicate Q in P with Q′

and adding a rule Q(~x) → Q′(~x), with ~x distinct variables.
Then, for each D and each fact α over the signature of P we
have P ∪D |= α iff Pe ∪D |= αθ, where θ is the predicate
substitution mapping each IDB predicate Q to Q′.

The evaluation ofP over a datasetD is the set Eval(P,D)
which comprises ⊥ if P ∪ D is unsatisfiable and all facts

entailed by P ∪ D otherwise. For a set of predicates S,
Eval(P,D)|S consists of those facts in Eval(P,D) involv-
ing predicates in S ∪ {⊥}. Program P ′ is a rewriting of P
w.r.t. a set of predicates S if there is an injective predicate
renaming θ such that (Eval(P,D)|S)θ = Eval(P ′,D)|Sθ for
every dataset D over the signature of P . The program P ′ is
a rewriting of P if P ′ is a rewriting of P w.r.t. the set of all
predicates in P . Clearly, Pe is a rewriting of P .

3 Characterisation of Datalog Rewritability
In this section, we establish a strong correspondence be-
tween linear disjunctive datalog and plain datalog. We show
that every linear disjunctive program can be polynomially
rewritten into datalog and, conversely, every datalog pro-
gram is polynomially rewritable to a linear disjunctive pro-
gram. Consequently, we not only can conclude that fact en-
tailment over linear programs has exactly the same data and
combined complexity as over plain datalog programs, but
also that a disjunctive program is datalog rewritable if and
only if it is linearisable. Thus, datalog rewritability and lin-
earisability of disjunctive programs are equivalent problems.

From Linear Programs to Datalog We first show that
linear disjunctive programs can be polynomially rewritten
into datalog. Let us consider the following program P1,
which we want to rewrite into a datalog program Ξ(P1):

P1 = {V (x)→ B(x) ∨G(x) (1)
G(y) ∧ E(x, y)→ B(x) (2)
B(y) ∧ E(x, y)→ G(x) } (3)

Predicates V and E are EDB, so their extension depends
solely on D. To prove facts about IDB predicates G and
B we introduce fresh binary predicates BG, BB , GB , and
GG. Intuitively, if a fact BG(c, d) holds in Ξ(P1) ∪ D then
proving B(c) suffices for proving G(d) in P1 ∪ D. To “ini-
tialise” the extension of these fresh predicates we need rules
>(x) → XX(x, x) with X ∈ {G,B}. The key step is then
to “flip” the direction of all rules in P1 involving G or B by
moving all IDB atoms from the head to the body and vice-
versa while at the same time replacing their predicates with
the relevant auxiliary predicates. Thus, Rule (2) leads to the
following rules in Ξ(P1) for each IDB predicate X:

BX(x, z) ∧ E(x, y)→ GX(y, z)

These rules are natural consequences of Rule (2) under
the intended meaning of the auxiliary predicates: if we can
prove a goal X(z) by proving first B(x), and E(x, y) holds,
then by Rule (2) we deduce that proving G(y) suffices to
prove X(z). In contrast to (2), Rule (1) contains no IDB
body atoms. We “flip” this rule as follows, with X IDB:

V (x) ∧BX(x, z) ∧GX(x, z)→ X(z)

Similarly to the previous case, this rule follows from
Rule (1): if V (x) holds and we can establish that X(z)
can be proved from B(x) and also from G(x), then X(z)
must hold. Finally, we introduce rules that allow us to de-
rive facts about the IDB predicates G and B from facts de-
rived about the auxiliary predicates. For example, the rule
B(x) ∧ BX(x, z) → X(z) states that if B(x) holds and is
sufficient to prove X(z), then X(z) must also hold.

1078



Definition 1. Let P be a linear program and let Σ be the set
of IDB predicates in P \ P>. For each (P,Q) ∈ Σ2, let PQ
be a fresh predicate unique to (P,Q) where arity(PQ) =
arity(P )+arity(Q). Then Ξ(P) is the datalog program con-
taining the rules given next, where ϕ is the conjunction of all
EDB atoms in a rule, ϕ> is the least conjunction of>-atoms
needed to make a rule safe, all predicates Pi are in Σ, and ~y,
~z are disjoint vectors of distinct fresh variables:
1. a rule ϕ> → RR(~y, ~y) for every R ∈ Σ;
2. a rule ϕ>∧ϕ∧

∧n
i=1 P

R
i (~si, ~y)→ QR(~t, ~y) for every rule

ϕ ∧Q(~t)→
∨n
i=1 Pi(~si) ∈ P \ P> and every R ∈ Σ;

3. a rule ϕ ∧
∧n
i=1 P

R
i (~si, ~y) → R(~y) for every rule ϕ →∨n

i=1 Pi(~si) ∈ P \ P> and every R ∈ Σ;
4. a rule Q(~z)∧QR(~z, ~y)→R(~y) for every (Q,R)∈Σ2. �

This transformation is quadratic and the arity of predi-
cates is at most doubled. For P1, we obtain the following
datalog program, where each rule mentioning X stands for
one rule where X = B and one where X = G:

Ξ(P1) = {V (x) ∧BX(x, z) ∧GX(x, z)→ X(z) (1’)

BX(x, z) ∧ E(x, y)→ GX(y, z) (2’)

GX(x, z) ∧ E(x, y)→ BX(y, z) (3’)

>(x)→ XX(x, x) (4)

B(x) ∧BX(x, z)→ X(z) (5)

G(x) ∧GX(x, z)→ X(z) } (6)
Correctness of Ξ is established by the following theorem.
Theorem 2. If P is linear, then Ξ(P) is a polynomial data-
log rewriting of P .

Thus, fact entailment over linear programs is no harder
than in datalog: PTIME w.r.t. data and EXPTIME in com-
bined complexity. Formally, Theorem 2 is shown by induc-
tion on hyperresolution derivations of facts entailed by the
rules in P from a given dataset D (see Appendix). We next
sketch the intuitions on P1 and D1 = {V (a), V (b), V (c),
E(a, b), E(b, c), E(a, c)}.

Figure 1, Part (a) shows a linear (hyperresolution) deriva-
tion ρ1 of B(a) from P1∪D1 while Part (b) shows a deriva-
tion ρ2 of the same fact from Ξ(P1) ∪ D1. We represent
derivations as trees whose nodes are labeled with disjunc-
tions of facts and where every inner node is derived from
its children using a rule of the program (initialisation rules
in ρ2 are omitted for brevity). We first show that if B(a)
is provable in P1 ∪ D1, then it is entailed by Ξ(P1) ∪ D1.
From the premise, a linear derivation such as ρ1 exists. The
crux of the proof is to show that each disjunction of facts
in ρ1 corresponds to a set of facts over the auxiliary predi-
cates entailed by Ξ(P1)∪D1. Furthermore, these facts must
be of the form XB(u, a), where B(a) is the goal, u is a
constant, and X ∈ {B,G}. For example, B(c) ∨ G(c) in
ρ1 corresponds to facts BB(c, a) and GB(c, a), which are
provable from Ξ(P1) ∪ D1, as witnessed by ρ2. Since ρ1
is linear, it has a unique rule application that has only EDB
atoms as premises, i.e., the application of (1), which gener-
atesB(c)∨G(c). SinceBB(c, a) andGB(c, a) are provable
from Ξ(P1) ∪ D1, we can apply (1’) to derive B(a).

Finally, we show the converse: if B(a) is provable from
Ξ(P1) ∪D1 then it follows from P1 ∪D1. For this, we take
a derivation such as ρ2, and show that each fact in ρ2 about
an auxiliary predicate carries the intended meaning, e.g., for
GB(b, a) we must have P1 ∪ D1 |= G(b)→ B(a).

From Datalog to Linear Programs The transformation
from datalog to linear disjunctive datalog is based on the
same ideas, but it is simpler in that we no longer distinguish
between EDB and IDB atoms: a rule in P is now “flipped”
by moving all its atoms from the head to the body and vice-
versa. Moreover, we make use of the IDB expansion Pe of
P to ensure linearity of the resulting disjunctive program.
Definition 3. Let P be a datalog program. For each pair
(P,Q) of predicates in P , let PQ be a fresh predicate unique
to (P,Q) where arity(PQ) = arity(P ) + arity(Q). Fur-
thermore, let Pe be the IDB expansion of P . Then, Ψ(P)
is the linear disjunctive program containing, for each IDB
predicate R in Pe the rules given next, where ϕ> is the
least conjunction of >-atoms making a rule safe and ~y =
y1 . . . yarity(R) is a vector of distinct fresh variables:

1. a rule ϕ> ∧ QR(~t, ~y) →
∨n
i=1 P

R
i (~si, ~y) for every rule∧n

i=1 Pi(~si) → Q(~t) ∈ Pe \ Pe>, where Q(~t) 6= ⊥ and∨n
i=1 P

R
i (~si, ~y) is interpreted as ⊥ if n = 0;

2. a rule ϕ> →
∨n
i=1 P

R
i (~si, ~y) for every

∧n
i=1 Pi(~si) →

⊥ ∈ Pe \ Pe>;
3. a rule ϕ> → RR(~y, ~y);
4. a rule Q(~z)∧QR(~z, ~y)→ R(~y) for every EDB predicate
Q inPe, where ~z is a vector of distinct fresh variables. �
Again, the transformation is quadratic and the arity of

predicates is at most doubled.
Example 4. Consider P2, which encodes path system ac-
cessibility (a canonical PTIME-complete problem):

P2 = {R(x, y, z) ∧A(y) ∧A(z)→ A(x) } (7)

Linear datalog is NLOGSPACE, and cannot capture P2.
However, we can rewrite P2 into linear disjunctive datalog:

Ψ(P2) = {>(y) ∧ >(z) ∧A′A′

(x, u) (7’)

→ RA
′
(x, y, z, u) ∨A′A′

(y, u) ∨A′A′

(z, u)

A′A′

(x, y)→ AA
′
(x, y) (8)

>(x)→ A′A′

(x, x) (9)

A(x) ∧AA
′
(x, y)→ A′(y) (10)

R(x, y, z) ∧RA
′
(x, y, z, u)→ A′(u) } (11)

Rule (7) yields Rule (7’) in Ψ(P2). Rule (8) is obtained
from A(x) → A′(x) ∈ Pe. To see why we need the IDB
expansion Pe, suppose we replaced Pe by P in Definition 3.
Rule (8) would not be produced and A′ would be replaced
by A elsewhere. Then the rule A(x) ∧ AA(x, y) → A(y)
would not be linear since both A and AA would be IDB. �

Correctness of Ψ is established by the following theorem.
Theorem 5. If P is datalog, then Ψ(P) is a polynomial
rewriting of P into a linear disjunctive program.

1079



B(a)

G(b) ∨B(a)

B(c) ∨B(a)

B(c) ∨G(c)

V (c) ∈ D1

(1)
E(a, c) ∈ D1

E(b, c) ∈ D1

E(a, b) ∈ D1
(2)

(3)

(2)

(a) B(a)

BB(c, a)

GB(b, a)

BB(a, a) E(a, b) ∈ D1

E(b, c) ∈ D1

V (c) ∈ D1

(1’)
GB(c, a)

BB(a, a) E(a, c) ∈ D1

(3’)

(2’)

(2’)

(b)

Figure 1: (a) derivation of B(a) from P1 ∪ D1; (b) derivation of B(a) from Ξ(P1) ∪ D1

From Theorems 2 and 5 we obtain the following results.
Corollary 6. A disjunctive program P is datalog rewritable
iff it is rewritable into a linear disjunctive program.
Corollary 7. Checking P ∪D |= α for P a linear program,
D a dataset and α a fact is PTIME-complete w.r.t. data com-
plexity and EXPTIME-complete w.r.t. combined complexity.

4 Weakly Linear Disjunctive Datalog
In this section, we introduce weakly linear programs: a new
class of disjunctive datalog programs that extends both dat-
alog and linear disjunctive datalog. The main idea is simple:
instead of requiring the body of each rule to contain at most
one occurrence of an IDB predicate, we require at most one
occurrence of a disjunctive predicate—a predicate whose ex-
tension for some dataset could depend on the application of
a disjunctive rule. This intuition is formalised as given next.
Definition 8. The dependency graph GP = (V,E, µ) of a
program P is the smallest edge-labeled digraph such that:

1. V contains every predicate occurring in P;
2. r ∈ µ(P,Q) whenever P,Q ∈ V , r ∈ P \ P>, P occurs

in the body of r, and Q occurs in the head of r; and
3. (P,Q) ∈ E whenever µ(P,Q) is nonempty.
A predicate Q depends on a rule r ∈ P if GP has a path
that ends in Q and involves an r-labeled edge. Predicate Q
is datalog if it only depends on datalog rules; otherwise, Q
is disjunctive. Program P is weakly linear (WL for short) if
every rule in P has at most one occurrence of a disjunctive
predicate in the body. �

Checking whether P is WL is clearly feasible in polyno-
mial time. If P is datalog, then all its predicates are datalog
and P is WL. Furthermore, every disjunctive predicate is
IDB and hence every linear program is also WL. There are,
however, WL programs that are neither datalog nor linear.
Consider P3, which extends P1 with the following rule:

E(y, x)→ E(x, y) (12)

SinceE is IDB inP3, Rules (2) and (3) have two IDB atoms.
Thus, P3 is not linear. The graph GP3

looks as follows.

B

> V E ⊥

G

(1)

(1)

(2)

(3)

(3)(2) (12)

Predicate V is EDB and hence does not depend on any rule.
Predicates B and G depend on Rule (1) and hence are dis-
junctive. Finally, predicateE depends only on Rule (12) and
hence it is a datalog predicate. Thus, P3 is WL.
Definition 9. For P WL, let Ξ′(P) be defined as Ξ(P) in
Definition 1 but where: (i) Σ is the set of all disjunctive pred-
icates in P\P>; (ii) ϕ denotes the conjunction of all datalog
atoms in a rule; and (iii) in addition to rules (1)–(4), Ξ′(P)
contains every rule in P with no disjunctive predicates. �

By adapting the proof of Theorem 2 we obtain:
Theorem 10. If P is WL, then Ξ′(P) is a polynomial data-
log rewriting of P .

Thus, fact entailment over WL programs has the same
data and combined complexity as for datalog. Furthermore,
Ξ′(P) is a rewriting of P and hence it preserves the exten-
sion of all predicates. If, however, we want to query a spe-
cific predicate Q, we can compute a smaller program, which
is linear in the size of P and preserves the extension of Q.
Indeed, if Q is datalog, each proof in P of a fact about Q in-
volves only datalog rules, and if Q is disjunctive, each such
proof involves only auxiliary predicates XQ. Thus, in Ξ′

we can dispense with all rules involving auxiliary predicates
XR for R 6= Q. In particular, if Q is datalog, the rewriting
contains no auxiliary predicates.
Theorem 11. Let P be WL, S a set of predicates in P , and
P ′ obtained from Ξ′(P) by removing all rules with a predi-
cate XR for R 6∈ S. Then P ′ is a rewriting of P w.r.t. S.

5 Rewriting Programs via Unfolding
Although WL programs can be rewritten into datalog, not all
datalog rewritable programs are WL. Let P4 be as follows:

P4 = {A(x) ∧B(x)→ C(x) ∨D(x) (13)
E(x)→ A(x) ∨ F (x) (14)
C(x) ∧R(x, y)→ B(y) } (15)

Program P4 is not WL since both body atoms in (13) are
disjunctive. However, P4 is datalog rewritable.

We now present a rewriting procedure that combines our
results in Section 4 with the work of Gergatsoulis (1997) on
program transformation for disjunctive logic programs. Our
procedure iteratively eliminates non-WL rules by “unfold-
ing” the culprit atoms w.r.t. the other rules in the program.
It stops when the program becomes WL, and outputs a dat-
alog program as in Section 4. The procedure is sound: if it

1080



Procedure 1 Rewrite
Input: P: a disjunctive program
Output: a datalog rewriting of P
1: P ′ := Pe

2: while P ′ not WL do
3: select r∈P ′ with more than one disjunctive body atom
4: select a disjunctive body atom α ∈ r
5: P ′ := Unfold(P ′, r, α)

6: return Ξ′(P ′)

succeeds, the output is a datalog rewriting. It is, however,
both incomplete (linearisability cannot be semi-decided just
by unfolding) and non-terminating. Nevertheless, our exper-
iments suggest that unfolding can be effective in practice
since some programs obtained from realistic ontologies can
be rewritten into datalog after a few unfolding steps.

Unfolding We start by recapitulating (Gergatsoulis 1997).
Given a disjunctive program P , a rule r in P , and a body
atom α of r, Gergatsoulis defines the unfolding of r at α
in P as a transformation of P that replaces r with a set of
resolvents of r with rules in P at α (see Appendix). We de-
note the resulting program by Unfold(P, r, α). Unfolding
preserves all entailed disjunctions ϕ of facts: P |= ϕ iff
Unfold(P, r, α) |= ϕ for all P , r, α, and ϕ. However, to en-
sure that unfolding produces a rewriting we need a stronger
correctness result that is dataset independent.
Theorem 12. Let P0 be a disjunctive program and let P be
a rewriting of P0 such that no IDB predicate in P occurs
in P0. Let r be a rule in P and α be an IDB body atom of r.
Then Unfold(P, r, α) is a rewriting of P0. Moreover, no IDB
predicate in Unfold(P, r, α) occurs in P0.

The Rewriting Procedure Procedure 1 attempts to elimi-
nate rules with several disjunctive body atoms by unfolding
one such atom. Note that to satisfy the premise of Theo-
rem 12, unfolding is applied to Pe rather than P . Correct-
ness of Procedure 1 is established by the following theorem.
Theorem 13. Let P be a disjunctive program. If Rewrite
terminates on P with output P ′, then P ′ is a rewriting of P .
Rewrite first transforms our example program P4 to

P ′
4 = {A′(x) ∧B′(x)→ C ′(x) ∨D′(x) (16)

E(x)→ A′(x) ∨ F ′(x) (17)

C ′(x) ∧R(x, y)→ B′(y) } ∪ Paux (18)

where Paux = {P (x) → P ′(x) | P ∈ {A,B,C,D, F} }
and A′, B′, C ′, D′, F ′ are fresh. Rule (16) is not WL in
P ′
4, and needs to be unfolded. We choose to unfold (16) on

A′(x). Thus, in Step 5, Rule (16) is replaced by the rules

A(x) ∧B′(x)→ C ′(x) ∨D′(x) (19)

E(x) ∧B′(x)→ C ′(x) ∨D′(x) ∨ F ′(x) (20)

The resulting P ′′
4 is WL, and Rewrite returns Ξ′(P ′′

4 ).

6 Application to OWL Ontologies
The RL profile is a fragment of OWL 2 for which reasoning
is tractable and practically realisable by means of rule-based

1. A v ≤ 1R.B A(z) ∧R(z, x1) ∧B(x1)
∧R(z, x2) ∧B(x2)→ x1 ≈ x2

2. A uB v C A(x) ∧B(x)→ C(x)
3. ∃R.A v B R(x, y) ∧A(y)→ B(x)
4. R v S R(x1, x2)→ S(x1, x2)
5. R ◦ S v T R(x1, z) ∧ S(z, x2)→ T (x1, x2)
6. A v Self(R) A(x)→ R(x, x)
7. Self(R) v A R(x, x)→ A(x)
8. R v S− R(x, y)→ S(y, x)
9. A v {a} A(x)→ x ≈ a
10. {a} v A A(a)
11. A v B t C A(x)→ B(x) ∨ C(x)

Table 1: Normalised RL(t) axioms, with A,B atomic or >,
C atomic or ⊥, R,S, T atomic roles, a an individual.

technologies. RL is also a fragment of datalog: each RL on-
tology can be normalised to a datalog program.

We next show how to extend RL with disjunctions while
retaining tractability of consistency checking and fact entail-
ment in combined complexity. We first recapitulate the kinds
of normalised axioms that can occur in an RL ontology. We
assume familiarity with Description Logic (DL) notation.

A (normalised) RL ontology is a finite set of DL axioms of
the form 1-10 in Table 1. The table also provides the trans-
lation of DL axioms into rules. We define RLt as the exten-
sion of RL with axioms capturing disjunctive knowledge.

Definition 14. An RLt ontology is a finite set of DL axioms
of the form 1-11 in Table 1. �

Fact entailment in RLt is co-NP-hard since RLt can en-
code non-3-colourability. Membership in co-NP holds since
rules have bounded number of variables, and hence pro-
grams can be grounded in polynomial time (see Appendix).
Tractability can be regained if we restrict ourselves to RLt

ontologies corresponding to WL programs. WL programs P
obtained from RLt ontologies have bounded number of
variables, and thus variables in Ξ′(P) are also bounded.

Theorem 15. CheckingO∪D |= α, for O an RLt ontology
that corresponds to a WL program, is PTIME-complete.

Thus, fact entailment in RLt is no harder than in RL, and
one can use scalable engines such as RDFox. Our experi-
ments indicate that many ontologies captured by RLt are
either WL or can be made WL via unfolding, which makes
data reasoning over such ontologies feasible.2

Dealing with Expressive Ontology Languages Hustadt,
Motik, and Sattler (2007) developed an algorithm for trans-
forming SHIQ ontologies into an equivalent disjunctive
datalog program. Cuenca Grau et al. (2013) combined this
algorithm with a knowledge compilation procedure (called
Compile-Horn) obtaining a sound but incomplete and non-
terminating datalog rewriting procedure for SHIQ. Our
procedure Rewrite provides an alternative to Compile-Horn

2For CQ answering, our language becomes co-NP-hard w.r.t.
data, whereas RL is tractable. This follows from (Lutz and Wolter
2012) already for a single axiom of type 11.

1081



for SHIQ. The classes of ontologies rewritable by the two
procedures can be shown incomparable (e.g., Compile-Horn
may not terminate on WL programs).

7 Related Work
Complexity of disjunctive datalog with negation as fail-
ure has been extensively studied (Ben-Eliyahu-Zohary and
Palopoli 1997; Eiter, Gottlob, and Mannila 1997). The class
of head-cycle free programs was studied in Ben-Eliyahu-
Zohary and Palopoli; Ben-Eliyahu-Zohary, Palopoli, and
Zemlyanker (1997; 2000), where it was shown that certain
reasoning problems are tractable for such programs (fact en-
tailment, however, remains intractable w.r.t. data).

Gottlob et al. (2012) investigated complexity of disjunc-
tive TGDs and showed tractability (w.r.t. data complexity)
of fact entailment for a class of linear disjunctive TGDs.
Such rules allow for existential quantifiers in the head, but
require single-atom bodies; thus, they are incomparable to
WL rules. Artale et al. (2009) showed tractability of fact en-
tailment w.r.t. data for DL-Litebool logics. This result is re-
lated to (Gottlob et al. 2012) since certain DL-Litebool logics
can be represented as linear disjunctive TGDs. Finally, com-
bined complexity of CQ answering for disjunctive TGDs
was studied by Bourhis, Morak, and Pieris (2013).

Lutz and Wolter (2012) investigated non-uniform data
complexity of CQ answering w.r.t. extensions of ALC, and
related CQ answering to constraint satisfaction problems.
This connection was explored by Bienvenu et al. (2013),
who showed NEXPTIME-completeness of first-order and
datalog rewritability of instance queries for SHI.

The procedure in (Cuenca Grau et al. 2013), mentioned
in Section 6, is used by Kaminski and Cuenca Grau (2013)
to show first-order/datalog rewritability of two fragments of
ELU . Notably, both fragments yield linear programs. Fi-
nally, our unfolding-based rewriting procedure is motivated
by the work of Afrati, Gergatsoulis, and Toni (2003) on
linearisation of plain datalog programs by means of pro-
gram transformation techniques (Tamaki and Sato 1984;
Proietti and Pettorossi 1993; Gergatsoulis 1997).

8 Evaluation
Rewritability Experiments. We have evaluated whether
realistic ontologies can be rewritten to WL (and hence to dat-
alog) programs. We analysed 118 non-Horn ontologies from
BioPortal, the Protégé library, and the corpus in (Gardiner,
Tsarkov, and Horrocks 2006). To transform ontologies
into disjunctive datalog we used KAON2 (Motik 2006).3
KAON2 succeeded to compute disjunctive programs for 103
ontologies. On these, Rewrite succeeded in 35 cases: 8 pro-
grams were already datalog after CNF normalisation, 12
were linear, 12 were WL, and 3 required unfolding. Rewrite
was limited to 1,000 unfolding steps, but all successful cases
required at most 11 steps. On average, 73% of the predicates
in ontologies were datalog, and so could be queried using
a datalog engine (even if the disjunctive program could not

3We doctored the ontologies to remove constructs outside
SHIQ, and hence not supported by KAON2. The modified ontolo-
gies can be found on http://csu6325.cs.ox.ac.uk/WeakLinearity/

Our approach HermiT Pellet
dlog disj err dlog disj err dlog disj err

U01 <1s 8s 6s 107s 146s 172s
U04 <1s 55s 50s 50s 2 — — —
U07 <1s 62s 3 107s 122s 2 — — —
U10 <1s 66s 5 176s 182s 2 — — —

Table 2: Average query answering times

be rewritten). We identified 15 RLt ontologies and obtained
WL programs for 13 of them. For comparison, we imple-
mented the procedure Compile-Horn in (Cuenca Grau et al.
2013), which succeeded on 18 ontologies, only one of which
could not be rewritten by our approach.
Query Answering. We tested scalability of instance query
answering using datalog programs obtained by our ap-
proach. For this, we used UOBM and DBpedia, which come
with large datasets. UOBM (Ma et al. 2006) is a standard
benchmark for which synthetic data is available (Zhou et al.
2013). We denote the dataset for k universities by Uk. We
considered the RLt subset of UOBM (which is rewritable
using Rewrite but not using Compile-Horn), and generated
datasets U01, U04, U07, U10. DBpedia4 is a realistic on-
tology with a large dataset from Wikipedia. Since DBpedia
is Horn, we extended it with reasonable disjunctive axioms.
We used RDFox as a datalog engine. Performance was mea-
sured against HermiT (Motik, Shearer, and Horrocks 2009)
and Pellet (Sirin et al. 2007). We used a server with two
Intel Xeon E5-2643 processors and 128GB RAM. Timeouts
were 10min for one query and 30min for all queries; a limit
of 100GB was allocated to each task. We ran RDFox on 16
threads. Systems were compared on individual queries, and
on precomputing answers to all queries. All systems suc-
ceeded to answer all queries for U01: HermiT required 890s,
Pellet 505s, and we 52s. Table 2 depicts average times for
datalog and disjunctive predicates, and number of queries
on which a system failed.5 Pellet only succeeded to answer
queries on U01. HermiT’s performance was similar for dat-
alog and disjunctive predicates. In our case, queries over the
130 datalog predicates in UOBM (88% of all predicates)
were answered instantaneously (<1s); queries over disjunc-
tive predicates were harder, since the rewritings expanded
the dataset quadratically in some cases. Finally, due to its
size, DBpedia’s dataset cannot even be loaded by HermiT
or Pellet. Using RDFox, our rewriting precomputed the an-
swers for all DBpedia predicates in 48s.

9 Conclusion
We have proposed a characterisation of datalog rewritability
for disjunctive datalog programs, as well as tractable frag-
ments of disjunctive datalog. Our techniques can be applied
to rewrite OWL ontologies into datalog, which enables the
use of scalable datalog engines for data reasoning. Further-
more, our approach is not “all or nothing”: even if an on-
tology cannot be rewritten, we can still answer queries over
most (i.e., datalog) predicates using a datalog reasoner.

4http://dbpedia.org/About
5Average times do not reflect queries on which a system failed.

1082



Acknowledgements
This work was supported by the Royal Society, the EPSRC
projects Score!, Exoda, and MaSI3, and the FP7 project
OPTIQUE.

References
Afrati, F.; Cosmadakis, S. S.; and Yannakakis, M. 1995.
On datalog vs. polynomial time. J. Comput. System Sci.
51(2):177–196.
Afrati, F.; Gergatsoulis, M.; and Toni, F. 2003. Linearisabil-
ity of datalog programs. Theor. Comput. Sci. 308(1-3):199–
226.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations. J.
Artif. Intell. Res. 36:1–69.
Ben-Eliyahu-Zohary, R., and Palopoli, L. 1997. Reasoning
with minimal models: Efficient algorithms and applications.
Artif. Intell. 96(2):421–449.
Ben-Eliyahu-Zohary, R.; Palopoli, L.; and Zemlyanker, V.
2000. More on tractable disjunctive datalog. J. Log. Pro-
gramming 46(1-2):61–101.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F.
2013. Ontology-based data access: A study through dis-
junctive datalog, CSP, and MMSNP. In PODS, 213–224.
arXiv:1301.6479.
Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. OWLim: A family of scalable
semantic repositories. Semantic Web J. 2(1):33–42.
Bourhis, P.; Morak, M.; and Pieris, A. 2013. The impact of
disjunction on query answering under guarded-based exis-
tential rules. In IJCAI.
Bry, F.; Eisinger, N.; Eiter, T.; Furche, T.; Gottlob, G.; Ley,
C.; Linse, B.; Pichler, R.; and Wei, F. 2007. Foundations of
rule-based query answering. In Reasoning Web, 1–153.
Cuenca Grau, B.; Motik, B.; Stoilos, G.; and Horrocks, I.
2013. Computing datalog rewritings beyond Horn ontolo-
gies. In IJCAI. arXiv:1304.1402.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive
datalog. ACM Trans. Database Syst. 22(3):364–418.
Gardiner, T.; Tsarkov, D.; and Horrocks, I. 2006. Framework
for an automated comparison of description logic reasoners.
In ISWC, 654–667.
Gergatsoulis, M. 1997. Unfold/fold transformations for dis-
junctive logic programs. Inf. Process. Lett. 62(1):23–29.
Gottlob, G.; Manna, M.; Morak, M.; and Pieris, A. 2012. On
the complexity of ontological reasoning under disjunctive
existential rules. In MFCS, 1–18.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
Description Logics by a Reduction to Disjunctive Datalog.
J. Autom. Reasoning 39(3):351–384.

Kaminski, M., and Cuenca Grau, B. 2013. Sufficient condi-
tions for first-order and datalog rewritability in ELU. In DL,
271–293.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV system for knowl-
edge representation and reasoning. ACM Trans. Comput.
Log. 7(3):499–562.
Lutz, C., and Wolter, F. 2012. Non-uniform data complexity
of query answering in description logics. In KR.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G. T.; Pan, Y.; and Liu, S.
2006. Towards a complete OWL ontology benchmark. In
ESWC, 125–139.
Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.; and Lutz, C. 2009. OWL 2 Web Ontology Language
Profiles. W3C Recommendation.
Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu,
D. 2014. Parallel materialisation of datalog programs in
centralised, main-memory RDF systems. In AAAI.
Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hyper-
tableau Reasoning for Description Logics. J. Artif. Intell.
Res. 36:165–228.
Motik, B. 2006. Reasoning in Description Logics using
Resolution and Deductive Databases. Ph.D. Dissertation,
Univesität Karlsruhe (TH), Karlsruhe, Germany.
Proietti, M., and Pettorossi, A. 1993. The loop absorp-
tion and the generalization strategies for the development of
logic programs and partial deduction. J. Log. Programming
16(1):123–161.
Sirin, E.; Parsia, B.; Cuenca Grau, B.; Kalyanpur, A.; and
Katz, Y. 2007. Pellet: A practical OWL-DL reasoner. J.
Web Sem. 5(2):51–53.
Tamaki, H., and Sato, T. 1984. Unfold/fold transformation
of logic programs. In ICLP, 127–138.
Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.; An-
namalai, M.; and Srinivasan, J. 2008. Implementing an in-
ference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In ICDE, 1239–1248.
Zhou, Y.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; and Baner-
jee, J. 2013. Making the most of your triple store: query
answering in OWL 2 using an RL reasoner. In WWW, 1569–
1580.

1083




